D-RATIO OF A CONFIGURATION
JORGE PINEIRO, TANVIR ABULKALAM

ABSTRACT. We extend the notion of D-ratio to a general configu-
ration of lines and study its properties.

1. SUCCESIVE BLOW-UPS FOR RESOLVING THE INDETERMINACY OF
RATIONAL MAPS

Let ¢ : X --» X' be rational map between algebraic varieties. The
map ¢ is actually a well defined morphism ¢ : U = X \ I(p) — X’
outside the closed set I(p) of indeterminacy of the map. The technique
of blowing-up an ideal sheaf can be used to extend the rational map ¢
to a well defined morphism @ : X — X’. First we need some definitions.
We follow the presentation in [4].

Definition 1.1. Let 7 : X — X be a birrational morphism. We say
that a closed subscheme J 1is the center of 7 if

X = Proj(@ S%,

>0
where S is the ideal sheaf associated to [J .

Definition 1.2. We say that 7 : X — X is a monoidal transforma-
tion if its center is a smooth irreducible subvariety of X. We say that
7 X — X is a successive blow-up if it is the composition of monoidal
transformations.

Theorem 1.3. (Hironaka) Let ¢ : X --+ X' be a rational map between
algebraic varieties with X non-singular. Then, there is a sequence of
proper varieties Xo, ..., X, such that

(1) X

(2) 7Tz X — X,_1 is a monoidal transformation.

(3) ¢ extends to a morphism ¢ : X, — Y.

(4) The underlying subvariety Z(S) of the center J of the compo-
sition m : X, — X of all monoidal transformation is exactly
the indeterminacy locus 1(p) of the map .

Proof. See Main Theorem II in [2]. O
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Definition 1.4. Let ¢ : X --+ X be a rational map. We say that a
pair ()N(@, ) is a resolution of singularities of o when fﬂp 1S @ successive
blow-up of X and 7 : X@ — X s such that po : X — X eatends
to a morphism ¢ : X‘p — X. We call ¢ a resolving morphism for .

Definition 1.5. Let 7 : X — X be a birrational morphism with
center J. Let D be an irreducible divisor on X, we define the proper
transform of D by 7D = w1 (DNU), where U = X \ Z(J).

Proposition 1.6. Let X a non-singular projective variety and ¢ :
X --» X' a rational map. Suppose that X is a successive blowup
of X as composition of monoidal transformations m; : X; — X;_1.
Denote by F; the exceptional diwvisor of m; : X; — X;_1 and take
T =mip0--om 1 X — X;. Let E; = (7))'F; be the proper transform

of F; under w;. Then Pic(X) is the module

Pic(X) = Pic(X)® E\Z® --- ® E,Z.

Proof. The case of r = 1 is part of exercise 11.7.9 in [1]. In general for
X a noetherian scheme, and &£ a locally coherent sheaf of rank > 2 on
X, we have Pic(P(£)) = Pic(Proj(®2,Sym'E)) = Pic(X) & Z. More
precisely we can write, for a monoidal transformation 7 : X' — X
with exceptional divisor F, Pic(X') = 7 Pic(X) @ (#*F)Z.. Then we
proceed by induction. 0

2. RATIONAL MAPS ON THE PROJECTIVE PLANE

Ins this section we are going to build the intersection matrix asso-
ciated to the resolution of indeterminacy of certain maps on the pro-
jective plane. Consider a fix plane H C P? and let ¢ : P? ——s P? be
a ratinal map on the projective plane P2, whose indeterminacy locus
I(¢p) is contained in H. In this situation, a base for Pic(P?) can be
taking to be {H} and if we need r successive blow-ups to resolve the
map ¢, we will get in the notation of the previous section:

Pic(P2,) = 'HZ ® E\Z.&® - -- ® E, Z.

Definition 2.1. (Joey) Suppose that ¢ : P? --» P? is a rational map
of degree d with indeterminacy locus I(y) contained in the hyperplane

H. Consider a resolution of the indeterminacy w : P2, — P? and a
resolving morphism ¢ : P2, — P2 Assume that

mH=1m"H+aE\+ - +a,E. and ¢"H=dr*H+d, B+ --+d.E,.
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If a; # 0 for all a; # 0, the D-ratio r(H, ) is defined as
r(H,p) = sup{a;/a;}.

Remark 2.2. For the coefficients 1 and d for 7*H in 7*H and ¢*H
respectively see proposition 4.5 in [4]. The defination of r is taken in
such a way that we obtain an effective divisor r¢o*H — n*H.

2.1. One blow-up. In the case that we need only one blow-up at a
point to resolve the indeterminacy of a rational map ¢ : P? --» P? of
degree d > 1 and we have intersection conditions:

(E1,E))=—1, and (7*H, E))=1.

Using intersection with Ej, we can solve a linear system in whole num-
bers to determine a and @’ in the pullbacks:

7 H = 71*H + aF, ¢*H = dr*H + d' Ey

0=1—-a

1=d—d,
So mH = n*H + E;, and ¢*H = dn*H + (d — 1)E,. The D-ratio is
r(H,p)=1/d—1.

2.2. The case of two blow-ups. Suppose that we need two successive
blow-ups at points to resolve the indeterminacy of the map ¢ : P? --»
P? of degree d > 1 with intersection conditions:

(B, Ey) = —1, (n*H,E,) =1,
(B, B)) = —q, (EyE) =1, (x*H, E))=0.

Using intersection with EFy and Ej, we can solve a system in whole
numbers to determine ¢, a,a’,b and b" in the pullbacks:

7 H = 7'H + aE\ + bEs, ¢*H = drn*H + d'Fy + VE,
0=14a—0,
0=—qa+b,
l=d+d -V,
0= —qad +1,

and we get ¢ =2,a=1,b=2,a' =d—1 and ¥/ = 2(d — 1), giving
™H =71"H+E +2E,, and ¢*H =dr*H+(d—1)E; +2(d—1)F,.
The D-ratio of the map is r(H,p) =1/d — 1.
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2.3. The case of three blow-ups. Suppose that we need three suc-
cessive blow-ups at points to resolve the indeterminacy of the map
¢ : P2 ——» P? of degree d > 1 with intersection conditions:
(E37 E3) = _17 (ﬂ-ﬁHa E3) = ]-7 (E27 E2) = —Qqo,
(B3, Ey) =1, (B, E3) =0, (E,E)=-q,
(m*H,Fy) =0, (7°H,Ey) =0, (EyE))=1.
Using intersection respectively with FEj3, Fs and F;, we can solve a

system in whole numbers to determine ¢q, g2, a, b, c,a’, b’ and ¢ in the
pullbacks:

7 H = n*H4+aE,+bFy+cE;, and ¢*H = dr*H+d Ey+b Ey+c Es,

0=14+b—c
0=a—qb+c,
0=—qa+b,
l=d+b -/,
0=da —qb +¢,
0=—qa +1,

and we get two possibilities:
(q1,q2,a,b,¢c,a’ b, ) =1(2,2,1,2,3,d —1,2(d — 1),3(d — 1))
(q1,q2,a,b,¢c,a’ 0, )= (1,3,1,1,4,d — 1,d — 1,4(d — 1))
The first case gives:
" H =n*H + F\ + 2E, + 3E;,
¢*H =dr*H + (d—1)Ey +2(d — 1)Ey + 3(d — 1) Es.
The second case gives:
7 H = n*H + E\, + Fy + 45,
¢*H = dr*H + (d — 1)Ey + (d — 1) Ey + 4(d — 1) E;.
In any case the D-ratio is again r(H,¢) = 1/d — 1.

3. THE D-RATIO OF A CONFIGURATION

In this section we extend the notion of D-ratio to a configuration of
intersection. We expect to study the properties of the D-ratio in this
general context and its implications for the resolution of indeterminacy
of maps on P?.

Definition 3.1. Suppose that A is a symmetric matriz with integer
coefficients, satisfying the conditions:
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(i) a;; <0 fpri>0 and agp =1,

(i) ay € 0,1} for i # j.
The D-ratio associated A and integral vectors ¢ = (¢, c1,...,Cn) and
b= (bo,b1,...,by, is given by

r= T(Aa ¢, b) = Os<u£) {al/a;}
/ /

For solutions a = (x¢,...,x,) and 2’ = (xy, ..., x) respectively of the
systems:

Ax =b, Ar =c

Remark 3.2. In the way we have defined the r, if we consider divisors
D =x¢Dy+ 21Dy + -+ x.D, and D' = x,Dy + 2y Dy + - - - + 2. D, on
a projective variety X, the divisor will be effective rD’ — D > 0.

Example 3.3. For the configuration associated to the resolution of the
singularity of one map of degree d using one blow-up of a point we have
vectors b = (2,0) and ¢ = (2d — 1,1) as well as the matrix

(1)

. The solution as before (zg,z1) = (1,1); (x(,2}) = (d,d — 1) and the
D-ratio 1/(d — 1).

Example 3.4. The configuration for two successive blow-ups of points
to resolve the indeterminacy of a map of degree d gives self-intersection
—q1 = —2 and vectors b = (3,0,0) and ¢ = (3d — 2,0,1). The intersec-
tion matrix is

1 0 1
A= 0 -2 1
1 1 -1

. The solution as before
([Eo, Iy, 232) = (17 17 2) ($6, :L‘lla xl2) = (d7 d— 17 2(d - 1))
and the D-ratio 1/(d — 1).

Ezxample 3.5. When we need three blow-ups along points and the degree
of the map is d, we can choose two sets of vectors depending on the
possible values for ¢; and ¢o. For (q1,¢2) = (2,2) we get b = (4,0,0,0)
and ¢ = (4d — 3,0,0, 1) and for (¢1,¢2) = (1,3) we have b = (5,0,0,0)
and ¢ = (bd —4,0,0,1). The intersection matrix depending also on the
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self-intersection of E; and FEj is given bellow:

1 0 0 1
0 —q1 1 0
0 1 —q2 1
1 0 1 -1
The D-ratio is 1/(d — 1) for both systems of solutions
(wo, T1, Ta, T3, Ty, ¥, w5, 7)) = (1,1,2,3,d,d — 1,2(d — 1),3(d — 1))
and
(w0, 21, T, T3, T, Ty, o, 75) = (1,1, 1,4,d— 1,d — 1,d — 1,4(d — 1)).

Question 3.6. We will like to study the D-ratio r = r(A,c,b). For
example, we would like to ask when is the D-ratio less than one ¢ Under
which conditions is the D-ratio more than one?

A:

Lemma 3.7. If r(A,b,c) < 1, then by < ¢o. If in addition we know
that xo =1 and xj, = d, then by < co —d + 1.

Proof. If r(A,b,c) < 1 we will have z; < «} for all i = 0,...,n and

therefore
n n
by = -
0 = Aol < Qp;T; = Cp.
=0 i=0

If we have the extra information xy = 1 and z{, = d, then

bg—l—d—lz1+Zao,ixi—|—d—1<d+2a07ix;:co.

i=1 i=1
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