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1. Presentation of the problem

The present project constitutes a numerical exploration of elliptic curves.
An elliptic curve E over Z is given by an equation of the sort

E : y2 = x3 + px + q,

where the coefficients p, q ∈ Z, and the polynomial x3 + px + q has no
repeated roots, plus a point o at infinity. For example curves given by
equations y2 = x3 + 16 or y2 = x3 + x, represent elliptic curves.
It is a natural operation to reduce the coefficients p, q module a prime l
and study all possible solutions of the reduced curve over the field Z/l.
A deep theorem of Number Theory states that the amount of solutions
should “be close to” l. For example the elliptic curve y2 = x2 + 16
when you reduce mod 2, takes the shape y2 = x3 and has only two
solutions (0, 0) and (1, 1). Another example could be seen with the
curve y2 = x3 + x and the prime l = 3. The curve stays the same
y2 = x3 +x module 3 and we find the solutions (0, 0); (1, 1); (2, 1). The
examples above were carefully chosen and we should not expect the
number of solutions to be exactly l in many cases, but on the contrary
attached to very special types of elliptic curves. Of course we need
a precise definition for the words “be close to”. The mathematical
statement says:

Theorem 1.1. If E is an elliptic curve and Nl is the number of solu-
tions of E module the prime l, then

‖Nl − l‖ ≤ 2
√

l.

The term al = Nl − l is called the l-defect of E. It plays an important
role in relation to the analytic theory of the curve.

Definition 1.2. A prime l 6= 2, 3 is called supersingular for the elliptic
curve E if al = 0.
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Figure 1. Addition Law on Elliptic Curve y2 = x3 − x

2. Addition law and self-maps

Let E : y2 = x3+px+q be an elliptic curve. We can define an operation
⊕ on E, such that if we take o = ∞ = (0 : 1 : 0) ∈ E, will satisfy the
following properties:

(i) ∀P,Q ∈ E, P ⊕Q = Q⊕ P .
(ii) ∀P ∈ E, P ⊕ o = o⊕ P .
(iii) ∀P ∈ E, there exist −P such that P ⊕−P = −P ⊕ P = o.
(iv) ∀P,Q, R ∈ E, (P ⊕Q)⊕R = P ⊕ (Q⊕R).

In the language of group theory we say that (E,⊕, o) is an Abelian
group with neutral element o. As a consequence, an elliptic curve
E comes always equipped with self-maps [n] : E → E, representing
multiplication by the different integers. For example the map [2]P =
P ⊕ P . For the elliptic curve y2 = G(x) = x3 + px + q and a point
P = (x, y) ∈ E with y 6= 0, this map is expressed as

[2](x, y) =
(G′(x)2 − 8xG(x)

4G(x)
,
G′(x)3 − 12xG(x)G′(x) + 2G(x)

8G(x)y

)
.

The map [n] : E → E has degree n2 for each n. All this maps commute,
that is, [n] ◦ [m] = [m] ◦ [n] = [n.m] and [n](x, y)x depends only on the
x coordinate, not on y.

Question 2.1. Does E has other self-maps, different from the [n] :
E → E maps?

Answer 2.2. Sometimes Yes!!! For example the elliptic curve E1 :
y2 = x3 + x has the automorphism f(x, y) = (−x, iy) over the complex
numbers. The ring of endomorphism in this case is Z+ Zi.

Definition 2.3. An elliptic curve with at least one map f : E → E,
not equal to [n] : E → E for any n is called an elliptic curve with
complex multiplication.

In general we should expect that most elliptic curves do not have com-
plex multiplication. The following result relate the concept of complex
multiplication with the l-defects of the curve.

Proposition 2.4. (Serre [?]) If E has no complex multiplication then
the set of supersingular primes has density zero.

This is a surprising result relating the theory of complex multiplication
to the reduction of the curve module a prime.
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3. Examples

In the following table we try to identify candidates with complex mul-
tiplication based on the theorem of Serre. We look for numerical ev-
idences of the existence of a set of supersingular primes with positive
density.

E Nl = l/l < 100 Nl = l/l < 1000

y2 = x3 + x .52 .518

y2 = x3 − 4x2 + 16 .08 .03

y2 = x3 + 2x− 7 .08 .03

y2 = x3 + 1 .52 .518

y2 = x3 + 4x2 + 2x .48 .512

y2 + y = x3 − x2 − 7x + 10 .48 .50

y2 = x3 + 6x2 + 74x + 72 .04 .006

y2 = x3 + 23x2 + 75x− 92 .12 .05

y2 = x3 − 40x2 + 42x− 50 .08 .041

y2 + y = x3 − 38x + 90 .56 .50

y2 + y = x3 − 860x + 9707 .44 .49

The results show how that the elliptic curves with affine Weierstrass
equations

y2 + y = x3 − 860x + 9707,

y2 + y = x3 − 38x + 90,

y2 + y = x3 − x2 − 7x + 10,

y2 = x3 + 4x2 + 2x,

y2 = x3 + 1,

are also likely to have complex multiplication.
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4. Modular forms

Modular forms are very important analytic objects which are at the
center of the modern number theory.

Definition 4.1. Let’s denote by H the upper half-plane H = {z =
x + iy ∈ C : y > 0}. A holomorphic function f : H → C is a modular
form of weight k and level N ≥ 1 if it satisfies a relationship

f
( Az + B

CNz + D

)
=

1

(CNz + D)k
f(z)

for some integers A,B, C,D with AD −BCN = 1 and all z ∈ H.

For example suppose that we take q = exp(2πiτ), then the Delta func-
tion ∆(τ) =

∏∞
r=1(1 − qr)24 is a modular form of weight k = 12 and

level N = 1. The ∆ function is essentially the first object that we find
when study the level N = 1. The Fourier expansion of ∆ is

∆ = (2π)12
∑

n

τ(n)qn,

and there are many interesting properties of the numbers τ(n). For
example a conjecture of Lehmer states that τ(n) 6= 0 for all n.

Definition 4.2. Let’s put q = exp(2πiz). A series
∑

i biq
i is said to ex-

hibit a modularity pattern if there exist a modular eigenform
∑

i ciq
i =

f(z) of weight 2 and level N such that for all primes l, l - N , we have
bl = cl.

The term “eigenform” in the definition refers to the fact that f(z) is
a special kind of modular form, namely, eigenvector for a system of
operators called the Hecke Operators on modular forms.

4.1. Modular forms and Elliptic curves. Suppose that we have an
elliptic curve E. We can build a series, called the L-function L(q, E) =∑

i aiq
i attached to E, having al = l-defect of E for all primes l.

Theorem 4.3. (Modularity Theorem) Suppose that E is an elliptic
curve defined over Q and with conductor N , then the L-function L(q, E) =∑

i aiq
i, associated to E, exhibit a modularity pattern.

We can look at Lehmer question in the context of elliptic curves. For
elliptic curves with complex multiplication approximately half the al

are zero, on the other hand a Theorem of Noam Elkies states that
there are infinitely many l with al = 0, even for elliptic curves without
complex multiplication.
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E : y2 = x3 + x
a5 1
a7 0
a11 5
a13 2
a17 -6
a19 -2
a23 3
a29 -10
a31 -7
a37 -4
a41 7
a43 9
a47 0
a53 -2
a59 -8
a61 -1
a67 -10
a71 -12
a73 -11
a79 8
a83 2
a89 3
a97 7

E : y2 = x3 + 7x− 1
a5 -1
a7 4
a11 3
a13 -2
a17 -6
a19 1
a23 8
a29 -3
a31 -6
a37 -6
a41 5
a43 8
a47 0
a53 2
a59 -12
a61 6
a67 8
a71 8
a73 -3
a79 1
a83 9
a89 7
a97 -8

E : y2 = x3 + 4x2 + 2x
a5 0
a7 0
a11 -6
a13 0
a17 -6
a19 -2
a23 0
a29 0
a31 0
a37 0
a41 6
a43 10
a47 0
a53 0
a59 -6
a61 0
a67 14
a71 0
a73 -2
a79 0
a83 -18
a89 -18
a97 10
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