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Abstract. The present paper is an exposition on heights and
their importance in the modern study of algebraic dynamics. We
will explain the idea of canonical height and its surprising relation
to algebraic dynamics, invariant measures, arithmetic intersection
theory, equidistribution and p-adic analytic geometry.

1. Introduction

In many situations, solving mathematical problems involves study
the solution set of a system of polynomial equations. The language of
algebraic varieties is developed for that purpose. An algebraic variety
is a topological locally ringed space whose underlying topological space
“behave locally like” the zero set of a system of polynomials in an affine
space. A formal definition can be found for example in Chapter 1 of
[18]. A projective variety is an algebraic variety that can be embedded
into some projective space. Many number theoretic questions are nat-
urally expressed as diophantine problems. Suppose that the algebraic
variety X is defined over the number field F . An algebraic dynamical
system ϕ : X → X is a finite map from the algebraic variety X to
itself. One of the tools to study algebraic dynamics over number fields
is the definition of height functions. A (canonical) height function as-

sociated to ϕ is a function ĥϕ : X(F̄ ) → R, that attempts to compute
the complexity of the point P ∈ X(F̄ ) relative to the map ϕ. For in-
stance the points of finite forward orbits for ϕ will be exactly the points
of height ĥϕ(P ) = 0. The notion of height can be also generalized to
subvarieties Y ⊂ X, still measuring the behavior under iteration. The
existence of a map from an algebraic variety to a projective space and
the construction of the height associated to a self map, both relate to
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the concept of line bundle. A line bundle is a variety L together with a
map π : L → X, in such a way that for some open covering {Ui} of X,
the restriction L|Ui = π−1(Ui) is isomorphic to Ui×A1

F . The existence
of a morphism from X to a projective space can be expressed in terms
of line bundles. A line bundle L generated by global sections s0, ..., sr,
determines a map to the some projective space Pr. Sufficient conditions
for the construction of a height relative to a dynamical system can also
be expressed in terms of the existence of certain line bundles on X.
A line bundle L that satisfies an equation of the sort ϕ∗L ∼= L⊗α for
α > 1, allows to build a height ĥϕ relative to the self map ϕ : X → X.
The existence of a line bundle as before is called a polarization for
the dynamical system ϕ. A polarized dynamical system has associ-
ated a canonical function ĥϕ and a canonical invariant measure dµϕ,v

on the analytic space Xan
v , for each place v of F . For places at infin-

ity the canonical measure will be the product of positive currents on
Xan

v = Xσ = X ×σ C. For finite places, the canonical measure will be
defined over the Berkovich analytic space Xan

v = Xv
Ber [5] correspond-

ing to the place in question. A Mahler formula for the height ĥϕ will
compute the height using integration against the canonical measure.
The general Mahler formula for a map ϕ : X → X is a consequence of
the work of Chambert-Loir and Thuillier in theorem 1.3 of [11]. The
Mahler formula over curves was first considered in [24] without the
tools of Berkovich spaces. On the Riemann sphere the formula reads:

Theorem 1.1. Suppose that ϕ : P1 → P1 is a map on P1
F and f(T ) ∈

OF (T ) is a polynomial equation. The height ĥϕ(Div(f)) can be ex-
pressed as sum of integrals over all places v of F of the log of f(x)
against the invariant measure dµϕ,v, that is,

ĥϕ(Div(f)) =
∑

v

∫

P1
v,an

log |f(x)|dµϕ,v.

An important property of the measures dµϕ,v is the equidistribution
property. Let’s fix a place v of F and an embedding Fv ↪→ Cp. A se-
quence {Pn} of points in X(F̄ ) is generic if for any subvariety V ⊂ X
there exist N such that Pn /∈ V for n > N . Let (X,L, ϕ, α) be a po-
larized dynamical system defined over the number field F . A sequence
of points {Pn} ∈ X(F̄ ) is said to be small if hϕ(Pn) converges to zero.

Theorem 1.2. (Yuan [29]) Let (X,L, ϕ, α) be a polarized dynamical
system on the projective variety X defined over the number field F .
Let {Pn} a sequence of points on X(F̄ ) which is generic and small,
then for any place v of F the Galois orbits of the sequence {Pn} are
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equidistributed in the analytic space Xan
v with respect to the invariant

measure µϕ,v, in the sense that 1
#(O(Pn))

∑
P∈O(Pn) δP converges weakly

to dµϕ,v on Xan
v .

1.1. Notation. Throughout this paper, X will denote a projective al-
gebraic variety of dimension n and ϕ : X → X a finite self-map. F
will denote a number field and K an algebraically closed field which is
complete with respect to a non-archimedean absolute value |.|. L will
denote a line bundle on the algebraic variety X. A metrized line bundle
(L, ‖.‖) on X will be denoted by L̄. The variety Xv will denote the
variety obtained from X by extension of F to the algebraically closed
and complete field Cp. The Berkovich analytic space attached to Xv

for a place v of F will be denoted by Xv
Ber.

2. Canonical heights and canonical measures

Height functions are a tool to study dynamics over number fields.
As our first approach to height functions we take a look at the naive
height on the projective space. The naive height computes the com-
plexity of the point P ∈ PQ̄. Suppose that P ∈ Pn

F . The naive height
represents a variation of the function log max(|x0|, ..., |xn|), weighted
over all absolute values on F .

Definition 2.1. The naive height hnv(P ) of a point P = (x0, ..., xn) ∈
Pn
Q̄ is given by

hnv(x0, ..., xn) =
1

[F : Q]

∑
v

log max(|x0|v, ..., |xn|v)Nv ,

where v is running over all places of F , Fv denotes the completion at
v and Nv = [Fv : Qp] for v/p.

Let X be a non-singular algebraic variety defined over F and L a line
bundle on X. Assume that the global sections s0, ..., sr ∈ Γ(X,L)
define a map φL = (s0, ..., sr) : X → Pr. A height hL associated to L
could be defined by hX,L(P ) = hnv(φL(P )) for all points P ∈ X(F̄ ).
This definition however depend on the selection of the sections. We
can construct a height function hL associated to every element of L ∈
Pic(X) ⊗ R. It will be unique up a bounded function O(1) on X and
it will satisfy:

(i) hL is R−linear.
(ii) If X = Pn and L = OPn(1), then hL = hnv + O(1).
(iii) If f : X → Y is a morphism of non-singular algebraic varieties

and L ∈ Pic(Y )⊗ R, then hX,f∗L = hY,L ◦ f + O(1).
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Definition 2.2. Let ϕ : X → X a self-map of X defined over F and let
L ∈ Pic(X)⊗R be a line bundle on X such that for some number α > 1
we have ϕ∗L ∼= L⊗α. Such a dynamical system is called a polarized
dynamical system (X, ϕ,L, α). The canonical height associated to a
polarized dynamical system is given by

ĥϕ(P ) = lim
n→∞

hL(ϕn(P ))

αn
.

The condition α > 1 ensures the existence of the limit. The proof
can be found for example in [19], theorem B.4.1. The canonical height
satisfy the following properties:

(i) hϕ(ϕ(P )) = αhϕ(P ) ∀P ∈ X(F̄ )
(ii) |hϕ(P )− hL(P )| is bounded on X(F̄ ).

If L is ample we can also have the arithmetic properties:

(iii) hϕ satisfies Northcott’s theorem: points with coordinates in F̄
with bounded degree and bounded height are finite in number.

(iv) hϕ is a non-negative function.
(v) hϕ(P ) = 0 if and only if P has a finite forward orbit by the

map ϕ. Points with this property are called preperiodic points.
(vi) Lehmer Question: Is there a constant cϕ > 0 such that if P is

not preperiodic, then hϕ(P ) > cϕ/ deg(P )?

In a similar way as we did with the height, we can introduce the canon-
ical invariant measure. Invariant measures were first studied by Brolin
[8] and Lyubich [21] for maps on the Riemann sphere and later extended
by Brien and Duval [7] to projective spaces of higher dimension. Sup-
pose that (X,ϕ,L, α) is a polarized dynamical system defined over a
number field F . Suppose that σ : F ↪→ C is a place of F over infinity.
Let dµ0 be a smooth probability measure on Xσ = X ×σ C and con-
sider the sequence of probability measures on Xσ recursively defined
by dµk = ϕ∗dµk−1

αdim(X) .

Proposition 2.3. The sequence {dµk} converge as long as Xσ is a
smooth variety. The limit dµϕ,σ = limk dµk is called the canonical
invariant measure on Xσ relative to (X, ϕ,L, α).

The proof of the proposition is outlined in th.3.2.1 of [33]. The work
over Pn is done in [7] and some work in the general case is done in [15].
The canonical measure satisfy the following properties:

(i) ϕ∗dµϕ,σ = αdim(X)dµϕ,σ (functional equation).
(ii) ϕ∗dµϕ,σ = dµϕ,σ (invariance).
(iii) The measure dµϕ,σ is a probability measure on X.
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(iv) The line bundle Lσ = L⊗σ C can be equipped (th 2.2 in [31])
with a canonical semi-positive metric ‖.‖ϕ,σ. The canonical
invariant measure is the product [12] [13] [14] of positive cur-
vature currents c1(L̄)n = 1

(πi)
∂∂ log ‖.‖ϕ,σ...

1
(πi)

∂∂ log ‖.‖ϕ,σ.

3. Examples and global results for polarized maps

3.1. Examples. The main source of examples of polarized dynamical
systems is given by maps on projective spaces and projection of maps
on Tori.

Example 3.1. Power maps on Pn.

Consider any of the maps φm : Pn
F → Pn

F , given by φm(x0, ..., xn) =
(xm

0 , ..., xm
n ) with m > 1 and the line bundle O(1) in Pn

F . The ample
line bundle O(1) in Pn

F satisfies φ∗mO(1) ∼= O(m). The canonical height
associated to φm is the naive height hnv and the invariant measure is the
Haar measure dµ on the Torus S1 × ....× S1. If T0, T1, ..., Tn represent
projective coordinates in Pn, the canonical metric at infinity whose
curvature gives the canonical current is

‖(λ0T0 + ... + λnTn)(a0 : ... : an)‖nv =
|λ0a0 + ... + λnan|
sup(|a0|, ..., |an|) .

We can verify the identities:

hnv(φm(P )) = mhnv(P ) hnv(P ) ≥ 0 φ∗mdµ = dµ.

Example 3.2. Multiplication by n on elliptic curves.

An elliptic curve is a curve that is at the same time a group object
in the category of algebraic varieties. When working over the complex
numbers an elliptic curve can be identified with the quotient C/Z+ τZ
for some τ in the upper half-plane H. As a group it admits self maps
representing the multiplication by the different integers. Suppose that
we denote the multiplication by n map by [n] : E → E. Any ample

symmetric line bundle L on E satisfies the equation [n]∗L ∼= Ln2
. The

associated canonical height h[n] can be defined for n > 1 and is the
so-called Néron-Tate height hNT on E. The canonical measure is given
by the normalized Haar measure on the group.

Example 3.3. Automorphisms on a K 3 surface.

This example is due to Silverman [25]. Consider the family Sa,b ⊂
P2

F × P2
F of algebraic surfaces defined by {((x0, x1, x2), (y0, y1, y2)) :∑2

i,j=0 ai,jxiyj =
∑2

i,j,k,l=0 bi,j,k,lxixkyjyl = 0}. The natural projections

p1, p2 : Sa,b → P2, represents 2 : 1 coverings of P2 and determine
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involutions σ1 and σ2. The group generated by these involutions is
an infinite group of automorphisms on generic members of the family
Sa,b. Denote by Li = p∗iOP2(1), E+ = (2 +

√
3)L1 − L2 and E− =

−L1 +(2+
√

3)L2, the geometry of the family Sa,b can be used to prove

that (σ1 ◦ σ2)
±1∗(E±) = (7 + 4

√
3)E± and we obtain two canonical

heights ĥ± associated to E± and (σ1◦σ2)
±1. The polarizing line bundles

E± are not ample. One can get (E±, E±) = 0. Another approach to
this example can be found in the work of Kawagushi [20].

3.2. Polarized dynamical systems on smooth projective vari-
eties. Denote by ΩX the canonical line bundle on the smooth variety
X and by KX its associated canonical divisor. Assuming that the lin-
ear system |mKX | is not empty we can look at the associated rational
map φΩm

X
: X 99K Pl. We define gm = dim(φΩm

X
(X)) and the Kodaira

dimension κ(X) as κ(X) = supm≥1 gm. If all gm = 0, the Kodaira
dimension κ(X) is defined as κ(X) = −1. The Kodaira dimension be-
comes an obstruction to the existence of polarized dynamical systems
on an algebraic variety.

Lemma 3.4. Let (X, ϕ,L, α) be a polarized system defined over F . As-
sume that the line bundle L is ample and X is smooth, then αdim(X) =
deg(ϕ).

Proof. Let D be a divisor such that ϕ∗D ≡ αD, let Dk denotes the self-
intersection of D with itself k times and finally let’s put dim(X) = n.
We have

αn(Dn−1, D) = ((ϕ∗D)n−1, ϕ∗D) = ϕ∗(Dn−1, D) = deg(ϕ)(Dn−1, D).

The self-intersection (Dn−1, D) 6= 0 because LD is ample. ¤
Theorem 3.5. If (X,ϕ,L, α) is a polarized dynamical system with L
ample and X smooth, then κ(X) ≤ 0.

Proof. The proof is taken from [33], proposition 2.1.1 part 1. Let’s
denote by Rϕ the ramification divisor of ϕ : X → X. Then we have
Rϕ = KX − ϕ∗KX because the map is separable and

Ln−1Rϕ = Ln−1KX − Ln−1ϕ∗KX

= Ln−1KX − α1−nϕ∗(Ln−1KX)

= Ln−1KX − αLn−1KX = (1− α)(Ln−1KX)

The first step in the equations is using the polarization property and
the second step is using lemma 3.4. Now, if κ(X) > 0, then mKX 6= 0
is effective for some m, and therefore (Ln−1KX) > 0. That contradicts
the facts Ln−1Rϕ ≥ 0 and α > 1. ¤
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Remark 3.6. Polarized maps on Surfaces (proposition 2.3.1 of [33]).

Assume that X is a smooth variety of dimension two. Suppose that
the hypothesis of the previous theorem are valid. If κ = 0 and α is an
integer, a theorem of Beauville ([4], theorem 1) will characterize the
universal covering X̄ of X. As a result X ∼= T/G where T is a complex
torus and G is a finite group. In this case the map ϕ will be induced
by a linear map ϕ̄ : Cn → Cn. If κ < 0 we have to consider rational
surfaces and irrational ruled surfaces. A theorem of Nakayama ([22],
theorem 3) will prove that a rational surface has an endomorphism of
degree≥ 2 if and only if it is toric. The other possibility are P1−bundles
π : X → C where C has genus greater that zero. In fact we can reduce
to consider C = E an elliptic curve.

3.3. Mahler formula. For a general map ϕ : P1 → P1, we can
always consider a polarization by the line bundle O(1), as long as
α = deg(ϕ) > 1. The following result relates the canonical height
and the canonical measure.

Theorem 3.7. If ϕ : P1 → P1 is given in projective coordinates by a
monic polynomial, we can express the height ĥϕ(P ) of a point P ∈ P1

Q̄
as sum of integrals over all places σ at infinity of the log of the minimal
polynomial for P against the invariant measure dµϕ,σ.

ĥϕ(P ) =
1

deg(P )

∑
σ

∫

X(C)

log |f(x)|dµϕ,σ.

The proof can be found in [24] or [23]. It uses the theory of adelic
metrized line bundles developed by S.Zhang in [31] and the Arakelov
intersection theory explained in [27]. Metrized line bundles will be
treated with more details later in this paper. A metric ‖.‖ on a line
bundle L is a norm on each of the fibres, varying continuously. Adelic
metrized line bundles are provided with a collection of metrics ‖.‖v,
where v runs over all places of a number field F . The height of a
cycle can be defined relative to any adelic metric. In particular we are
interested in the height relative to the canonical adelic metric ‖.‖ϕ of
th. 2.2 in [31].

ĥϕ(Y ) =
ˆdeg(c1(L, ‖.‖ϕ)dim(Y )+1|Y )

(dim(Y ) + 1)(c1(L)dim(Y )
.

In this way when Y = P we recover the canonical height of a point via
adelic intersection. Using the symmetry and the recursive definition of
ˆdeg, the canonical height of a principal cycle Div(f) can be expressed

by the formula ĥϕ(Div(f)) =
∑

σ

∫
X(C)

log |f(x)|dµϕ,σ and the result
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follows.
Suppose that we impose no condition on the map ϕ = (P,Q) : P1

F →
P1

F , it may happen that the polynomials P an Q have common roots
and therefore the map can not be extended to the integral model P1

OF
.

The formula will need an error term E(f, vfinite) depending on finite
places of bad reduction, that is, the set of places v where the map does
not extend to a well defined map on P1

v. We get something like,

ĥϕ(Div(f)) =
∑

σ

∫

P1(C)

log |f(x)|dµϕ,σ + E(f, vfinite).

Intersection theory can give us an idea of the nature of the term
E(f, vfinite). Suppose that we denote by Y the closed subscheme
of X = P1

OF
determined by the vanishing of P and Q. Suppose

also that I is the sheaf of ideals defined by Y . Then we have a
surjection ϕ1 : O2

X ³ I(d), where d = deg(P ) = deg(Q). The
scheme-theoretic image of the projection from Y to Spec(OF ) is called
“places of bad reduction”. If we denote by σ : X1 99K X the blow-
up of Y in X, we will obtain that for a positive Cartier divisor E1,
the pullback σ∗I = OX1(−E1), this give rise to a surjective map
O2

X1
³ σ∗(OX(d)) ⊗ OX1(−E1). By the universal property of the

projective line this gives a map ϕ : X1 → X, extending the original
ϕ : X → X. We can repeat this process with ϕk in place of ϕ and
obtain a model σk : Xk 99K X and a map ϕk : Xk → X. The Cartier
divisor Ek is the sum of connected components Ek =

∑
v∈N,j rv,j,kCv,j,k.

The error term E(f, vfinite) in the Mahler formula can be obtained
as limit of the intersection numbers (ϕ∗kO(1), σ∗k Div(f))Xk

.
The methods described above could be extended to study morphisms
on the n-dimensional projective space [23]. It is very interesting how-
ever to see a completely different approach to compute E(f, vfinite)
using the concept of p-adic analytic spaces. Suppose that v is a finite
place of F . It will be nice to embed the reduction X(Fv) in the appro-
priated analytic space Xan

v and define a measure dµϕ,v on it. The idea
would be to recover the error term E(f, vfinite) as sum of integrals
over finite places. In this way we could express our formula in the more
symmetric way

ĥϕ(Div(f)) =
∑

v

∫

Xan
v

log |f(x)|dµϕ,v.

This work is carried out in [11]. Suppose that (X, ϕ,L, α) is a po-
larized dynamical system on the n-dimensional projective variety X.
Suppose that the section sD corresponds to the divisor D in X and

fD = sD/x
deg(D)
0 . We can express the height of Div(fD) as sum of
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integrals

ĥϕ(Div(fD)) =
∑

v

∫

XBer
v

log |fD(x)|dµϕ,v,

where the v is running over all places of F . For finite places the XBer
v

is the Berkovich analytic space [5] associated to v, and dµϕ,v is the
invariant measure on XBer

v introduced in [10]. The theory of Berkovich
analytic spaces is a continuation of the theory of rigid analytic spaces
initiated by Tate. Tate defined rigid analytic space and associated to
any scheme X over a complete field K, a space Xrig that allows to define
coherent sheafs and cohomology similar to the geometric situation K =
C. Berkovich spaces make possible the definition of path-connection
and harmonic functions. In the context of p-adic analytic spaces, the
Berkovich spaces make possible to do measure theory.

4. Berkovich analytic spaces

Let K an algebraically closed field which is complete with respect
to a non-archimedean absolute value |.|. The topology of K induced
by its absolute value is totally disconnected and that makes it difficult
to establish notions like continuity, homotopy, Laplace operator and
harmonic functions, while working on a scheme X over K. In [5] a
new special category of locally ringed topological spaces is introduced:
The Berkovich K-analytic spaces. Berkovich K-analytic spaces have
some properties similar to analytic manifolds, for example each point
in a K-analytic space admits a fundamental system of neighborhoods
which are locally compact and path-connected. A very important point
is that one can associate with any scheme X of locally finite type over
K, a Berkovich K-analytic space XBer. The scheme X is separated
(resp. proper, resp. connected) if and only if the XBer is Hausdorff
(resp. compact, resp. path-connected). If X is separated its dimension
is equal to the topological dimension of XBer. Moreover there is a
canonical embedding of X(K) as a dense subspace of XBer. In this way
we can embed a connected scheme X(K), with its locally disconnected
topology, in the path-connected space XBer, and create a better context
to define continuity, harmonic functions, etc. The following examples
are borrowed from Baker’s presentation in [2].

Example 4.1. The Berkovich space associated to an affine scheme.

Consider the affine scheme X = Spec(A) over K. In this case X is
associated with the analytic space XBer whose underlying topological
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space M(A) is made out of all multiplicative seminorms on A, extend-
ing the absolute value on K, equipped with the weakest topology for
which all functions of the form |.| → |f | for f ∈ A are continuous.

Example 4.2. The Berkovich space A1
Ber.

The underlying topological space of A1
Ber is the set M(K[T ]) of all

multiplicative seminorms on K[T ] extending the absolute value on K.
For example, whenever we consider a disk B(a, r) = {z ∈ K : |z−a| ≤
r} in K, and define |f |B(a,r) = supz∈B(a,r) |f(z)|, Gauss lemma will
imply that |.|B(a,r) is a multiplicative seminorm on K[T ]. Suppose
that x, y corresponds to seminorms |.|B(a,r) and |.|B(b,s) respectively.
Lets denote by x ∨ y the seminorm associated with the smallest disk
B(a, |b − a|) containing both B(a, r) and B(b, s). A path between x
and y can be seen as all seminorms associated to disks B(a, r′) where
r ≤ r′ ≤ |b− a| followed by the seminorms associated to disks B(b, s′)
with |b − a| ≥ s′ ≥ s. Passing from points to seminorms give for the
first time a notion of connectivity on K. However the general situation
is a little bit more complicated because not all points in the affine
Berkovich space are associated to disks. The following classification
theorem is due to Berkovich.

Theorem 4.3. Every point x ∈ A1
Ber corresponds to a nested sequence

B(a1, r1) ⊇ B(a2, r2) ⊇ B(a3, r3)..., of closed disks in the sense that

|f |x = lim
n→∞

|f |B(an,rn).

Two nested sequences define the same point of A1
Ber if and only if

a) each has a nonempty intersection, and their intersections are the
same; or
b) both have empty intersection, and the sequence are cofinal.

Example 4.4. Berkovich projective line P1
Ber

The Berkovich analytic space P1
Ber is the one-point compactification of

A1
Ber. The Berkovich projective space is homeomorphic to the inverse

limit of finite R-trees. If we denote by δ0,1 the point corresponding
to the seminorm |f |B(0,1) = supz∈B(0,1) |f(z)|, there are infinitely many
branches of the tree emanating from this point. One branch “moving
up” to infinity and the others corresponding to elements in the residue
field K̃. Again for any point of the branches associated with a disk
|.|B(a,r) with rational radius (r ∈ |K∗|), infinitely many branches keep
emerging. Picture 1 in [2] gives an idea of how the projective Berkovich
line looks like.

Example 4.5. Berkovich projective curves of genus at least one.
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Let X be a projective curve of genus greater or equal to one. There
is canonically defined subset Σ ⊂ XBer, which is homeomorphic to a
finite one-dimensional CW-complex, and the entire space XBer admits
a deformation retraction r to Σ. The fibres r−1(x), for x ∈ Σ, are
all homeomorphic to topological trees. Picture 4 in [2] provides an
example representing the Berkovich analytic space associated to an
elliptic curve with multiplicative reduction.

4.1. Metrics on Line bundles. Let L be a line bundle on X. A
metric on L is a continuous function ‖s‖ : U → R+ for each open
U ⊂ X and s ∈ Γ(U,L), such that ‖fs‖ = |f |‖s‖ for all continuous
function f : U → K. For example every continuous function on X,
defines a metric on the trivial line bundle OX , by ‖1‖(x) = exp(−f(x)).
Let X be a projective variety over K. A model X̃ of X over the
ring of integers K0 = {a ∈ K : |a| ≤ 1} is a proper and flat K0-
scheme whose generic fibre is X. Suppose that we have a projective
model X̃ of X over K0, and a line bundle L̃ whose restriction to X
is Lm for some m > 0. We can define a metric on L as follows: let
x ∈ X(K) and x̃ : Spec(K0) → X̃ the section extending x, then we
have x̃∗L̃ ⊗R K = x∗Lm and for each l ∈ x∗(L) we can define

‖l‖L̃ = inf
a∈K

{|a|1/m : l ∈ ax̃∗L̃}.

A metric on L is called algebraic if it is defined by a model X̃ of X. An
algebraic metric is semi-positive if the reduction L̃s of L to the special
fibre X̃s has non-negative degree on every curve. By abuse of notation
we will call semi-positives, all metrics obtained as uniform limit of semi-
positive metrics as before. Let L be a line bundle over X and denote
by Lan its extension to XBer. Suppose that (X̃,L) is a model of (X, L)
over K0. Let’s denote by spX̃ : XBer → X̃s the reduction map. We can
define a metric on the line bundle Lan in the following way: for every
open U in X̃ and a trivialization ε of L over U, one has ‖sp∗

X̃
ε‖ = 1

on sp−1

X̃
(Us). A metrized line bundle L̄ on X can be extended in this

way to a metrized line bundle L̄an on the Berkovich space XBer. The
same work could be carry out [16] with formal admissible schemes as
models X̃. We have the distinguished class of functions:

Definition 4.6. A continuous function over XBer is called a model
function if it is equal to − log ‖1‖1/m for some positive integer m and
‖.‖ is the metric induced by a model (X̃, L̃) of (X,Lm). If we allow X̃
to be an admissible formal scheme [16] we obtain formal metrics and
formal model functions.
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The following two results allow to restrict the work with continuous
functions to the study of formal models and in particular to the comple-
tion of global models along the special fibre. These results are applied
to prove weak convergence results of measures in XBer.

Theorem 4.7. (Gubler) The vector space of formal model functions on
XBer is uniformly dense in the ring of real continuous valued functions
on XBer.

This is theorem 7.12 in [16]. The proof is an application of the Stone-
Weierstrass theorem on the compact XBer.

Theorem 4.8. All formal metrics over the trivial bundle of XBer are
induced by global projective K0-models.

This result is already explained in [10]. A proof can be found in lemma
5.5 in [29]. It uses formal GAGA principle.

4.2. Canonical measures on Berkovich spaces. Let X be a pro-
jective variety of dimension n. Suppose that we have metrized line
bundles L1, ...Ln on X, such that the metrics are induced by models
(X̃, L̃i) of (X,Lei) for some positive numbers ei over Spec(K0). Let’s
also assume that the model is normal. If X̃j,s is a connected component

of the special fibre X̃s, by proposition 2.4.4 in [5] there exist a unique
point ξj in XBer, such that the reduction spX̃(ξj) =generic point of

X̃j,s. Considering that the component X̃j,s appears in X̃s with mul-

tiplicity ηj, the semi-positive metrized line bundles L̄1, L̄2, ...L̄n on X̃
actually define a measure

c1(L̄1)...c1(L̄n) =
1

e1...en

∑
j

ηj(c1(L1)...c1(Ln)|X̃j,s)δξj
,

on XBer as linear combination of dirac measures. More generally if
Z ⊂ X is a subvariety of X of dimension m, one can define the measure

c1(L̄1)...c1(L̄m)δZ = i∗c1(L̄1|Z)...c1(L̄m|Z),

where i : ZBer ↪→ XBer is the canonical immersion. The regular Borel
measure c1(L̄1)...c1(L̄n) on XBer satisfy the following properties:

(i) It is multilinear and symmetric in (L1, ‖.‖1),...,(Ln, ‖.‖n).
(ii) If ϕ : X → X ′ is a morphism of projective varieties of dimen-

sion n, then ϕ∗c1(ϕ
∗L̄1)...c1(ϕ

∗L̄n) = deg(ϕ)c1(L̄1)...c1(L̄n).
(iii) The total mass of the measure is degL1,...,Ln

(X).

(iv) Suppose that L̄0, L̄1, ...L̄n represent metrized line bundles on
X. Suppose also that L̄0, L̄1 are both isomorphic to the trivial
line bundle OX and for i = 0, 1 we denoted ϕi = − log ‖1‖i.
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Then we obtain the following version of the Stokes formula:∫
XBer

ϕ0c1(L̄1)c1(L̄2)...c1(L̄n) =
∫

XBer
ϕ1c1(L̄0)c1(L̄2)...c1(L̄n).

(v) Suppose that for all i, L̄i is equipped with a semi-positive met-
ric. For every sequence of algebraic semi-positive metrics L̄i,k

on the Li, converging to the given metric, the sequence of
measures c1(L̄1,k)...c1(L̄n,k)δZ converges to a measure on the
subvariety Z denoted by c1(L̄1)...c1(L̄n)δZ .

Definition 4.9. Let (L, ‖.‖) be a semi-positive metrized line bundle on
X. Suppose that the metrized line bundles L̄1 = L̄2 = .. = L̄n = L̄ are
all equal. The probability measure dµL̄ = c1(L̄)n/c1(L)n is called the
probability measure on XBer relative to L̄. Suppose that (X, ϕ,L, α) is
a polarized dynamical system on X and L is equipped with the canonical
metric ‖.‖ϕ introduced in [31], then dµϕ = dµL̄ is called the invariant
canonical probability measure on XBer.

Remark 4.10. This measures introduced by Chambert-Loir in [10] over
discrete valued field were extended in [17] to algebraically closed fields.

Example 4.11. The canonical measure over P1
Ber.

Suppose that X = Pn
K and L = O(1) is provided with the naive metric.

The measure µL̄ on Pn
Ber is the Dirac measure supported on the canon-

ical point of Pn
Ber whose reduction is the generic point of Pn

K . In the
case of n = 1 it corresponds to the Gauss norm on the formal power
series K{T}.
4.3. Intersection theory. Assume as before that X is an algebraic
variety of dimension n over the complete and algebraically closed field
K. Let Z ∈ Zd(X) be a cycle of dimension d on X. Let L̄0, ..., L̄d be a
set of hermitian line bundles [31] provided with semi-positive metrics
‖.‖i on X. Assume that the sections si of Li intersect properly on Z. In
the same spirit of the Arakelov intersection theory [27], the arithmetic

intersection number ˆdegZ(ĉ1(L0)...ĉ1(Ld)|Z) ∈ R relates to the measure
c1(L̄1)...c1(L̄d)δZ by the recursive equation:

ˆdegZ(ĉ1(L0)...ĉ1(Ld)|Z) = ˆdegZ(ĉ1(L1)...ĉ1(Ld)|Z. Div(s0))

−
∫

XBer

log ‖s0‖dc1(L̄1)...c1(L̄d)δZ .

For k = 0 and Z =
∑

i niPi (Pi ∈ Xv), we have ˆdegZ =
∑

i niNPi
log N(v)

where NPi
= [K(Pi) : K]. A similar expression is obtained when X

is a complex analytic variety and we interpret c1(L̄i) as the curvature
current relative to the metric, and δZ as the integration current on Z.
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4.4. The Blow-up and the Berkovich analytic space. Suppose
that X = P1

OF
and ϕ = (P,Q) : P1 → P1 is a self-map of degree d > 1.

In previous sections we were able to build models σk : Xk 99K X as
blow-ups of subschemes Yk of X. The map ϕk : X 99K X could then
be extended to a map ϕk : Xk → X and the exceptional divisor was
written as Ek =

∑
v∈N,j rv,j,kCv,j,k. Suppose that the line bundle O(1)

on X is endowed with the naive metric ‖.‖0 at all places. The line bun-
dles Lk = ϕ∗kO(1) can be endowed with metrics ‖.‖v,k at every place

with the property that ‖.‖v,k = ϕ∗k‖.‖1/dk

v,0 . The pair (Xk, L̄k) defines a

measure dµL̄v,k
on the Berkovich space XBer

v . The sequence of metrics

‖.‖k converges to a semi-positive metric ‖.‖v,ϕ in the sense of [31] and
as a consequence we have the convergence of measures dµL̄v,k

to a mea-

sure dµv,ϕ on XBer
v , and the convergence of the heights hL̄k

to hϕ.
Suppose that we have a polynomial f(T ) and Div(f) = D−deg(f)∞+∑

finite v v(f)Xv. Let us denote by fk = σ∗kf and Dk the proper trans-
form of D by the map σk. Recall that proposition 3.10 in [23] gives
(L̄k, Div(fk)) = dk

∑
v|∞

∫
P1(Cv)

log |f |dµv,k. Also the intersection for-

mula on P1
v,Ber gives dk

∫
P1

v,Ber
log |f |dµv,k = ˆdeg(ĉ1(L̄k))|Div(fk)).

5. Equidistribution theorems

The application of arithmetic intersection and height theory to proof
results of equidistribution was first considered in [26]. The work is done
there for Abelian varieties defined over number fields and places over
infinity. For the general case consider the algebraic variety X defined
over the number field F . Let’s fix a place v of F and an embedding
Fv ↪→ Cp. Let {Pn} be a sequence of points on X(F̄ ) and let µv

be a probability measure on the associated analytic space Xan
v . In

archimedean case it represents the complex analytic space X(Cv) and
in the ultrametric case the Berkovich analytic space XBer,v.

Definition 5.1. We say that the orbits {O(Pn)} of the sequence {Pn}
under the action of Gal(F̄ /F ) are equidistributed with respect to a mea-
sure µv, when the probability measures µv,n = 1

#(O(Pn))

∑
P∈O(Pn) δP con-

verge weakly to µv.

Two concepts related to equidistribution are the notions of a sequence
of points being generic and small. A sequence {Pn} of points in X(F̄ ) is
generic if for any subvariety V ⊂ X there exist N such that Pn /∈ V for
n > N . Let (X,L, ϕ, α) be a polarized dynamical system defined over
the number field F . A sequence of points {Pn} ∈ X(F̄ ) is said to be
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small if hϕ(Pn) converges to zero. The following is an equidistribution
theorem in the context of algebraic dynamics.

Theorem 5.2. Let (X,L, ϕ, α) be a polarized dynamical system defined
over the number field F . Let {Pn} a sequence of points on X(F̄ ) which
is generic and small, then for any place v of F the Galois orbits of the
sequence {Pn} are equidistributed in the analytic space Xan

v with respect
to the invariant measure µϕ,v.

The proof is part of Theorem 5.1 in [29]. Archimedean and non-
archimedean places are treated separately. Theorem 4.7 is used to sim-
plify the work over non-Archimedean places. The first p-adic equidis-
tribution theorems in the Berkovich setting can be found in [10]. The
case of point-wise positive curvature for L̄ was studied in [26] using
estimations for the space of global sections. In the arithmetic context
the set of global sections is just the unit ball of effective sections in the
space of all sections. Let L̄ be a metrized line bundle on X. For any
section l ∈ Γ(X,L)R, one has a supremum norm ‖l‖sup = supz∈XC |l(x)|.
Define the invariant h0(L̄) = log #{l ∈ Γ(X,L) : ‖l‖ < 1}. Selecting a
Haar measure on Γ(X,L)R, we can define the arithmetic volume

χ(X, L̄) = log
vol(Bsup)

vol(Γ(X,L)R/Γ(X,L))
.

The Theorem of Hilbert and Samuel relates the arithmetic volume with
the arithmetic self-intersection for powers of an ample semi-positive
metrized line bundle. A line bundle is arithmetically ample if we
have the following conditions: Lσ is ample in the classical sense for
every place σ of F , the curvature of L̄ is semi-positive, the intersection
ĉ1(L̄|Y )dim(Y ) > 0 for all horizontal closed subvariety and ĉ1(L|C) ≥ 0
for any curve on any special fibre.

Theorem 5.3. (Hilbert-Samuel theorem) Let L̄ be an arithmetically
ample line bundle on X with a semi-positive adelic metric, and dim X =
n, then

χ(X, L̄k) ∼ 1

(n + 1)!
(ĉ1(L̄)n+1|X)kn+1.

A line bundle L̄ has a semi-positive adelic [31] metric when the metric is
limit of semi-positive [30] algebraic metrics with non-negative curvature
at archimedean places. The Hilbert-Samuel theorem combined with
Minkowski theorem is the key to find global effective sections.

Lemma 5.4. (Fundamental Inequality) Assume that L̄ is arithmeti-
cally ample, with a semi-positive metric. Let {Pn} be a generic sequence
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of points in X(F̄ ). Then,

lim inf hL̄(Pn) ≥
ˆdegX(ĉ1(L̄)n+1)

(n + 1) degX(c1(L)n)
.

The fundamental inequality follows from a combination of Hilbert-
Samuel and th. 4.2 in [30]. It can be applied to the case of a po-
larized dynamical system (X,L, ϕ, α), because the L is equipped with
the canonical semi-positive metric ‖.‖ϕ,v. Now, suppose that we denote
by L̄(εf) the metrized line bundle obtained from L̄ by multiplying the
metric by exp(−εf) at each place. When X is an Abelian variety the
metric on the line bundle L̄(εf) is semi-positive for small ε and we
can use the lemma to implement a variational argument. This was the
technique used in [26] to prove equidistribution on Abelian varieties.
In general, the following theorem of Yuan in [29] will play the role of
the Hilbert-Samuel theorem to find effective sections.

Theorem 5.5. Suppose that L̄ and M̄ are arithmetically ample. Then,
χ(X, (L̄⊗M̄−1)k) ≥ 1

(n+1)!
(ĉ1(L̄)n+1−(n+1)ĉ1(L̄)nĉ1(M̄))kn+1+o(kn+1).

The equidistribution theorem in [26] played a crucial role to prove the
Bogomolov conjecture for Abelian varieties [32]. A different technique
gave equidistribution theorem [6] and Bogomolov conjecture [30] over
the multiplicative group Gn

m. The general case of the Bogomolov con-
jecture over Algebraic varieties without a group structure is still open.

Conjecture 5.6. (Dynamical Bogomolov Conjecture). Suppose that
(X,L, ϕ, α) is a polarized dynamical system. Let Y be a irreducible
closed subvariety of X which is not preperiodic. Then there exist a
positive number ε > 0, such that the set {x ∈ Y (F̄ ) : ĥL(x) < ε} is not
Zariski dense in Y.
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