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Abstract

Lety : X — X be a map on an projective variety. It is known that whenever the map

©* : Pic(X) — Pic(X) has an eigenvalue > 1, we can build a canonical measure,

a canonical height and a canonical metric associateg. tdn the present work, we
establish the following fact: if two commuting magsy : X — X satisfy these
conditions, for eigenvalues and 5 and the same eigenvectdr, then the canonical
metric, the canonical measure, and the canonical height associated to both maps, are
identical.
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1 Introduction

Let X be a projective variety defined over a number figldSuppose thap : X — X
is a map onX, also defined ove. Assume that we can find an ample line bundlen
X and a numbery > 1, such thatC* = ¢*£. Under this condition, we can build the
canonical heighf% ([3], theorem 1.1) associated gpand £. Under the same conditions
we can find ([18], proposition 3.1.4) a canonical measlirg , for every infinite placer
of K. The canonical height and measures satisfy nice properties with respect to the map
, for example we havéga o= oziup and, iy o = [p,o. SOMetimes it happens that a
whole set of maps are associated to the same canonical height function and measures. As
our first example consider the collection of mafs: % — % on the Riemann Sphere,
whereg,, is defined a, () = t* for £ > 1. The line bundleC = O(1) onP! satisfies the
isomorphismg; £ = £*. If one builds the canonical height and measure associatgg to
andO(1), one obtains:

(i) All ¢ have the same canonical height namely, the naive heéighton ]P’é. The
naive height,,,,(P) is a refined idea of the functiorup{|ao|, |a1|}, measuring the
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computational complexity of the projective poift = (ag : ay). For a precise
definition see later example 2.10.

(i) All ¢, have the same canonical measure, that is, the Haar meésore the unit
circle S C PL.

Similar properties are fulfilled by the collection of map$: £ — E, representing multi-
plication byn > 1 on an elliptic curvel defined overX. If £ is an ample symmetric line
bundle onE, we have the isomorphisfn]* £ = £"°, along with the properties:

(i) Allmaps[n] : E — E share the same canonical height, that is, teeoN-Tate height
EE,L on E. In fact this will be our definition (2.11) of the &on-Tate height o
associated t&. For many other interesting properties we refer to B-4 in [9].

(i) Allmaps|n] : E — E have the same canonical measure, that is, the Haar measure
i/(2Im(7))dw AdoonE, =2 C/Z + TZ.

We observe that any two maps in each collection commute for the composition of maps.
Besides, the line bundlé € Pic(X), suitable to make everything work, is the same within
each collection. The present work establish the general fact:

Theorem 1.1. Let X be a projective variety defined over a number figld Suppose that
two mapsp, ¢ : X — X commute (p o1 = 1) o) and satisfy the following property: For
some ample line bundlé € Pic(X) and natural numbers, 3 > 1, we havep*L = L
andy*L = £P, then we havé, = hy, = hyoy anddp, » = diy.o = diigop,o-

This result is known in dimension one, a proof can found for example in [6]. Also it
is a well known fact [9], that commuting maps in a projective variety must share the same
canonical height. The main feature of the present work it is to obtain all these results from
the equality of the canonical metrics. Given a ample line buddba X, it was an original
idea of Arakelov [1] to put (smooth) metrics di), = £ ®, C over all placesr of K at
infinity. This gave rise to heights as intersection numbers and curvature forms at infinity.
In was then an idea of Zhang [17] to look for suitable metrics at all places K. In
presence of the dynamigs: X — X, the line bundleC on X can be endowed [17] with
very special metric§.||,, ., on £, that satisfy the functional equation

g = (6% @1 llp0) ",

whenever we have an isomorphigm £* — ©*L£. The canonical height and the canon-

ical measure will be defined (definitions 2.6 and 2.9) depending only on the rigitric

The equality of canonical heights and measure for commuting maps is a consequence of
the following result:
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Theorem 1.2. Suppose that two mags ¢ : X — X commute, and for some ample line
bundle£ € Pic(X) we havep*L — £~ andy*L — LP for some numberg, 3 > 1,
then||-flo = [|-[l-

Towards the end of the paper we discuss mapB'oarising as projections of maps on
elliptic curves with complex multiplication. We study branch points and present examples
of commuting maps on the Riemann sphere.

For the work in the other direction, namely, if the canonical heigtsindh,, are equal,
what can we say about the mapandz, we refer to the work of Kawaguchi and Silverman
[10]. They completely characterized in Theorem 1 and Theorem 2, which functions could
be added to each collection of commuting maps at the beginning of this introduction.

2 Canonical heights and canonical measures

2.1 Canonical metrics

Consider the projective variety¥f defined over a number field, a mapy : X — X
defined overk’, and an ample line bundlé € Pic(X) such thaw : £L> = ¢* L for some
a > 1. This situation will be called [18] a polarized dynamical systeXh ¢, £, o) on X
defined overk.

For each place of K, denote byk, thev-adic completion ofK. Assume that for every
placev of K we have chosen a continuous and bounded metficon £, = £ ®x K,.

The following proposition is proposition 2.2 in [17]:

Proposition 2.1. The sequence defined recurrently py,1 = |.||, and |.[[v,, =
(6*¢*||-lo.n—1)*/* for n > 1, converges uniformly oX (k) to a metric||.||,., on L,,.

The metric||.||,,,, is the unique bounded and continuous metric satisfying the equation
o = (8% @[l llo.0) /-

Proof. Denote byh the continuous functiotvg onX(K,). Then

ll-ll2
Il

n—2 k
1 * ok
g . =Tog 1+ 3 (30°6)
k=0

Since||(L6* ") hllsup < (L)F[|A]lsup, it follows that the series given by the expres-
sion 77 (2 ¢*¢*)*h, converges absolutely to a bounded and continuous funétion

on X(K,). Let|.|yo» = |.|li exp(h?), then]|.|, converges uniformly td|.||,,, and
its not hard to check that.|, , satisfies||.||,., = (¢*¢*|.||4)'/*. If another bounded
and continuous metri¢. |\, , on £, satisfies the equatioff.||;, , = (¢*¢*|.| ’W)l/a,

the bounded functiog = log(|-[|x.o/I|-II5, ) Will satisfy g = (¢*»*/a)g and therefore
[9llsup = llglsup/c forcesg = 0. O
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Definition 2.2. The metric||. ||, is called the canonical metric afy, relative top.

Example 2.3. Consider the line bundl€ = O (1) on Pj and the rational mag. :

PE — Py given by the expressiofy,(Tp : ... : T,) = (I3 : ... : Tyy). The Fubini-Study
metric
Aia;
l(XoTo + ... + AnTn)(ao : ...t ap)l|Frs = %
is a smooth metric ofic. If we take||.||; = ||.|| rs @s our metric at infinity, the limit metric
we obtain is S A
iQ;
l(AoTo + oo + AnTn) (a0 oot @)l = ———.
sup; (|ail)

Example 2.4. Suppose thalk = FE is an elliptic curve and assume tHaf : £ — F

is denoting the multiplication by, > 1 on E. As a consequence of the theorem of the
cube, the ample symmetric line bundleon E satisfiesp : [n]*L£ = £"*. The canonical
metric is the metric of the cube discussed in [11] and suitable to makeisomorphism
of metrized line bundles.

The following result relates the canonical metrics associated to commuting maps. It
represents the main result of this paper.

Theorem 2.5. Let (X, ¢, £, «) and (X, 4, £, 3) be two polarized systems dt defined
over K. Suppose that the magsand+) satisfyy o 1) = 1 o ¢, then||.||, = ||.||.

Proof. The key idea is that the canonical metric associated to a morphism does not de-
pend on the metric we start the iteration with, as a consequence of the uniqueness of
the canonical metric in proposition 2.1. Letbe a place ofK and lets € £, () for
r € X,. We are going to consider two metrigs|,1 = .||, and .|}, ; = [/.[[x on
the line bundleC,. By our definition of canonical metric fop, we can start with|. |5 ;

~

and obtain||s(z)|, = limg_ ||(¢ks“k)(<pk(x))||11/ak, whereg, : £o° = ok,

Also by our definition of canonical metric fap starting with|.|l,1 = |.||, we get
1 ~ . -
Is(@) |l = limyoo [|(¥1s™) (! ()|, whereW; : £0° = y*L. Using the uniform

convergence and the commutativity of the maps we get,
. . af\ 3! 1/8'ak
Is(@)lly = lim L [|(@i(ges )" ) 0 " (@)L
. . NP 1/ak Bt
= Jim tim {6 (™))" 0 0! @)L/T = lls(@)llu,

where the identityp, (U;5% )" = W,(¢,s*" ) is a consequence of the fact that and
1* are group homomorphisms @Ric(X ), ®) and we have a commutative diagram

proghL <t o T (g B ot T g
H | ©

5l k

(p*k ° Wlﬁ h4 ((p*k[,)ﬂl ’ (@*kﬁ) P Eak L
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2.2 Canonical measures

Let X be an-dimensional projective variety defined over a number fiéldnd suppose
that (X, ¢, £, o) is a polarized dynamical system defined o¥ér Let o be a place of
over infinity. We can consider the morphismz, C : X, — X, on the complex variety
X, = X ®, C. Associated top ando we also have the canonical metiid|, , and
therefore the distribution; (£, ||.||¢.0) = ﬁaélog Is1(P)|l4,-» analogous to the first
Chern form in the smooth case. It can be proved théf, ||.||,.») iS a positive current in
the sense of Lelong, and following [5] we can definethproduct

(Ll lleo)” = (L [l lg.o)-cr(Ls o),
which represents a measure &p.

Definition 2.6. The measuréy.,,, = c1(Lo, |-[l4,0)" /1,0 (X), Where we are denoting
oo (X) = [y c1(Ls, ||.lp,0)" is called the canonical measure associated tmdo.
Once we have fixed, it depends only on the metrjc||, ..

Example 2.7. Consider the rational magy, : }P’% — IP’(% given by oy (Tp : ... : Tp,) =
(I§ : ... : TF). The canonical measuru,, is the normalized Haar measure on the
n-torusS! x ... x St

Example 2.8. Let E be an elliptic curve defined over a number fiéld £ a symmetric line
bundle onE and[n] : E — E the multiplication byn > 1 on E. The canonical measure
associated to this map can be proved to be [11] the normalized Haar meadtiye on

2.3 Canonical heights as intersection numbers

For a regular projective varieti{ of dimensionn andZ a subvariety of dimensiop,
the classical theory of intersection ([13], [8]) defines the interseetiof;)...c1(£,)| Z of
the classes; (£;) associated to line bundle on X, when0 < i < p.
For the purpose of defining the arithmetic intersection, we want to assumé& tigan
arithmetic variety of dimension + 1, that is, given a number fiel#l’, there exists a map
f: X — Spec(Ok), flat, projective and of finite type ov8pec(Ox ). For a cycleZ of di-
mensiorp + 1 we can define (see for example [4], [2], [14], [1], [15] or [16]) the arithmetic
intersection numbet; (£1)...c1(£,41)|Z of the classes; (£;) of hermitian line bundles
L; = (L;,].]]) on X. The fact thai; are hermitian line bundles, means that, for each place
o at infinity, the line bundle; , = £; ®, C is equipped with a smooth and conjugation-
invariant metrid|. | ,.; overX, = X ®, C. The numbers; (L;)...c;(£,+1)|Z prove to be
the appropriate theory of intersection in the particular case of arithmetic varieties, adding
places over infinity allows us to recover the desirable properties of the classical intersection
numbers of varieties over fields.
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The last step in the theory of intersection is actually the one that plays the more important
role in our definition of the canonical height associated to a morphism. Suppose that

a regular variety of dimensiom defined over a number field, andZ; = (L, |.|l:)» (i =
1,..,p+1) are metrized line bundles oxi. Assume also that the; are equipped with semi-
positive metrics over all placas(not just at infinity as before) in the sense of [17]. Such
line bundles are called adelic metrized line bundles and will be denoted following [17], we
can define the adelic intersection numbeL,|2)...¢1(L,+1]|Z) over ap-cycle Z in X.

The adelic intersection number is in fact a limit of classical numbg(8, )...c; (£, 1)|Z

once the notion of converge is established. The numb€is, |2)...¢1(L,11]2Z) satisfy
again nice properties, they are multilinear in each of flaeand satisfy a projection for-
mulaéy (f*Ly|Z)...e1(f*Lp1]Z) = e1(L1]fo(2Z))...e1(Lp11]f+(Z)), whenever we have
amapf : Y — X andZ is ap-cycle inY. We are interested in a particular case of this sit-
uation. Suppose that we are in the presence of a polarized dynamical system’, «),

in this situation the canonical metrjc||,, of 2.1 represent a semipositive adelic metric on
L, (again we refer to [17]) and we can define the canonical height associatéd|ftd.,)

as an arithmetic intersection number.

Definition 2.9. Let K’ be an extension ok'. The canonical height,,(Z) of ap-cycle Z
in X (K') is defined as

é1(Lyr|Z)PH

ho(2) = [K': Q(dim(Z) + 1)ey (Lxr | Z)P

It depends only otiL, ||.||,), where]|.||,, is actually representing a collection of canonical
metrics over all places ot .

Example 2.10. Consider the mapy, : % — IP’% given by the formulapy. (Tp : ... : Tp,) =
(T¥ : ...: T*). Assuming thak > 1, the canonical height associatedfipand £ = O(1
is called the naive heiglit,, on ]P’%. If P=1lto:...: t,]is apointinP%, we have,

1
hoo([to oo i t0]) = [ log H Sup([tolv, - [tn]o)N",
: placesv of K’

whereN,, = [K], : Q] andw is the place of) such that | w.

Definition 2.11. Let E be an elliptic curve and an ample symmetric line bundle dn.
The canonical height associated[td : E — E and/. is called the Nron-Tate height
iLEVC associated t€ on E. The fact that it is independent of will be a consequence of
proposition 2.12.

The collection of map$¢x }~1 onP™ and the collectio[n]},~1 on a given elliptic
curve E, share two important properties: the maps within each collection commute, and
share the same canonical height and canonical measure. The following result establishes
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a general fact about canonical heights and canonical measures of commuting maps on a
projective varietyX .

Theorem 2.12. Let (X, ¢, £, ) and (X, ¢, £, 3) be two polarized systems dfi defined
over K. Suppose that the mapsand1) satisfyp o 1) = 1) o ¢, theniL@ — }Alw _ ;wa and
dprp,oc = dpiy,0 = dfipoy,o forall o.

Proof. This is a consequence of our definitions of canonical measure 2.6, canonical height
as intersection numbers 2.9 and proposition 2.5. O

Corollary 2.13. Suppose that two maps, ) : P! — P!, satisfy the hypothesis of the
previous proposition, then the two maps have the same Julia set.

Proof. The Julia set of a map : P! — P! is nothing but the closure &' of the set of
repelling periodic points. For details we refer to definition 2.2 in [12]. Now, the corollary
is a consequence of proposition 2.12 and proposition 7.2 in [12]. For a similar reskilt on
we refer to [7]. O

3 Elliptic Curves and examples

This section illustrates examples of commuting map®bnThey all share one thing
in common: being induced in some sense by endomorphisms on elliptic curves. Consider
an elliptic curveE defined over the number field by a Weierstrass equatiai = p(z).
Suppose thak’ admits multiplication by the algebraic numberLet’s denote byV(\) the
norm of A and letE, = E ®, C for each placer at infinity. It is a classical fact of the
theory of elliptic functions and complex multiplication, that there exist polynonitgls)
andQ(z), with deg(P) = deg(Q) + 1 = N(A), such thatp(Az) = P(p(2))/Q(p(z)),
whereg is denoting the Weierstragsfunction onE, . We have therefore a map, on P!
and a commutative diagram:

E -2 F

P! P Pl
wherer is denoting the quotient map — P*. The line bundleC, = O(1) onP! satisfy
o3 Ly = LN and the same equality holds for the ample symmetric line bumtilk,

onk.

Proposition 3.1. Consider an elliptic curvér defined over the number field by a Weier-
strass equation? = p(x). Suppose thak admits multiplication by the algebraic number
Aof normN(A) > 1, then

() hixero(P) = hgaror(P) = hy, (m(P)) for any pointP on E.
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(i) Suppose thak, = C/Z + 77, then the canonical measure & associated tq)

ando is )
idz N dZ

~ 2Im(n)p(z)|

Proof. The commutativity of the mapg\] : £ — E and[2] : E — E, together with
theorem 2.12, give the equalityg -z, = hgrrcox. The equalityhp -, A(P) =

’Alm (w(P)) is a consequence of the projection formula for the intersection numbers and the
definition of the canonical height.

For (ii) consider the Haar measur&dw A dw on E, normalized byim(7). If p denote the

Weierstrass function and= p(w), we have

dlu’% (Z)

idw Ndw idz NdZ adzAdz ddz NdzZ
2Im(r) 2|’ (w)|? Im(7) - 2|y?| Im(7) - 2|p(z)| Im(7)’

which gives the result we wanted to prove. O

Remark 3.2. If the elliptic curve E admits multiplication by the numbepfsandd, then
PAOPs = P50 P

Remark 3.3. The heightﬁE = iLE’W*ﬁo is also characterized by being the Weil height
associated ta* £, = Og(2[0]) satisfyinghg(X.(z,y)) = N(A)hg(z,y). Condition (i)
can be proved by checking thfa@ o 7 satisfies this characterization.

Example 3.4. Consider an elliptic curvéZ given by Weierstrass equatidn : y? = p(z).
For A = 2 we have )

(P'(2))* — 82p(2)
4p(2)

Example 3.5. Let's consider some examples of elliptic curves with complex multiplica-
tion:

pa(2) =

Im(7) = 1: The elliptic curveE; : y* = z® 4+ = admits multiplication byZ[i]. The
multiplication byi morphism can be written im, y coordinates a§|(z,y) = (—z, iy).
The two maps

1 2241 1 2241

P1+i(2) = mT p1-i(2) = —m >

commute, and their composition satisfies

2t —22241
P14i(p1-i(2)) = p1-i(p1+:(2)) = p2(2) = T
The canonical height and measure are:
idz Ndz

h(z) = by (o V1 2)  dum, () = g
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Other examples of maps attacheddpare

(=3 — 4i)z(22 4+ 1 + 2i)? (34 4i)z(22 + 1 + 24)?

P1+2i(2) = (522 + 1 — 2i)2 p1-2i(z) = (522 + 1 — 2i)2
(3 —4i)z(2® + 1 —2i)? _ (—3+4i)z(z2 + 1 —2i)?
pril?) = p-ile) = e

Im(7) = v/3/2: The curveE; : y?* = 2® + 1 admits multiplication by the ringZ|o]
wherep = (v/—3 — 1)/2. The multiplication byp can be expressed in y coordinates as
[p](z,y) = (px,y). An example of commuting maps coming fraf is

—(2° +4) —p(z° +4)
90\/?3(2) = T 3.2 @yfgp(z) = T 32

(29 — 9625 + 4823 + 64)

/=30 Py=3,(2) = pe(2) = 0p2 (B + 472 ’

wheree = (—3+/—3 + 3)/2. The canonical measure associated to the three maps is

Ay () = V3idz A dz

HEAE) = R
The branch points of the mags, are closely related to thztorsion points on the elliptic
curveE.

Lemma 3.6. A branch point forp, belongs to the image byof the 2-torsion points o.

Proof. Let P be a points orE such thatr(P) is a branch point of the map,. Then the set
oy (m(P)) = {7(Q)|A\Q = £P} has cardinality strictly smaller thaN (\). Therefore
there are two point§) # —@Q € FE such that\@QQ = —\@Q and consequently = 2AQ =
2P. O

The image byr of a 2-torsion is not necessarily a branch pointgf. Let d be a positive
square free integer. Assume that the elliptic cuB&Z + /—dZ, admits multiplication
by A\ = a + by/—d for integersa,b. Suppose thaby = 0, P, = 1/2, P, = /—d/2
and P; = 1/2 + v/—d/2 denote the 2-torsion points di. Denote byr; the amount of
pre-images of the point(P;), that is, the cardinality of the set, ' (7(P;)). Also denote
by s; the amount oR-torsion points that hif;, that is, the cardinality of the intersection
{Q e ElQ=-Q;n{Q € E]ANQ = Pj}.

Lemma3.7.r; = (N(\) + s;)/2.

Proof. Fix a2-torsion point ofP; € E. If () € E is a solution of the equatioh@ = F;,
then—Q@ is also a solution. So, up to torsion points, by counting the solutiong)o& P;,
we count twice the elements of the s&t' (7(P))) = {7(Q)|]\Q = P; = —P;}. As a
consequence; = (N(A) —s;)/2+s; = (N(A) +55)/2. O
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One can observe that for = 2, the pointr(Fp) is not a branch point op,, in fact we
haveAP; = P, forall j = 0, .., 3. On the other hand for the multiplication By= 1 + 2:
on Ey, all pointsz(FPy), w(Py), n(Ps), w(Ps) are branch points @by ;. The results show
that the image byt of a2-torsion points is usually a branch point for the map

AP — a4+ bv—d _
2
AP, = aiv—;l—bd —

AP; = a—bd+ (a+b)v—d

Py =0, if

P =1/2, if
Py=(14+V-d)/2 if

(
P, = v=d/2, if
(
(

Py =0, if
Py =+/—d/2, if
P =1/2, if

Py=(1+vV=d)/2 fif

Py =0,

Py =(1+V-d)/2,
B Py =(1++v-d)/2,
P =o,

Py =1/2,

Py =/=d/2,

b) = (0,0) (mod 2);

b) =(0,1) (mod 2)

b) =(1,0) (mod 2);

b) = (1,1) (mod 2);

bd) = (0,0) (mod 2);

bd) = (1,0) (mod 2);

bd) = (0,1) (mod 2);

bd) = (1,1) (mod 2);

if (a,b) =(0,0) (mod 2);

if (a,b) = (1,0) (mod 2);

if (a,bd) =(0,1) (mod 2);

if (a,bd) = (1,1) (mod 2);

if (a,b,d) =(1,1,0) (mod 2);
if (a,b,d) =(0,1,0) (mod 2)
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a,b,d (mod2) | AP;,j=0,2]AP;,j=1,3 1 j=0,2 rii=1,3
a=d=0 (mod2) | APp=F AP =P, ro=N(\)/2+1 ri=N(\)/2
b=1(mod2) | AR =Py | \Bs=P, | m=N\N/2+1 | r3=NN)/2
a=d=0 (mod2) | A\Pob=Py | A\PL=P, | o=N(N)/2+2 | r=N\)/2
b=0 (mod2) | AR, =Py | \P=h, 2= N(\)/2 s = N(\)/2
a=b=0 mod2) | ANPo=Py | APL=Py | io=NN)/2+2 | mn=NO/2
d=1 (mod 2) AP, =Py, | AP5 =P, rs = N(V)/2 rs = N(\)/2
d=b=1 (mod2) | AR =Py | APL=Py |ro=(NO\)+1)/2|r =N\ +1)/2
a =0 (mod 2) AP, =P, AP3 =P |ro=(N(A)+1)/2 | r3=(N(\)+1)/2
d=b=0 (mod 2) | APy =P APL=P |ro=(NA)+1)/2 | r =(NA\)+1)/2
a=1(mod?2) | APB=Py | APs;=P; |ra= (NN +1)/2|r =[N0 +1)/2
a=d=1(mod2) | \Ph=Py | A\PL=P, |ro= (N +1)/2|r = ([NQ) +1)/2
b=0 (mod2) | AB =P | APB=P5 |ra=(NN)+1)/2|r=(N\+1)/2
a=b=1 (mod 2) | APy=PF APL=P; |19=(NA)+1)/2|r =(NA)+1)/2
d=0 (mod?2) | AP,=Py | APs=Pi |ra= (N +1)/2|r;= (NN +1)/2
d=b=1 (mod2) | APy =Py | APL=P; | ro=N(\)/2+1 | 11 =NN)/2
a=1 (mod2) | AP,=P; | A\P;=Pp ra=NOV/2 | rs=N\)/2+1
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