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State space models
An state space model is given by a system of ODEs

ẋ = f (x ,µ,u) (1)

y = g(x ,µ,u) (2)

and possibly a constraint

0 = h(x ,µ,u) (3)

x is a vector of state variables
u is a vector of input variables
y is a vector of output variables
µ is a vector of constants called the parameters
For us, f , g , and h are vectors of rational functions with rational
coefficient and will omit the constraint Equation 3.
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Identifiability

We will be interested in the parameter identification problem: can the
parameters µ be recovered from the output y? If so, how? Sometimes,
this problem goes under the name of system identification.

There are variants of this problem in which the input variables u are
assumed to be known or not. There are related problems of determining
the state x from the output y or even of inferring the input u from the
output y .

We shall interpret recovered from as expressed as a differential rational
function of. Moreover, we shall ask (x , y) to be a generic solution of the
equations for a sufficiently general (even generic) u. So, given such generic
solutions to Equations 1 and 2, we wish to compute Q(µ) ∩Q〈u, y〉 and,
in particular, wish to determine whether this intersection is Q(µ).
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Canonical parameters

There may be obvious reasons why it is impossible to identify the
parameters.

For example, if some transcendental component of µ does not appear
in Equation 1 at all, then it would be impossible to compute µ from y .
For a less trivial example, it may happen that the system is equivalent
to one in which the coefficients are rational functions of µ. For
example, our equations might be ẋ = x2 + µ1 + µ2 and y = x .

At the very least, if we wish for the parameters to be indentifiable, then
they need to be canonical parameters: any other choice of parameters
would give an inequivalent system of equations.
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Canonical parameters, model theoretically

The canonical parameter is a standard notion of model theory.

We say that a formula φ(x , y) has canonical parameters if for any two
choices of parameters c and d , we have that (∀x)(φ(x , c)↔ φ(x ,d )) if
and only if c = d . In this case, we would say that c is the canonical
parameter for φ(x , c).

We say that our theory eliminates imaginaries if for each formula φ(x , y)
there is some formula ψ(x , z) so that

every instance of φ is equivalent to an instance of ψ:
(∀y)(∃z)(∀x)(φ(x , y)↔ ψ(x , z))
every instance of ψ is equivalent to an instance of φ, and
ψ(x , z) has canonical parameters

For us, the key point is that the theory of differentially closed fields of
characteristic zero, DCF0, eliminates imaginaries. So, every finite system of
ODEs (and inequalities) is equivalent to one with canonical parameters.
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Canonical bases
There is a related, but more refined, notion of a canonical base of a type in
a stable theory. We specialize the definition to the case of DCF0.

Let (K , ∂) be a differential field, k ⊆ K a differential subfield, and a a
tuple from K . We write I (a/k) := {f ∈ k{x} : f (a) = 0} for the ideal of
a over k .

The type of a of k is stationary or just “a is stationary over k” if
I (a/k) is absolutely prime. That is, the ideal generated by I (a/k) in
kalg{x} is prime.
Provided that a is stationary over k , the canonical base of a over k ,
written Cb(a/k), is the differential field of definition of I (a/k) .

The canonical base Cb(a/k) may be realized as the differential field
generated by the canonical parameters of a formula isolating the type of a
over k up to dependence. Algebraically, it may be realized as the
differential field generated by the coefficients of the monic differential
polynomials in a characteristic generating set for I (a/k).
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Canonical base and parameter identifiability
Let us restrict to a simple case where our equation takes the form

ẋ = f (x ,µ)

y = x

so that there are no input variables and the state and output variables are
identical.

If we set k = Q(µ) and let a be a generic solution, then the type of a over
k is stationary.

If µ is a canonical parameter for the formula ẋ = f (x ,µ), then
k = Cb(a/k).

So, the parameter identifiability problem reduces to asking whether the
canonical base Cb(a/k) is contained in the differential field generated by a,
or in more model theoretic terms, in the definable closure of a realization of
the generic type of this system.
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Computing the canonical base over the full field of constants
Parameters are always identifiable over the full field of constants.

Proposition
Let K be a differentially closed field, C = {x ∈ K : ∂(x) = 0} its field of
constants and a a tuple from K . Then Cb(a/C ) = Q〈a〉 ∩ C

Proof.
Extending K if need be, we may arrange that Q〈a〉 is the fixed field of
the group Ga of differential field automorphisms of K fixing a.
If σ ∈ Aut(K ), then σ fixes C setwise.
Thus, if f ∈ I (a/C ) and σ ∈ Ga, we have f σ ∈ I (a/C ). Therefore,
Cb(a/C ) ⊆ Q〈a〉 ∩ C .
On the other hand, if b ∈ Q〈a〉 ∩ C r Cb(a/C ), it cannot be algebraic
over Cb(a/C ) (as this would violate stationarity) and it cannot be
transcendental because then a would depend on b over Cb(a/C )
violating the defining property of the canonical base.
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Reducing to the canonical base over the full field of
constants

Proposition
With the notation as above, if k ⊆ C is a field of constants, a is stationary
over k , and c is a tuple generating Cb(a/C ), then Cb(a/k) = Cb(c/k)
and Q〈a〉 ∩ k = Q(c) ∩ k .

Thomas Scanlon (UC Berkeley) Canonical bases and parameters 13 February 2020 9 / 21



Abstract failure of single experiment identifiability

In general stable theories it is “rare” for the canonical base of a type to
be definable (or even algebraic) from a single realization.
Theories where this always happens are (provably) degenerate or
closely related to linear algebra.
Even for algebraically closed field, if f (x , y) is a monic polynomial
over Q for which f (x ,b) is always absolutely irreducible, then a
generic solution to f (a,b) = 0 will be stationary over
Q(b) = Cb(a/Q(b)). If x = (x1, . . . , xn) has n > 2, then it is not
possible to compute b from a.
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A failure of single-experiment identifiability

Let b, c, d ∈ C be three algebraically independent elements. Set
e := bd + c and let k = Q(d , e).

Since the ideal I ((b, c)/k) is generated by x2 + dx1 − e, Cb((b, c)/k) = k .

In particular, Cb((b, c)/k) 6⊆ Q(b, c).

Consider a satisfying ∂(a) = ba+ c . A simple computation shows that
(a, b) is the generic solution to the following system.

ẋ1 = x1x2 − dx2 + e

ẋ2 = 0

This system violates single experiment identifiability.
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Verification

k = Cb((a, b)/k) because I (a, b/k) = [ẋ1 − x1x2 + dx2 + e, ẋ2]
= Cb((b, c)/k) because Cb((a, b)/C ) = Q(b, c)
6⊆ Q(b, c) from the earlier computation
= Cb((a, b)/C )
= Q〈a, b〉 ∩ C from the first proposition
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Multi-experiment identifiability

Given an input-output system

ẋ = f (x ,µ,u)
y = g(x ,µ,u)

one might ask whether the parameters µ are identifiable from multiple
independent experiments.

Of course, as before we must assume that the parameters µ are
canonical.
If the answer is yes, then we would like to compute a bound on the
number of experiments needed.
The bounds may depend on whether we vary the input variable or not
between the various experiments.
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ẋ = f (x ,µ,u)
y = g(x ,µ,u)

one might ask whether the parameters µ are identifiable from multiple
independent experiments.

Of course, as before we must assume that the parameters µ are
canonical.
If the answer is yes, then we would like to compute a bound on the
number of experiments needed.
The bounds may depend on whether we vary the input variable or not
between the various experiments.

Thomas Scanlon (UC Berkeley) Canonical bases and parameters 13 February 2020 13 / 21



Shelah reflection principle

There is a very general model theoretic result which says that
multi-experiment parameter identification is always possible, even if we
allow our parameters to be nonconstant.

Theorem
In any totally transcendental theory if a is a tuple which is stationary over
B , then there is a number N so that if a1, . . . , aN is a sequence of
independent realizations of the type of a over B , then Cb(a/B) is definable
from 〈a1, . . . , aN〉. Moreover, if b is a tuple from which Cb(a/B) is
definable and the Lascar rank of b is s < ω, then it suffices to take
N = s + 1.
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Interpreting the general theorem for systems of ODEs

The theory of differentially closed fields of characteristic zero is the
quintessential example of a totally transcendental theory.
Independence may be defined differential algebraically: if a is
stationary over the differential field L and M is an differential
extension field, then a is independent from L over M if I (a/M)
generates I (a/L). A sequence 〈a1, . . . , an〉 is independent over the
differential field M if for each i < n, ai+1 is stationary over M and
independent from M〈a1, . . . , ai 〉 over M.
In a differentially closed field, an element c is definable from some
tuple b just in case c ∈ Q〈b〉.
The Lascar rank is a dimension defined using (in)dependence. For us,
the main point is that the Lascar rank of a tuple b is bounded above
by tr. degQ〈b〉 and when b is a tuple of constants, the Lascar rank is
equal to this transcendence degree.
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Differential algebraic approach to multi-experiment
identifiability

The Shelah reflection principle is really an abstract version of the method
of Lagrange interpolation or undetermined coefficients.

From such an interpretation, we can produce an explicit algorithm to
compute the the canonical base from a small number of experiments.
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Differential algebraic multi-experiment identifiability with
one variable

For the sake of illustration, we discuss the one-variable case. That is, we
presume that a is stationary over k , a field of constants. We wish to
compute a bound N and then to compute Cb(a/k) from some finite
sequence a1, . . . , aN of independent copies of a, that is, I (a/k) = I (ai/k).

In this one-variable case, I (a/k) = [f ] : S∞
f where f ∈ k{x} is a monic

differential polynomial of minimal order-degree with f (a) = 0 and Sf is the
separant of f . Our task is to recover the coefficients of f .

The most natural approach would be to express f =
∑

α∈S cαx
α and then

aim to compute the vector (cα)α∈S . Here α is a multi-index,
xα =

∏
(x (n))αn , S is a finite set, cα ∈ k , and cα0 = 1 for some α0 ∈ S .
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Differential algebraic multi-experiment identifiability with
one variable, continued

The vector (cα)α∈S is then a solution to the linear equations∑
α∈S

(ai )
αYα = 0

Via basic linear algebra, one sees that these equations together with
Yα0 = 1 determine (cα)α∈S provided that N � 0 (N > |S | would work).

We improve the bounds, and thereby reduce the size of the linear algebraic
problem to be solved, by taking into account differential algebraic relations,
specifically by considering the rank of the Wronskian of (aα)α∈S
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Further considerations for the differential algebraic
multi-experiment identifiability

In the case of several variables, we express the problem of computing
Cb(a/k) as that of finding the coefficients of the polynomials in a
characteristic presentation {p1, . . . , pm} of I (a/k).
It can be useful to use some other finite set Sj of linearly independent
differential polynomials over Q in place of the monomials and to
express pi =

∑
g∈Si

cgg with cg ∈ k .
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Extensions

The general results from model theory we have described work equally
well for PDEs, but what specific consequences they have and the
computational approach remain to be investigated.
Extensions to difference equations and difference-differential equations
should be possible, but here the model theory is somewhat more
complicated.
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The end

Thanks again to the program committee for this invitation to speak and to
all of you for your attention.
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