On the solutions of planar algebraic vector fields

Rémi Jaoui

University of Notre Dame, partially supported by NSF grant DMS-1760212

February 13th 2020, DART X

э

Theorem (J., preprint 19')

Let \mathcal{V}_d denotes the family of complex algebraic vector fields of degree $\leq d$ on the complex plane \mathbb{C}^2 . For $d \geq 3$, for almost all vector fields $v \in \mathcal{V}_d$, the differential equation associated to the vector field v is strongly minimal and disintegrated (has trivial forking geometry).

This theorem describes the structure (in the sense of model-theory) of the set of solutions in a differentially closed field of a planar vector field chosen randomly among algebraic vector fields of degree d where $d \ge 3$.

Plan of the talk:

- (1) Describe the content of the conclusion of the theorem above in differential-algebraic terms.
- (2) Explain how model-theory is used in the proof of the theorem.
- (3) Describe the linearization technique used in the proof of the theorem.

Vocabulary and notation

We consider differential equations of the form

$$(E):\begin{cases} x'=f(x,y)\\ y'=g(x,y) \end{cases} \quad \text{where } f(x,y), g(x,y) \in \mathbb{C}[x,y]. \end{cases}$$

associated to planar algebraic vector fields $v(x, y) = f(x, y)\frac{\partial}{\partial x} + g(x, y)\frac{\partial}{\partial y}$. The vector field v induces a derivation of $\mathbb{C}[x, y]$ that extends uniquely to $\mathbb{C}(x, y)$ defined by

 $\delta_{v}(f)=df(v).$

4 3 b

Vocabulary and notation

We consider differential equations of the form

$$(E):\begin{cases} x'=f(x,y)\\ y'=g(x,y) \end{cases} \quad \text{where } f(x,y), g(x,y) \in \mathbb{C}[x,y]. \end{cases}$$

associated to planar algebraic vector fields $v(x, y) = f(x, y)\frac{\partial}{\partial x} + g(x, y)\frac{\partial}{\partial y}$. The vector field v induces a derivation of $\mathbb{C}[x, y]$ that extends uniquely to $\mathbb{C}(x, y)$ defined by

$$\delta_v(f)=df(v).$$

Vocabulary:

• A rational integral of (E) is a rational function $f \in \mathbb{C}(x, y)$ such that

$$\delta_{v}(f)=df(v)=0.$$

• A complex invariant curve C for (E) is an affine algebraic curve invariant under the (local) flow of the the vector field v. If C := (f = 0), this can be expressed algebraically as:

$$\delta_v(f) = df(v) = hf$$
 for some $h \in \mathbb{C}[x, y]$.

 A generic solution of (E) is a solution of (E) in a differential field extension of (C, 0) which is not a zero of v and not contained in any complex (invariant) curve.

First example: Hamiltonian systems with one degree of freedom

Consider a Hamiltonian $H(p,q) = \frac{1}{2}p^2 + V(q)$ and the associated Hamiltonian differential equation:

$$\begin{cases} \dot{q} = p \\ \dot{p} = -V'(q) \end{cases} \quad \text{described by the vector field } v_H = p \frac{\partial}{\partial q} - V'(q) \frac{\partial}{\partial p}.$$

э

First example: Hamiltonian systems with one degree of freedom

Consider a Hamiltonian $H(p,q) = \frac{1}{2}p^2 + V(q)$ and the associated Hamiltonian differential equation:

$$\begin{cases} \dot{q} = p \\ \dot{p} = -V'(q) \end{cases} \quad \text{described by the vector field } v_H = p \frac{\partial}{\partial q} - V'(q) \frac{\partial}{\partial p}.$$

 The Hamiltonian H : (C², v_H) → (C, 0) is a rational integral of v_H so the the integration of X_H can be reduced to the integration of the one-dimensional differential equation:

$$(E_h): rac{1}{2}(rac{dq}{dt})^2 + V(q) = h$$
 defined over $(\mathbb{C}(h), 0).$

First example: Hamiltonian systems with one degree of freedom

Consider a Hamiltonian $H(p,q) = \frac{1}{2}p^2 + V(q)$ and the associated Hamiltonian differential equation:

$$\begin{cases} \dot{q} = p \\ \dot{p} = -V'(q) \end{cases} \quad \text{described by the vector field } v_H = p \frac{\partial}{\partial q} - V'(q) \frac{\partial}{\partial p}.$$

 The Hamiltonian H : (C², v_H) → (C, 0) is a rational integral of v_H so the the integration of X_H can be reduced to the integration of the one-dimensional differential equation:

$$(E_h): \frac{1}{2}(\frac{dq}{dt})^2 + V(q) = h$$
 defined over $(\mathbb{C}(h), 0)$.

• Classically, the system is known to be (analytically) completely integrable. Using the method of separation of variables, one can associate to (E_h) the indefinite integral:

$$(*): dt = \int \frac{dq}{\sqrt{2h - 2V(q)}}.$$

The general solution of (E_h) is given by $q(t) = F_h^{-1}(t+C)$ where F_h is an antiderivative of (*).

Semi-minimal analysis of Hamiltonian systems with one degree of freedom

We distinguish three cases according to the degree of the potential V(q):

• If $\deg(V(q)) = 2$ then (E_h) admits a generic solution in a Picard-Vessiot extension of $\mathbb{C}(h)^{alg}$.

Classically, after a change of coordinates, (*) can be reduced to:

$$dt = \int \frac{dq}{\sqrt{1-(\omega q)^2}}$$
 so $t = \frac{1}{\omega} \arcsin(\omega q) + C$.

э

Semi-minimal analysis of Hamiltonian systems with one degree of freedom

We distinguish three cases according to the degree of the potential V(q):

• If $\deg(V(q)) = 2$ then (E_h) admits a generic solution in a Picard-Vessiot extension of $\mathbb{C}(h)^{alg}$.

Classically, after a change of coordinates, (*) can be reduced to:

$$dt = \int rac{dq}{\sqrt{1-(\omega q)^2}}$$
 so $t = rac{1}{\omega} \arcsin(\omega q) + C.$

• If $\deg(V(q)) = 3, 4$, then (E_h) admits a generic solution in a strongly normal extension of $\mathbb{C}(h)^{a/g}$ but (in general) not in a Picard Vessiot extension of $\mathbb{C}(h)^{a/g}$.

Classically after a change of coordinates, (*) can be reduced to

$$dt = \int \frac{dq}{\sqrt{q^3 + g_2 q + g_3}}$$
 so $q = \rho_{g_2,g_3}(t + C)$.

Semi-minimal analysis of Hamiltonian systems with one degree of freedom

We distinguish three cases according to the degree of the potential V(q):

• If $\deg(V(q)) = 2$ then (E_h) admits a generic solution in a Picard-Vessiot extension of $\mathbb{C}(h)^{a/g}$.

Classically, after a change of coordinates, (*) can be reduced to:

$$dt = \int rac{dq}{\sqrt{1-(\omega q)^2}}$$
 so $t = rac{1}{\omega} \arcsin(\omega q) + C.$

• If $\deg(V(q)) = 3, 4$, then (E_h) admits a generic solution in a strongly normal extension of $\mathbb{C}(h)^{a/g}$ but (in general) not in a Picard Vessiot extension of $\mathbb{C}(h)^{a/g}$.

Classically after a change of coordinates, (*) can be reduced to

$$dt = \int rac{dq}{\sqrt{q^3 + g_2 q + g_3}}$$
 so $q =
ho_{g_2,g_3}(t+C).$

• For generic values of V(q) with $\deg(V(q)) \ge 5$, (E_h) does not admit a generic solution in a strongly normal extension of $\mathbb{C}(h)^{alg}$.

[(Rosenlicht '74); (Hrushovski, Itai 03'); (Noordman, van der Put, Top 11')]

Second example: Pullbacks by logarithmic derivative

Consider the family of planar algebraic vector fields:

$$(E_f):$$
 $\begin{cases} \dot{y} = xy \\ \dot{x} = f(x) \end{cases}$ with $f(x) \in \mathbb{C}(x)$.

3) J

Second example: Pullbacks by logarithmic derivative

Consider the family of planar algebraic vector fields:

$$(E_f): egin{cases} \dot{y} = xy \ \dot{x} = f(x) \end{cases} ext{ with } f(x) \in \mathbb{C}(x). \end{cases}$$

• If $f(x) = x^2$ then (E_f) has a generic solution in a PV-extension of $(\mathbb{C}, 0)$.

Second example: Pullbacks by logarithmic derivative

Consider the family of planar algebraic vector fields:

$$(E_f):$$
 $\begin{cases} \dot{y} = xy \\ \dot{x} = f(x) \end{cases}$ with $f(x) \in \mathbb{C}(x)$.

- If $f(x) = x^2$ then (E_f) has a generic solution in a PV-extension of $(\mathbb{C}, 0)$.
- If f(x) = x then (E_f) does not admit a generic solution in a strongly normal extension of (C, 0) but does admit one in an iterated PV-extension of (C, 0) of the form:

$$(\mathbb{C},0)\subset (K_1,\delta_1)\subset (K_2,\delta_2)$$

where $(K_1, \delta_1)|(k, 0)$ and $(K_2, \delta_2)|(K_1, \delta_1)$ are PV-extensions.

Second example: Pullbacks by logarithmic derivative

Consider the family of planar algebraic vector fields:

$$(E_f): egin{cases} \dot{y} = xy \ \dot{x} = f(x) \end{cases} ext{ with } f(x) \in \mathbb{C}(x). \end{cases}$$

- If $f(x) = x^2$ then (E_f) has a generic solution in a PV-extension of $(\mathbb{C}, 0)$.
- If f(x) = x then (E_f) does not admit a generic solution in a strongly normal extension of (C, 0) but does admit one in an iterated PV-extension of (C, 0) of the form:

$$(\mathbb{C},0)\subset (\mathit{K}_1,\delta_1)\subset (\mathit{K}_2,\delta_2)$$

where $(K_1, \delta_1)|(k, 0)$ and $(K_2, \delta_2)|(K_1, \delta_1)$ are PV-extensions.

For generic values of f(x) of degree ≥ 3, then (E_f) does not admit a generic solution in an iterated strongly normal extension of (C, 0) but does in a "mixed extension" of the form:

$$(\mathbb{C},0)\subset (K_1,\delta_1)\subset (K_2,\delta_2)$$

where $(K_1, \delta_1)|(k, 0)$ is not strongly normal of transcendence degree one and $(K_2, \delta_2)|(K_1, \delta_1)$ is strongly normal.

[Jin-Moosa '19] gives necessary and sufficient conditions on f(x) to distinguish these three cases.

Theorem (J. 19')

Let \mathcal{V}_d denotes the family of complex algebraic vector fields of degree $\leq d$ on the complex plane \mathbb{C}^2 . For $d \geq 3$, for almost all vector fields $v \in \mathcal{V}_d$,

• **Minimality**: (*E*_v) does not admit any non constant solution in a differential extension of the form:

 $(\mathbb{C},0) \subset (K_1,\delta_1) \subset (K_2,\delta_2) \subset \cdots \subset (K_n,\delta_n)$

where each of the steps in the tower above is either

- an algebraic extension
- a strongly normal extension,
- or a differential field extension of transcendence degree one.
- **Disintegration:** if $(x_1, y_1), \ldots, (x_n, y_n)$ are n solutions of (E_v) , then $(x_1, y_1), \ldots, (x_n, y_n)$ are algebraically independent over \mathbb{C} unless

 $P(x_j, y_j, x_i, y_i) = 0$

for some $i \neq j$ and a polynomial $P \neq 0$.

Comments on minimality

• generic/non-constant solutions.

Theorem (Landis-Petrovskii, 58')

Let \mathcal{V}_d denotes the family of complex algebraic vector fields of degree $\leq d$ on the complex plane \mathbb{C}^2 . For $d \geq 2$, for almost all vector fields $v \in \mathcal{V}_d$, any analytic curve on X tangent to v is either stationary at a zero of v or Zariski-dense in \mathbb{C}^2 .

-

• generic/non-constant solutions.

Theorem (Landis-Petrovskii, 58')

Let \mathcal{V}_d denotes the family of complex algebraic vector fields of degree $\leq d$ on the complex plane \mathbb{C}^2 . For $d \geq 2$, for almost all vector fields $v \in \mathcal{V}_d$, any analytic curve on X tangent to v is either stationary at a zero of v or Zariski-dense in \mathbb{C}^2 .

• In the language of model theory, (i) can be restated as: the solutions of (E_v) in a differentially closed field form a strongly minimal definable set. This uses:

irreducibility (Nishioka-Umemura) $\Leftrightarrow p_v$ is minimal $\Leftrightarrow p_v$ is strongly minimal. where p_v denotes the generic type of (E_v) . • generic/non-constant solutions.

Theorem (Landis-Petrovskii, 58')

Let \mathcal{V}_d denotes the family of complex algebraic vector fields of degree $\leq d$ on the complex plane \mathbb{C}^2 . For $d \geq 2$, for almost all vector fields $v \in \mathcal{V}_d$, any analytic curve on X tangent to v is either stationary at a zero of v or Zariski-dense in \mathbb{C}^2 .

• In the language of model theory, (i) can be restated as: the solutions of (E_v) in a differentially closed field form a strongly minimal definable set. This uses:

irreducibility (Nishioka-Umemura) $\Leftrightarrow p_v$ is minimal $\Leftrightarrow p_v$ is strongly minimal.

where p_v denotes the generic type of (E_v) .

• What happens for d = 1, 2? The correct picture for d = 2 is still unclear. It boils down to:

Question

Does there exist a complex quadratic planar vector field without rational integral and whose generic solutions do not lie in the algebraic closure of a strongly normal extension of $(\mathbb{C}, 0)$?

Comments on disintegration

It is natural to expect that generic vector fields of sufficiently high degree satisfy a stronger (and more explicit) version of the disintegration property.

Definition

We say that Dis(n, d) holds if for almost all vector fields $v \in \mathcal{V}_d$, *n* solutions $(x_1, y_1), \ldots, (x_n, y_n)$ of (E_v) are algebraically independent over \mathbb{C} unless:

- one of them is a constant solution,
- or two of them are equal.

Comments on disintegration

It is natural to expect that generic vector fields of sufficiently high degree satisfy a stronger (and more explicit) version of the disintegration property.

Definition

We say that Dis(n, d) holds if for almost all vector fields $v \in \mathcal{V}_d$, *n* solutions $(x_1, y_1), \ldots, (x_n, y_n)$ of (E_v) are algebraically independent over \mathbb{C} unless:

- one of them is a constant solution,
- or two of them are equal.
- Landis-Petrovskii theorem states that Dis(1, d) holds when $d \ge 2$.
- A specalization argument shows that $Dis(n, d) \Rightarrow Dis(n, d+1)$
- Disintegration implies that $Dis(2, d) \Rightarrow Dis(n, d)$ for every $d \ge 3$ and every $n \ge 2$.

Comments on disintegration

It is natural to expect that generic vector fields of sufficiently high degree satisfy a stronger (and more explicit) version of the disintegration property.

Definition

We say that Dis(n, d) holds if for almost all vector fields $v \in \mathcal{V}_d$, *n* solutions $(x_1, y_1), \ldots, (x_n, y_n)$ of (E_v) are algebraically independent over \mathbb{C} unless:

- one of them is a constant solution,
- or two of them are equal.
- Landis-Petrovskii theorem states that Dis(1, d) holds when $d \ge 2$.
- A specalization argument shows that $Dis(n, d) \Rightarrow Dis(n, d+1)$
- Disintegration implies that $Dis(2, d) \Rightarrow Dis(n, d)$ for every $d \ge 3$ and every $n \ge 2$.

Question

Does there exists $d \ge 2$, such that Dis(2, d) holds? Is it possible to compute such a d explicitly?

э

Strategy of the proof

Consider a differential equation

$$(E):\begin{cases} x'=f(x,y)\\ y'=g(x,y) \end{cases} \quad \text{where } f(x,y), g(x,y) \in \mathbb{C}[x,y]. \end{cases}$$

We want to identify sufficient conditions to ensure that the set of solutions of (E) in a differentially closed field is strongly minimal and disintegrated.

э

Strategy of the proof

Consider a differential equation

$$(E):\begin{cases} x'=f(x,y)\\ y'=g(x,y) \end{cases} \quad \text{where } f(x,y), g(x,y) \in \mathbb{C}[x,y]. \end{cases}$$

We want to identify sufficient conditions to ensure that the set of solutions of (E) in a differentially closed field is strongly minimal and disintegrated.

- Does (E) admit a non-trivial rational integral?
- Does (*E*) admit a generic solution in (the algebraic closure of) a strongly normal extension of ($\mathbb{C}, 0$) ?

-

Strategy of the proof

Consider a differential equation

$$(E):\begin{cases} x'=f(x,y)\\ y'=g(x,y) \end{cases} \quad \text{where } f(x,y), g(x,y) \in \mathbb{C}[x,y]. \end{cases}$$

We want to identify sufficient conditions to ensure that the set of solutions of (E) in a differentially closed field is strongly minimal and disintegrated.

- Does (E) admit a non-trivial rational integral?
- Does (*E*) admit a generic solution in (the algebraic closure of) a strongly normal extension of ($\mathbb{C}, 0$) ?
- Can (E) be reduced by a change of coordinates

$$u = u(x, y), v = v(x, y)$$

(and more generally, a finite to finite correspondence) to a system of differential equations in triangular form

$$\begin{cases} h(u, u', v) = 0 \\ g(v, v') = 0 \end{cases}$$

Rational and algebraic factors

Let X be a complex algebraic surface endowed with a vector field v.

Definition

A rational factor of (X, v) of dimension one is a triple (C, v_C, ϕ) where

• C is a complex algebraic curve and v_C a vector field on C.

• $\phi: X \dashrightarrow C$ is a dominant rational morphism satisfying $d\phi(v) = v_C$. An algebraic factor of (X, v) of dimension one is a diagram

$$(X', v') \xrightarrow{\phi} (C, v_C) \text{ where } \begin{cases} \rho \text{ is dominant generically finite,} \\ v' \text{ is the extension of } v \text{ to } X', \\ (C, v_C, \phi) \text{ is a rational factor of } (X', v'). \\ (X, v) \end{cases}$$

Observation: A system $\begin{cases} x' = f(x, y) \\ y' = g(x, y) \end{cases}$ can be made triangular after a generically finite to finite correspondance if and only if $(\mathbb{A}^2, f(x, y)\frac{\partial}{\partial x} + g(x, y)\frac{\partial}{\partial y})$ admits an algebraic factor of dimension one.

Consequence of the Hrushovski-Sokolovic Trichotomy in DCF₀

Theorem

Consider a differential equation

$$E):\begin{cases} x'=f(x,y)\\ y'=g(x,y) \end{cases}$$

satisfying:

- (i) (E) does not admit non trivial rational integrals.
- (ii) (E) does not admit a generic solution in the algebraic closure of a strongly normal extension of $(\mathbb{C}, 0)$.
- (iii) $(\mathbb{A}^2, f(x, y)\frac{\partial}{\partial x} + g(x, y)\frac{\partial}{\partial y})$ does not admit an algebraic factor of dimension one.

Then the generic type p_E of (E) is strongly minimal and disintegrated.

General planar algebraic vector fields

Let \mathcal{V}_d denotes the family of complex algebraic vector fields of degree $\leq d$ on the complex plane \mathbb{C}^2 .

• The theorem of Landis-Petrovskii implies that (i) holds for almost all vector fields of V_d for $d \ge 2$.

B> B

General planar algebraic vector fields

Let \mathcal{V}_d denotes the family of complex algebraic vector fields of degree $\leq d$ on the complex plane \mathbb{C}^2 .

- The theorem of Landis-Petrovskii implies that (i) holds for almost all vector fields of V_d for $d \ge 2$.
- I showed in "Orthogonalité aux constants pour les équations différentielles autonomes" (18') that (ii) holds for for almost all vector fields of V_d for $d \ge 3$.

The proof consists in an explicit construction of a planar vector field of degree 3 and a specialization argument.

General planar algebraic vector fields

Let \mathcal{V}_d denotes the family of complex algebraic vector fields of degree $\leq d$ on the complex plane \mathbb{C}^2 .

- The theorem of Landis-Petrovskii implies that (i) holds for almost all vector fields of V_d for $d \ge 2$.
- I showed in "Orthogonalité aux constants pour les équations différentielles autonomes" (18') that (ii) holds for for almost all vector fields of V_d for $d \ge 3$.

The proof consists in an explicit construction of a planar vector field of degree 3 and a specialization argument.

Theorem (J. 19')

Let (X, v) be a smooth irreducible complex algebraic surface endowed with a vector field. Assume that there exists a zero $p \in X(\mathbb{C})$ of v such that:

- (i) Hyperbolicity and non-resonance: the eigenvalues λ, μ of the linear part of v at p are non zero and satisfy $\lambda/\mu \notin \mathbb{Q}_+ \cup \mathbb{R}_-$.
- (ii) **No algebraic separatrix:** the zero p is not contained in any complex invariant algebraic curve C.

Then (X, v) does not admit any algebraic factor of dimension one.

Main protagonist: the *D*-module $(\Omega^1_X, \mathcal{L}_v)$

Let X be a complex algebraic surface endowed with a vector field v. For every open set $U \subset X$, the vector field v induces

- a derivation δ_v on $\mathcal{O}_X(U)$ defined by $\delta_v(f) = df(v)$.
- a D-module structure on Ω¹_X(U) over the differential ring (O_X(U), δ_v) determined by:

 $\mathcal{L}_{v}(df) = d(\delta_{v}(f))$ for every $f \in \mathcal{O}_{X}(U)$.

Main protagonist: the *D*-module $(\Omega^1_X, \mathcal{L}_v)$

Let X be a complex algebraic surface endowed with a vector field v. For every open set $U \subset X$, the vector field v induces

- a derivation δ_v on $\mathcal{O}_X(U)$ defined by $\delta_v(f) = df(v)$.
- a *D*-module structure on $\Omega^1_X(U)$ over the differential ring $(\mathcal{O}_X(U), \delta_v)$ determined by:

 $\mathcal{L}_{v}(df) = d(\delta_{v}(f))$ for every $f \in \mathcal{O}_{X}(U)$.

When U varies in X, the D-modules $(\Omega^1_X(U), \mathcal{L}_v)$ define a sheaf of D-modules on X over the sheaf of differential rings $(\mathcal{O}_X, \delta_v)$.

- The stalk $(\Omega^1_X, \mathcal{L}_v)_\eta$ at the generic η of X which is a D-module over the differential field $(\mathbb{C}(X), \delta_v)$.
- The stalk $(\Omega^1_X, \mathcal{L}_v)_p$ at an hyperbolic and non-resonant zero p of v.

Main protagonist: the *D*-module $(\Omega^1_X, \mathcal{L}_v)$

Let X be a complex algebraic surface endowed with a vector field v. For every open set $U \subset X$, the vector field v induces

- a derivation δ_v on $\mathcal{O}_X(U)$ defined by $\delta_v(f) = df(v)$.
- a D-module structure on Ω¹_X(U) over the differential ring (O_X(U), δ_v) determined by:

$$\mathcal{L}_{v}(df) = d(\delta_{v}(f))$$
 for every $f \in \mathcal{O}_{X}(U)$.

When U varies in X, the D-modules $(\Omega^1_X(U), \mathcal{L}_v)$ define a sheaf of D-modules on X over the sheaf of differential rings $(\mathcal{O}_X, \delta_v)$.

- The stalk $(\Omega^1_X, \mathcal{L}_v)_\eta$ at the generic η of X which is a D-module over the differential field $(\mathbb{C}(X), \delta_v)$.
- The stalk $(\Omega^1_X, \mathcal{L}_v)_p$ at an hyperbolic and non-resonant zero p of v.

After applying Poincaré's linearization theorem around p, we can compute:

$$(\mathcal{O}_X, \delta_v)_p^{an} \simeq (\mathbb{C}\{x, y\}, \lambda x \frac{\partial}{\partial x} + \mu y \frac{\partial}{\partial y})$$

and in the basis (dx, dy), the $(\Omega^1_X, \mathcal{L}_v)^{an}_p$ is described by

$$\mathcal{L}_{v} \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} = \begin{bmatrix} \dot{y}_{1} \\ \dot{y}_{2} \end{bmatrix} + \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix}.$$

From rational factors of (X, v) to *D*-submodules of $\Omega^1_{X,n}$

If $\phi : X \dashrightarrow C$ is a dominant rational morphism, it is generically smooth so we get an exact sequence (over the generic point η of X):

$$0 \to \phi^*\Omega^1_{C,\eta} \stackrel{d\phi}{\to} \Omega^1_{X,\eta} \to \Omega^1_{X/C,\eta} \to 0 \text{ of } \mathbb{C}(X) \text{-vector spaces.}$$

The image $\Omega(\phi)$ of $\phi^*\Omega^1_{C,\eta}$ in $\Omega^1_{X,\eta}$ is a $\mathbb{C}(X)$ vector-subspace of dim. 1.

From rational factors of (X, v) to *D*-submodules of $\Omega^1_{X,n}$

If $\phi : X \dashrightarrow C$ is a dominant rational morphism, it is generically smooth so we get an exact sequence (over the generic point η of X):

$$0 o \phi^* \Omega^1_{C,\eta} \stackrel{d\phi}{\to} \Omega^1_{X,\eta} o \Omega^1_{X/C,\eta} o 0$$
 of $\mathbb{C}(X)$ -vector spaces.

The image $\Omega(\phi)$ of $\phi^*\Omega^1_{C,\eta}$ in $\Omega^1_{X,\eta}$ is a $\mathbb{C}(X)$ vector-subspace of dim. 1.

Lemma

The correspondence

$$\operatorname{Lin}: \ (X,v) \stackrel{\phi}{\to} (C,v_C) \mapsto \Omega(\phi)$$

sends one-dimensional rational factors of (X, v) to one dimensional *D*-submodules of $(\Omega^1_X, \mathcal{L}_v)_{\eta}$, which are algebraically integrable.

Here, we say that a *D*-submodule *M* of $(\Omega^1_X, \mathcal{L}_v)_\eta$ of dimension one is algebraically integrable if equivalently:

- it is generated by a one-form of the form df for some $f \in \mathbb{C}$.
- the dual M[∨] ⊂ Θ_X is generated by a rational vector field on X with a non-trivial rational integral.

From *D*-submodules of $(\Omega^1_X, \mathcal{L}_v)_\eta$ to invariant foliations on (X, v)

To study the *D*-submodules F of $(\Omega^1_X, \mathcal{L}_v)_\eta$ from the point of view of an hyperbolic singularity p of $X(\mathbb{C})$, we extend them (in a canonical way) into *D*-coherent sheaves \mathcal{F} of $(\Omega^1_{X,\eta}, \mathcal{L}_v)$ and consider the stalk \mathcal{F}_p .

Proposition (Saturation)

(i) Any one dimensional $\mathbb{C}(X)$ -subvector space F of $\Omega^1_{X,\eta}$ extends uniquely into an invertible subsheaf \mathcal{F} of Ω^1_X such that

 Ω^1_X/\mathcal{F} is torsion free.

(ii) If F is a D-submodule of (Ω¹_X, L_ν)_η then F_p is a D-submodule of (Ω¹_X, L_ν)_p.

From *D*-submodules of $(\Omega^1_X, \mathcal{L}_v)_{\eta}$ to invariant foliations on (X, v)

To study the *D*-submodules *F* of $(\Omega^1_X, \mathcal{L}_v)_\eta$ from the point of view of an hyperbolic singularity *p* of $X(\mathbb{C})$, we extend them (in a canonical way) into *D*-coherent sheaves \mathcal{F} of $(\Omega^1_{X,\eta}, \mathcal{L}_v)$ and consider the stalk \mathcal{F}_p .

Proposition (Saturation)

(i) Any one dimensional $\mathbb{C}(X)$ -subvector space F of $\Omega^1_{X,\eta}$ extends uniquely into an invertible subsheaf \mathcal{F} of Ω^1_X such that

 Ω^1_X/\mathcal{F} is torsion free.

(ii) If F is a D-submodule of (Ω¹_X, L_ν)_η then F_p is a D-submodule of (Ω¹_X, L_ν)_p.

Such an invertible subsheaf \mathcal{F} is called a (*possibly singular*) invariant foliation on (X, v). If ω is a local generator of \mathcal{F} around p then we have two cases:

- the 1-form induced by ω on the tangent space T_{X,p} at p is identically zero.
 We say that the foliation is singular at p.
- Otherwise, the kernel is a one-dimensional subspace of $T_{X,p}$ that is a line at p. We say that the foliation is called regular at p.

Rational factors: sketch of proof

Let X be a complex algebraic variety, v a vector field on X and $p \in X(\mathbb{C})$ an hyperbolic and non-resonant zero of v. Consider $\pi : (X, v) \dashrightarrow (C, v_C)$ a rational factor of dimension one.

- Step 1 Linearization: rational factor $\pi \rightsquigarrow$ a *D*-submodule F_{π} of $\Omega^{1}_{X,\eta}$ which algebraically integrable.
- Step 2 **Extension**: a *D*-submodule F_{π} of $\Omega^{1}_{X,\eta} \rightsquigarrow$ an algebraically integrable foliation \mathcal{F}_{π} on X invariant by \mathcal{L}_{v} .
- Step 3 Analytic coordinates at p: Choose analytic coordinates (x, y) around p such that in this new coordinates, v is equal to its linear part.
- Step 4 Local analysis of linear vector fields:

Lemma

Let $v(x, y) = \lambda x \frac{\partial}{\partial x} + \mu y \frac{\partial}{\partial y}$ be a linear vector field with $\lambda/\mu \notin \mathbb{Q}$ and let \mathcal{F} an analytic foliation invariant by v defined on a neighborhood of 0.

- If \mathcal{F} is non singular at 0 then \mathcal{F} is either the horizontal or vertical foliation.
- If \mathcal{F} is singular at 0 then \mathcal{F} is linear in the same coordinates (x, y) with the same eigenvectors than (the linear part of v).
- Step 5 **Conclusion:** Use that \mathcal{F}_{π} is algebraically integrable to conclude that p is contained in a complex invariant curve.

A word about (non-rational) algebraic factors

Instead of a rational factor, we can start with an algebraic factor:

 $(X', v') \xrightarrow{\phi} (C, v_C) \text{ where } \begin{cases} \rho \text{ is dominant generically finite,} \\ v' \text{ is the extension of } v \text{ to } X', \\ (C, v_C, \phi) \text{ is a rational factor of } (X', v'). \\ (X, v) \end{cases}$

- Up to extending X', we can assume that $k(X) \subset k(X')$ is a finite Galois extension of fields with Galois group G.
- From the rational factor (C, v_C, ϕ) , we still get an algebraically integrable invariant foliation \mathcal{F} on X'.

A word about (non-rational) algebraic factors

Instead of a rational factor, we can start with an algebraic factor:

 $(X', v') \xrightarrow{\phi} (C, v_{C}) \text{ where } \begin{cases} \rho \text{ is dominant generically finite,} \\ v' \text{ is the extension of } v \text{ to } X', \\ (C, v_{C}, \phi) \text{ is a rational factor of } (X', v'). \\ (X, v) \end{cases}$

- Up to extending X', we can assume that $k(X) \subset k(X')$ is a finite Galois extension of fields with Galois group G.
- From the rational factor (C, v_C, ϕ) , we still get an algebraically integrable invariant foliation \mathcal{F} on X'.
- Although the foliation \mathcal{F} does not generally descend on X', we can kill the action of G by considering

$$x \in X(\mathbb{C}) \mapsto \bigcup_{\sigma \in G} \sigma(F_q) \subset T_p X$$
 where $q = \rho(x)$.

which associates to a generic point x of X, a set of $\sharp G$ lines in $T_{D}X$.

A word about (non-rational) algebraic factors

Note that if V is a vector space of dimension two and $\omega_1, \ldots, \omega_n \in V^*$ are linear form defining lines $l_1, \ldots, l_k \subset$ then:

$$I_1 \cup \ldots \cup I_k = \{ v \in V, \Omega(v) = 0 \}$$
 where $\Omega = \prod_{i=1}^k \omega_i \in \operatorname{Sym}^k(V^*).$

A word about (non-rational) algebraic factors

Note that if V is a vector space of dimension two and $\omega_1, \ldots, \omega_n \in V^*$ are linear form defining lines $l_1, \ldots, l_k \subset$ then:

$$I_1 \cup \ldots \cup I_k = \{ v \in V, \Omega(v) = 0 \}$$
 where $\Omega = \prod_{i=1}^k \omega_i \in \operatorname{Sym}^k(V^*).$

Definition

A k-web of foliations on X is an invertible subsheaf \mathcal{W} of $\operatorname{Sym}^k(\Omega^1_X)$ such that $\operatorname{Sym}^k(\Omega^1_X)/\mathcal{W}$ is torsion-free.

A word about (non-rational) algebraic factors

Note that if V is a vector space of dimension two and $\omega_1, \ldots, \omega_n \in V^*$ are linear form defining lines $l_1, \ldots, l_k \subset$ then:

$$I_1 \cup \ldots \cup I_k = \{ v \in V, \Omega(v) = 0 \}$$
 where $\Omega = \prod_{i=1}^k \omega_i \in \operatorname{Sym}^k(V^*).$

Definition

A k-web of foliations on X is an invertible subsheaf \mathcal{W} of $\operatorname{Sym}^k(\Omega^1_X)$ such that $\operatorname{Sym}^k(\Omega^1_X)/\mathcal{W}$ is torsion-free.

Sketch of proof for algebraic factors:

- an algebraic factor of (X, v) → an invariant k-web W on (X, v) satisfying certain algebraicity properties.
- Let p denote the hyperbolic and non-resonnant zero of v. Distinguish whether W is locally decomposable at p (in an analytic neighborhood) as a product of k analytic foliations or not.

References:

- Corps differentiels et flots géodésiques I: Orthogonalité aux constantes pour les équations différentielles autonomes (arXiv:1612.06222).
- Generic planar algebraic vector fields are disintegrated (arXiv:1905.09429).

Thank you for your attention!