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Motivation

Abstract

Theorem (J., preprint 19’)

Let Vd denotes the family of complex algebraic vector fields of degree ≤ d on
the complex plane C2. For d ≥ 3, for almost all vector fields v ∈ Vd , the
differential equation associated to the vector field v is strongly minimal and
disintegrated (has trivial forking geometry).

This theorem describes the structure (in the sense of model-theory) of the set
of solutions in a differentially closed field of a planar vector field chosen
randomly among algebraic vector fields of degree d where d ≥ 3.

Plan of the talk:
(1) Describe the content of the conclusion of the theorem above in

differential-algebraic terms.

(2) Explain how model-theory is used in the proof of the theorem.

(3) Describe the linearization technique used in the proof of the theorem.
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Vocabulary and notation

We consider differential equations of the form

(E) :

{
x ′ = f (x , y)

y ′ = g(x , y)
where f (x , y), g(x , y) ∈ C[x , y ].

associated to planar algebraic vector fields v(x , y) = f (x , y) ∂
∂x

+ g(x , y) ∂
∂y
.

The vector field v induces a derivation of C[x , y ] that extends uniquely to
C(x , y) defined by

δv (f ) = df (v).

Vocabulary:
A rational integral of (E) is a rational function f ∈ C(x , y) such that

δv (f ) = df (v) = 0.

A complex invariant curve C for (E) is an affine algebraic curve invariant
under the (local) flow of the the vector field v . If C := (f = 0), this can
be expressed algebraically as:

δv (f ) = df (v) = hf for some h ∈ C[x , y ].

A generic solution of (E) is a solution of (E) in a differential field
extension of (C, 0) which is not a zero of v and not contained in any
complex (invariant) curve.
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First example: Hamiltonian systems with one degree of freedom

Consider a Hamiltonian H(p, q) = 1
2p

2 + V (q) and the associated Hamiltonian
differential equation:{

q̇ = p

ṗ = −V ′(q)
described by the vector field vH = p

∂

∂q
− V ′(q)

∂

∂p
.

The Hamiltonian H : (C2, vH)→ (C, 0) is a rational integral of vH so the
the integration of XH can be reduced to the integration of the
one-dimensional differential equation:

(Eh) :
1
2

(
dq

dt
)2 + V (q) = h defined over (C(h), 0).

Classically, the system is known to be (analytically) completely integrable.
Using the method of separation of variables, one can associate to (Eh) the
indefinite integral:

(∗) : dt =

∫
dq√

2h − 2V (q)
.

The general solution of (Eh) is given by q(t) = F−1
h (t + C) where Fh is an

antiderivative of (∗).
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Semi-minimal analysis of Hamiltonian systems with one degree of freedom

We distinguish three cases according to the degree of the potential V (q):

If deg(V (q)) = 2 then (Eh) admits a generic solution in a Picard-Vessiot
extension of C(h)alg .
Classically, after a change of coordinates, (∗) can be reduced to:

dt =

∫
dq√

1− (ωq)2
so t =

1
ω

arcsin(ωq) + C .

If deg(V (q)) = 3, 4 , then (Eh) admits a generic solution in a strongly
normal extension of C(h)alg but (in general) not in a Picard Vessiot
extension of C(h)alg .
Classically after a change of coordinates, (∗) can be reduced to

dt =

∫
dq√

q3 + g2q + g3
so q = ρg2,g3(t + C).

For generic values of V (q) with deg(V (q)) ≥ 5, (Eh) does not admit a
generic solution in a strongly normal extension of C(h)alg .

[(Rosenlicht ’74); (Hrushovski,Itai 03’); (Noordman, van der Put, Top 11’)]
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Second example: Pullbacks by logarithmic derivative

Consider the family of planar algebraic vector fields:

(Ef ) :

{
ẏ = xy

ẋ = f (x)
with f (x) ∈ C(x).

If f (x) = x2 then (Ef ) has a generic solution in a PV-extension of (C, 0).
If f (x) = x then (Ef ) does not admit a generic solution in a strongly
normal extension of (C, 0) but does admit one in an iterated PV-extension
of (C, 0) of the form:

(C, 0) ⊂ (K1, δ1) ⊂ (K2, δ2)

where (K1, δ1)|(k, 0) and (K2, δ2)|(K1, δ1) are PV-extensions.
For generic values of f (x) of degree ≥ 3, then (Ef ) does not admit a
generic solution in an iterated strongly normal extension of (C, 0) but does
in a “mixed extension” of the form:

(C, 0) ⊂ (K1, δ1) ⊂ (K2, δ2)

where (K1, δ1)|(k, 0) is not strongly normal of transcendence degree one
and (K2, δ2)|(K1, δ1) is strongly normal.

[Jin-Moosa ‘19] gives necessary and sufficient conditions on f (x) to distinguish
these three cases.
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Main result

Theorem (J. 19’)

Let Vd denotes the family of complex algebraic vector fields of degree ≤ d on
the complex plane C2. For d ≥ 3, for almost all vector fields v ∈ Vd ,

Minimality: (Ev ) does not admit any non constant solution in a
differential extension of the form:

(C, 0) ⊂ (K1, δ1) ⊂ (K2, δ2) ⊂ · · · ⊂ (Kn, δn)

where each of the steps in the tower above is either
an algebraic extension
a strongly normal extension,
or a differential field extension of transcendence degree one.

Disintegration: if (x1, y1), . . . , (xn, yn) are n solutions of (Ev ), then
(x1, y1), . . . , (xn, yn) are algebraically independent over C unless

P(xj , yj , xi , yi ) = 0

for some i 6= j and a polynomial P 6= 0.
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Comments on minimality

generic/non-constant solutions.

Theorem (Landis-Petrovskii, 58’)

Let Vd denotes the family of complex algebraic vector fields of degree ≤ d on
the complex plane C2. For d ≥ 2, for almost all vector fields v ∈ Vd , any
analytic curve on X tangent to v is either stationary at a zero of v or
Zariski-dense in C2.

In the language of model theory, (i) can be restated as: the solutions of
(Ev ) in a differentially closed field form a strongly minimal definable set.
This uses:

irreducibility (Nishioka-Umemura)⇔ pv is minimal ⇔ pv is strongly minimal.

where pv denotes the generic type of (Ev ).
What happens for d = 1, 2? The correct picture for d = 2 is still unclear.
It boils down to:

Question

Does there exist a complex quadratic planar vector field without rational
integral and whose generic solutions do not lie in the algebraic closure of a
strongly normal extension of (C, 0)?
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Comments on disintegration

It is natural to expect that generic vector fields of sufficiently high degree
satisfy a stronger (and more explicit) version of the disintegration property.

Definition

We say that Dis(n, d) holds if for almost all vector fields v ∈ Vd , n solutions
(x1, y1), . . . , (xn, yn) of (Ev ) are algebraically independent over C unless:

one of them is a constant solution,

or two of them are equal.

Landis-Petrovskii theorem states that Dis(1, d) holds when d ≥ 2.

A specalization argument shows that Dis(n, d)⇒ Dis(n, d + 1)

Disintegration implies that Dis(2, d)⇒ Dis(n, d) for every d ≥ 3 and
every n ≥ 2.

Question

Does there exists d ≥ 2, such that Dis(2, d) holds? Is it possible to compute
such a d explicitly?
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Strategy of the proof

Consider a differential equation

(E) :

{
x ′ = f (x , y)

y ′ = g(x , y)
where f (x , y), g(x , y) ∈ C[x , y ].

We want to identify sufficient conditions to ensure that the set of solutions of
(E) in a differentially closed field is strongly minimal and disintegrated.

Does (E) admit a non-trivial rational integral?

Does (E) admit a generic solution in (the algebraic closure of) a strongly
normal extension of (C, 0) ?

Can (E) be reduced by a change of coordinates

u = u(x , y), v = v(x , y)

(and more generally, a finite to finite correspondence) to a system of
differential equations in triangular form{

h(u, u′, v) = 0
g(v , v ′) = 0

?
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Rational and algebraic factors

Let X be a complex algebraic surface endowed with a vector field v .

Definition

A rational factor of (X , v) of dimension one is a triple (C , vC , φ) where

C is a complex algebraic curve and vC a vector field on C .

φ : X 99K C is a dominant rational morphism satisfying dφ(v) = vC .

An algebraic factor of (X , v) of dimension one is a diagram

(X ′, v ′)

ρ

��

φ
// (C , vC )

(X , v)

where


ρ is dominant generically finite,
v ′ is the extension of v to X ′,

(C , vC , φ) is a rational factor of (X ′, v ′).

Observation: A system

{
x ′ = f (x , y)

y ′ = g(x , y)
can be made triangular after a

generically finite to finite correspondance if and only if
(A2, f (x , y) ∂

∂x
+ g(x , y) ∂

∂y
) admits an algebraic factor of dimension one.
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Consequence of the Hrushovski-Sokolovic Trichotomy in DCF0

Theorem

Consider a differential equation

(E) :

{
x ′ = f (x , y)

y ′ = g(x , y)

satisfying:

(i) (E) does not admit non trivial rational integrals.

(ii) (E) does not admit a generic solution in the algebraic closure of a strongly
normal extension of (C, 0).

(iii) (A2, f (x , y) ∂
∂x

+ g(x , y) ∂
∂y

) does not admit an algebraic factor of
dimension one.

Then the generic type pE of (E) is strongly minimal and disintegrated.
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General planar algebraic vector fields

Let Vd denotes the family of complex algebraic vector fields of degree ≤ d on
the complex plane C2.

The theorem of Landis-Petrovskii implies that (i) holds for almost all
vector fields of Vd for d ≥ 2.

I showed in “Orthogonalité aux constants pour les équations différentielles
autonomes” (18’) that (ii) holds for for almost all vector fields of Vd for
d ≥ 3.

The proof consists in an explicit construction of a planar vector field of degree
3 and a specialization argument.

Theorem (J. 19’)

Let (X , v) be a smooth irreducible complex algebraic surface endowed with a
vector field. Assume that there exists a zero p ∈ X (C) of v such that:

(i) Hyperbolicity and non-resonance: the eigenvalues λ, µ of the linear part
of v at p are non zero and satisfy λ/µ /∈ Q+ ∪ R−.

(ii) No algebraic separatrix: the zero p is not contained in any complex
invariant algebraic curve C .

Then (X , v) does not admit any algebraic factor of dimension one.
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of v at p are non zero and satisfy λ/µ /∈ Q+ ∪ R−.

(ii) No algebraic separatrix: the zero p is not contained in any complex
invariant algebraic curve C .

Then (X , v) does not admit any algebraic factor of dimension one.
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Main protagonist: the D-module (Ω1
X ,Lv )

Let X be a complex algebraic surface endowed with a vector field v . For every
open set U ⊂ X , the vector field v induces

a derivation δv on OX (U) defined by δv (f ) = df (v).
a D-module structure on Ω1

X (U) over the differential ring (OX (U), δv )
determined by:

Lv (df ) = d(δv (f )) for every f ∈ OX (U).

When U varies in X , the D-modules (Ω1
X (U),Lv ) define a sheaf of D-modules

on X over the sheaf of differential rings (OX , δv ).
The stalk (Ω1

X ,Lv )η at the generic η of X which is a D-module over the
differential field (C(X ), δv ).
The stalk (Ω1

X ,Lv )p at an hyperbolic and non-resonant zero p of v .
After applying Poincaré’s linearization theorem around p, we can compute:

(OX , δv )anp ' (C{x , y}, λx ∂

∂x
+ µy

∂

∂y
)

and in the basis (dx , dy), the (Ω1
X ,Lv )anp is described by

Lv

[
y1

y2

]
=

[
ẏ1

ẏ2

]
+

(
λ 0
0 µ

)[
y1

y2

]
.
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From rational factors of (X , v) to D-submodules of Ω1
X ,η

If φ : X 99K C is a dominant rational morphism, it is generically smooth so we
get an exact sequence (over the generic point η of X ):

0→ φ∗Ω1
C ,η

dφ→ Ω1
X ,η → Ω1

X/C ,η → 0 of C(X )-vector spaces.

The image Ω(φ) of φ∗Ω1
C ,η in Ω1

X ,η is a C(X ) vector-subspace of dim. 1.

Lemma

The correspondence

Lin : (X , v)
φ→ (C , vC ) 7→ Ω(φ)

sends one-dimensional rational factors of (X , v) to one dimensional
D-submodules of (Ω1

X ,Lv )η, which are algebraically integrable.

Here, we say that a D-submodule M of (Ω1
X ,Lv )η of dimension one is

algebraically integrable if equivalently:

it is generated by a one-form of the form df for some f ∈ C.
the dual M∨ ⊂ ΘX is generated by a rational vector field on X with a
non-trivial rational integral.
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From D-submodules of (Ω1
X ,Lv )η to invariant foliations on (X , v)

To study the D-submodules F of (Ω1
X ,Lv )η from the point of view of an

hyperbolic singularity p of X (C), we extend them (in a canonical way) into
D-coherent sheaves F of (Ω1

X ,η,Lv ) and consider the stalk Fp.

Proposition (Saturation)

(i) Any one dimensional C(X )-subvector space F of Ω1
X ,η extends uniquely

into an invertible subsheaf F of Ω1
X such that

Ω1
X/F is torsion free.

(ii) If F is a D-submodule of (Ω1
X ,Lv )η then Fp is a D-submodule of

(Ω1
X ,Lv )p.

Such an invertible subsheaf F is called a (possibly singular) invariant foliation
on (X , v). If ω is a local generator of F around p then we have two cases:

the 1-form induced by ω on the tangent space TX ,p at p is identically zero.
We say that the foliation is singular at p.

Otherwise, the kernel is a one-dimensional subspace of TX ,p that is a line
at p. We say that the foliation is called regular at p.
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Rational factors: sketch of proof

Let X be a complex algebraic variety, v a vector field on X and p ∈ X (C) an
hyperbolic and non-resonnant zero of v . Consider π : (X , v) 99K (C , vC ) a
rational factor of dimension one.

Step 1 Linearization: rational factor π  a D-submodule Fπ of Ω1
X ,η which

algebraically integrable.
Step 2 Extension: a D-submodule Fπ of Ω1

X ,η  an algebraically integrable
foliation Fπ on X invariant by Lv .

Step 3 Analytic coordinates at p: Choose analytic coordinates (x , y) around p
such that in this new coordinates, v is equal to its linear part.

Step 4 Local analysis of linear vector fields:

Lemma

Let v(x , y) = λx ∂
∂x

+ µy ∂
∂y

be a linear vector field with λ/µ /∈ Q and let F an
analytic foliation invariant by v defined on a neighborhood of 0.

If F is non singular at 0 then F is either the horizontal or vertical foliation.

If F is singular at 0 then F is linear in the same coordinates (x , y) with the same
eigenvectors than (the linear part of v).

Step 5 Conclusion: Use that Fπ is algebraically integrable to conclude that p is
contained in a complex invariant curve.
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A word about (non-rational) algebraic factors

Instead of a rational factor, we can start with an algebraic factor:

(X ′, v ′)

ρ

��

φ
// (C , vC )

(X , v)

where


ρ is dominant generically finite,
v ′ is the extension of v to X ′,

(C , vC , φ) is a rational factor of (X ′, v ′).

Up to extending X ′, we can assume that k(X ) ⊂ k(X ′) is a finite Galois
extension of fields with Galois group G .

From the rational factor (C , vC , φ), we still get an algebraically integrable
invariant foliation F on X ′.

Although the foliation F does not generally descend on X ′, we can kill the
action of G by considering

x ∈ X (C) 7→
⋃
σ∈G

σ(Fq) ⊂ TpX where q = ρ(x).

which associates to a generic point x of X , a set of ]G lines in TpX .
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A word about (non-rational) algebraic factors

Note that if V is a vector space of dimension two and ω1, . . . , ωn ∈ V ∗ are
linear form defining lines l1, . . . , lk ⊂ then:

l1 ∪ . . . ∪ lk = {v ∈ V ,Ω(v) = 0} where Ω =
k∏

i=1

ωi ∈ Symk(V ∗).

Definition

A k-web of foliations on X is an invertible subsheaf W of Symk(Ω1
X ) such that

Symk(Ω1
X )/W is torsion-free.

Sketch of proof for algebraic factors:

an algebraic factor of (X , v)  an invariant k-web W on (X , v) satisfying
certain algebraicity properties.

Let p denote the hyperbolic and non-resonnant zero of v . Distinguish
whether W is locally decomposable at p (in an analytic neighborhood) as
a product of k analytic foliations or not.
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Corps differentiels et flots géodésiques I: Orthogonalité aux constantes
pour les équations différentielles autonomes (arXiv:1612.06222).

Generic planar algebraic vector fields are disintegrated (arXiv:1905.09429).

Thank you for your attention!
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