Open Problems

Amaury Pouly
Université de Paris, IRIF, CNRS

27 january 2020

Context

I am interested in systems of polynomial differential equations:

$$
\left\{\begin{array} { l }
{ y _ { 1 } (0) = 0 } \\
{ y _ { 2 } (0) = 1 } \\
{ y _ { 3 } (0) = 0 }
\end{array} \quad \left\{\begin{array}{l}
y_{1}^{\prime}=y_{2} \\
y_{2}^{\prime}=-2 y_{3} y_{2}^{2} \\
y_{3}^{\prime}=1
\end{array}\right.\right.
$$

Context

I am interested in systems of polynomial differential equations:

$$
\left\{\begin{array} { l }
{ y _ { 1 } (0) = 0 } \\
{ y _ { 2 } (0) = 1 } \\
{ y _ { 3 } (0) = 0 }
\end{array} \quad \left\{\begin{array} { l }
{ y _ { 1 } ^ { \prime } = y _ { 2 } } \\
{ y _ { 2 } ^ { \prime } = - 2 y _ { 3 } y _ { 2 } ^ { 2 } } \\
{ y _ { 3 } ^ { \prime } = 1 }
\end{array} \leadsto \left\{\begin{array}{l}
y_{1}(t)=\arctan (t) \\
y_{2}(t)=\frac{1}{1+t^{2}} \\
y_{3}(t)=t
\end{array}\right.\right.\right.
$$

Context

I am interested in systems of polynomial differential equations:

$$
\left\{\begin{array} { l }
{ y _ { 1 } (0) = 0 } \\
{ y _ { 2 } (0) = 1 } \\
{ y _ { 3 } (0) = 0 }
\end{array} \quad \left\{\begin{array} { l }
{ y _ { 1 } ^ { \prime } = y _ { 2 } } \\
{ y _ { 2 } ^ { \prime } = - 2 y _ { 3 } y _ { 2 } ^ { 2 } } \\
{ y _ { 3 } ^ { \prime } = 1 }
\end{array} \leadsto \left\{\begin{array}{l}
y_{1}(t)=\arctan (t) \\
y_{2}(t)=\frac{1}{1+t^{2}} \\
y_{3}(t)=t
\end{array}\right.\right.\right.
$$

A polynomial initial value problem (pIVP) is a system of the form :

$$
y(0)=y_{0}, \quad y^{\prime}=p(y)
$$

where $y_{0} \in \mathbb{R}^{n}, p: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ vector of polynomial. By Cauchy-Lipschitz, there exists a unique maximal solution $y: I \rightarrow \mathbb{R}^{n}$.

Context

I am interested in systems of polynomial differential equations:

$$
\left\{\begin{array} { l }
{ y _ { 1 } (0) = 0 } \\
{ y _ { 2 } (0) = 1 } \\
{ y _ { 3 } (0) = 0 }
\end{array} \quad \left\{\begin{array} { l }
{ y _ { 1 } ^ { \prime } = y _ { 2 } } \\
{ y _ { 2 } ^ { \prime } = - 2 y _ { 3 } y _ { 2 } ^ { 2 } } \\
{ y _ { 3 } ^ { \prime } = 1 }
\end{array} \leadsto \left\{\begin{array}{l}
y_{1}(t)=\arctan (t) \\
y_{2}(t)=\frac{1}{1+t^{2}} \\
y_{3}(t)=t
\end{array}\right.\right.\right.
$$

A polynomial initial value problem (pIVP) is a system of the form :

$$
y(0)=y_{0}, \quad y^{\prime}=p(y)
$$

where $y_{0} \in \mathbb{R}^{n}, p: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ vector of polynomial. By Cauchy-Lipschitz, there exists a unique maximal solution $y: I \rightarrow \mathbb{R}^{n}$.

My interests :

- study the class of solutions (and its multivariate extensions),
- compute with them (model of computation, talk on Friday),
- understand the impact of coefficients
- study the series generated this way

Some facts

A function f is generable if there exists y_{0}, p, y such that $f=y_{1}$ and

$$
y(0)=y_{0}, \quad y^{\prime}=p(y)
$$

Some facts

A function f is generable if there exists y_{0}, p, y such that $f=y_{1}$ and

$$
y(0)=y_{0}, \quad y^{\prime}=p(y)
$$

The class of generable function is stable under

- addition, multiplication, division

Some facts

A function f is generable if there exists y_{0}, p, y such that $f=y_{1}$ and

$$
y(0)=y_{0}, \quad y^{\prime}=p(y)
$$

The class of generable function is stable under

- addition, multiplication, division
- composition, integration, differentiation

Some facts

A function f is generable if there exists y_{0}, p, y such that $f=y_{1}$ and

$$
y(0)=y_{0}, \quad y^{\prime}=p(y)
$$

The class of generable function is stable under

- addition, multiplication, division
- composition, integration, differentiation
- solving ODE : $y^{\prime}=f(y)$ with f generable

Some facts

A function f is generable if there exists y_{0}, p, y such that $f=y_{1}$ and

$$
y(0)=y_{0}, \quad y^{\prime}=p(y)
$$

The class of generable function is stable under

- addition, multiplication, division
- composition, integration, differentiation
- solving ODE : $y^{\prime}=f(y)$ with f generable
- inverse : g such that $g(f(x))=x$

Some facts

A function f is generable if there exists y_{0}, p, y such that $f=y_{1}$ and

$$
y(0)=y_{0}, \quad y^{\prime}=p(y)
$$

The class of generable function is stable under

- addition, multiplication, division
- composition, integration, differentiation
- solving ODE : $y^{\prime}=f(y)$ with f generable
- inverse : g such that $g(f(x))=x$

Examples:

- algebraic functions
- essentially all "elementary functions"
- holonomic/D-finite (small subtlety here)

Some facts

A function f is generable if there exists y_{0}, p, y such that $f=y_{1}$ and

$$
y(0)=y_{0}, \quad y^{\prime}=p(y)
$$

The class of generable function is stable under

- addition, multiplication, division
- composition, integration, differentiation
- solving ODE : $y^{\prime}=f(y)$ with f generable
- inverse : g such that $g(f(x))=x$

Examples:

- algebraic functions
- essentially all "elementary functions"
- holonomic/D-finite (small subtlety here)

Non-examples:

- non-analytic functions
- Riemann Γ and ζ

Coefficients

Observation:

- arctan generable with coefficients in \mathbb{Q}
- $\pi=4 \arctan (1)$

Coefficients

Observation:

- arctan generable with coefficients in \mathbb{Q}
- $\pi=4 \arctan (1)$

Define the function
$F: S \mapsto\{f(x): x \in S, f$ generable with coefficients in $S\}$.
Previously, $\pi \in F(\mathbb{Q})$.

Coefficients

Observation:

- arctan generable with coefficients in \mathbb{Q}
- $\pi=4 \arctan (1)$

Define the function

$$
F: S \mapsto\{f(x): x \in S, f \text { generable with coefficients in } S\}
$$

Previously, $\pi \in F(\mathbb{Q})$. Define

$$
\mathbb{R}_{G}=\bigcup_{n \geqslant 0} F^{[n]}(\mathbb{Q})
$$

Coefficients

Observation:

- arctan generable with coefficients in \mathbb{Q}
- $\pi=4 \arctan (1)$

Define the function

$$
F: S \mapsto\{f(x): x \in S, f \text { generable with coefficients in } S\} .
$$

Previously, $\pi \in F(\mathbb{Q})$. Define

$$
\mathbb{R}_{G}=\bigcup_{n \geqslant 0} F^{[n]}(\mathbb{Q})
$$

Theorem

\mathbb{R}_{G} is a field and $\mathbb{Q} \subset \mathbb{R}_{G} \subseteq \mathbb{R}_{P}$ where \mathbb{R}_{P} is the set of polynomial-time computable reals.

Coefficients

Observation:

- arctan generable with coefficients in \mathbb{Q}
- $\pi=4 \arctan (1)$

Define the function

$$
F: S \mapsto\{f(x): x \in S, f \text { generable with coefficients in } S\}
$$

Previously, $\pi \in F(\mathbb{Q})$. Define

$$
\mathbb{R}_{G}=\bigcup_{n \geqslant 0} F^{[n]}(\mathbb{Q})
$$

Theorem

\mathbb{R}_{G} is a field and $\mathbb{Q} \subset \mathbb{R}_{G} \subseteq \mathbb{R}_{P}$ where \mathbb{R}_{P} is the set of polynomial-time computable reals.

Open problem

What is \mathbb{R}_{G} ? Is it the case that $\mathbb{R}_{G}=\mathbb{R}_{P}$?

Series/Sequences

A function f is generable if there exists y_{0}, p, y such that $f=y_{1}$ and

$$
y(0)=y_{0}, \quad y^{\prime}=p(y)
$$

Series/Sequences

A function f is generable if there exists y_{0}, p, y such that $f=y_{1}$ and

$$
y(0)=y_{0}, \quad y^{\prime}=p(y)
$$

A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is generable if $f(x)=\sum_{n \in \mathbb{N}} a_{n} x^{n}$ is generable.

Series/Sequences

A function f is generable if there exists y_{0}, p, y such that $f=y_{1}$ and

$$
y(0)=y_{0}, \quad y^{\prime}=p(y)
$$

A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is generable if $f(x)=\sum_{n \in \mathbb{N}} a_{n} x^{n}$ is generable. Stable under:

- sums, Cauchy product, Hadamard product, composition
- integration, differentiation
- many more probably

Series/Sequences

A function f is generable if there exists y_{0}, p, y such that $f=y_{1}$ and

$$
y(0)=y_{0}, \quad y^{\prime}=p(y)
$$

A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is generable if $f(x)=\sum_{n \in \mathbb{N}} a_{n} x^{n}$ is generable. Stable under:

- sums, Cauchy product, Hadamard product, composition
- integration, differentiation
- many more probably

Probably contains :

- holonomic sequences/P-recursive sequences
- $u_{n+k}=P\left(u_{n}, \cdots, u_{n+k-1}\right)$ where P polynomial

Series/Sequences

A function f is generable if there exists y_{0}, p, y such that $f=y_{1}$ and

$$
y(0)=y_{0}, \quad y^{\prime}=p(y)
$$

A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is generable if $f(x)=\sum_{n \in \mathbb{N}} a_{n} x^{n}$ is generable. Stable under:

- sums, Cauchy product, Hadamard product, composition
- integration, differentiation
- many more probably

Probably contains :

- holonomic sequences/P-recursive sequences
- $u_{n+k}=P\left(u_{n}, \cdots, u_{n+k-1}\right)$ where P polynomial

Open problem

- Given a Turing-machine, is its sequence of configurations generable?

Series/Sequences

A function f is generable if there exists y_{0}, p, y such that $f=y_{1}$ and

$$
y(0)=y_{0}, \quad y^{\prime}=p(y)
$$

A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is generable if $f(x)=\sum_{n \in \mathbb{N}} a_{n} x^{n}$ is generable. Stable under:

- sums, Cauchy product, Hadamard product, composition
- integration, differentiation
- many more probably

Probably contains :

- holonomic sequences/P-recursive sequences
- $u_{n+k}=P\left(u_{n}, \cdots, u_{n+k-1}\right)$ where P polynomial

Open problem

- Given a Turing-machine, is its sequence of configurations generable?
- If $\left(a_{n}\right)_{n} \in \mathbb{Z}^{\mathbb{N}}$ generable, is $\left(a_{n} \bmod 2\right)_{n}$ generable? Or $\left(\operatorname{sgn} a_{n}\right)_{n}$?

Something of that nature needed to encode conputations.

