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My interests :
» study the class of solutions (and its multivariate extensions),
» compute with them (model of computation, talk on Friday),
» understand the impact of coefficients

» study the series generated this way
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The class of generable function is stable under

P addition, multiplication, division

» composition, integration, differentiation

» solving ODE : y’ = f(y) with f generable

> inverse : g such that g(f(x)) = x
Examples :

» algebraic functions

> essentially all “elementary functions”

» holonomic/D-finite (small subtlety here)
Non-examples :

> non-analytic functions

» Riemann I and ¢
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Define the function
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Previously, 7 € F(Q). Define
R = J FIN(Q).

n>0

Theorem

Rg is a field and Q C Rg € Rp where Rp is the set of polynomial-time
computable reals.

Open problem

What is R¢ ? Is it the case that Rg = Rp ?
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A sequence (ap)nen is generable if f(x) = ,cn anx” is generable.

Stable under :

» sums, Cauchy product, Hadamard product, composition
> integration, differentiation
> many more probably
Probably contains :
» holonomic sequences/P-recursive sequences
» upyk = P(up, -+, upyk—1) where P polynomial

Open problem

> Given a Turing-machine, is its sequence of configurations generable ?

> If (an)n € ZN generable, is (a, mod 2), generable? Or (sgn a,),?
Something of that nature needed to encode conputations.



