Solving difference equations in sequences

Michael Wibmer
Graz University of Technology
Joint with Gleb Pogudin and Thomas Scanlon

DART X

FШF
Der Wissenschaftsfonds.

February 10, 2019, New York

Table of Contents

Old results

New results

Systems of algebraic difference equations

$$
\begin{gathered}
\sigma^{5}(y) \sigma^{4}(z)^{2}-\sigma^{4}(y)^{2} \sigma^{4}(z)^{2}+\sigma^{2}(y) z^{3}-\sigma(y)^{2} z^{3}+\sigma^{4}(z)^{4}+z^{5}=0 \\
\sigma(z)-2 y z=0
\end{gathered}
$$

Systems of algebraic difference equations

$$
\begin{gathered}
\sigma^{5}(y) \sigma^{4}(z)^{2}-\sigma^{4}(y)^{2} \sigma^{4}(z)^{2}+\sigma^{2}(y) z^{3}-\sigma(y)^{2} z^{3}+\sigma^{4}(z)^{4}+z^{5}=0 \\
\sigma(z)-2 y z=0
\end{gathered}
$$

Solution: $(y, z)=(\cos (x), \sin (x)), \quad \sigma(f(x))=f(2 x)$.

$$
\sigma(z)-2 y z=0 \leftrightarrow \sin (2 x)-2 \sin (x) \cos (x)=0
$$

Systems of algebraic difference equations

$$
\begin{gathered}
\sigma^{5}(y) \sigma^{4}(z)^{2}-\sigma^{4}(y)^{2} \sigma^{4}(z)^{2}+\sigma^{2}(y) z^{3}-\sigma(y)^{2} z^{3}+\sigma^{4}(z)^{4}+z^{5}=0 \\
\sigma(z)-2 y z=0
\end{gathered}
$$

Systems of algebraic difference equations

$$
\begin{gathered}
\sigma^{5}(y) \sigma^{4}(z)^{2}-\sigma^{4}(y)^{2} \sigma^{4}(z)^{2}+\sigma^{2}(y) z^{3}-\sigma(y)^{2} z^{3}+\sigma^{4}(z)^{4}+z^{5}=0 \\
\sigma(z)-2 y z=0
\end{gathered}
$$

$$
y_{n+5} z_{n+4}^{2}-y_{n+4}^{2} z_{n+4}^{2}+y_{n+2} z_{n}^{3}-y_{n+1}^{2} z_{n}^{3}+z_{n+4}^{4}+z_{n}^{5}=0
$$

$$
z_{n+1}-2 y_{n} z_{n}=0
$$

Classical difference algebra (J. Ritt and R. Cohn)

$k \sigma$-field

$$
F \subseteq k\{y\}=k\left[y_{1}, \ldots, y_{n}, \sigma\left(y_{1}\right), \ldots, \sigma\left(y_{n}\right), \sigma^{2}\left(y_{1}\right), \ldots, \sigma^{2}\left(y_{n}\right), \ldots\right]
$$

Classical difference algebra (J. Ritt and R. Cohn)

$k \sigma$-field

$$
F \subseteq k\{y\}=k\left[y_{1}, \ldots, y_{n}, \sigma\left(y_{1}\right), \ldots, \sigma\left(y_{n}\right), \sigma^{2}\left(y_{1}\right), \ldots, \sigma^{2}\left(y_{n}\right), \ldots\right]
$$

$$
\mathbb{I}(\mathbb{V}(F)):=\left\{\begin{array}{l|l}
f \in k\{y\} & \begin{array}{l}
f \text { vanishes on all solutions of } F \\
\text { in all } \sigma \text {-field extension of of } k
\end{array}
\end{array}\right\}
$$

Classical difference algebra (J. Ritt and R. Cohn)

$k \sigma$-field

$$
F \subseteq k\{y\}=k\left[y_{1}, \ldots, y_{n}, \sigma\left(y_{1}\right), \ldots, \sigma\left(y_{n}\right), \sigma^{2}\left(y_{1}\right), \ldots, \sigma^{2}\left(y_{n}\right), \ldots\right]
$$

$$
\mathbb{I}(\mathbb{V}(F)):=\left\{\begin{array}{l|l}
f \in k\{y\} & \begin{array}{l}
f \text { vanishes on all solutions of } F \\
\text { in all } \sigma \text {-field extension of of } k
\end{array}
\end{array}\right\}
$$

Strong Nullstellensatz

$$
\mathbb{I}(\mathbb{V}(F))=\{F\}
$$

Classical difference algebra (J. Ritt and R. Cohn)

$k \sigma$-field

$$
F \subseteq k\{y\}=k\left[y_{1}, \ldots, y_{n}, \sigma\left(y_{1}\right), \ldots, \sigma\left(y_{n}\right), \sigma^{2}\left(y_{1}\right), \ldots, \sigma^{2}\left(y_{n}\right), \ldots\right]
$$

$$
\mathbb{I}(\mathbb{V}(F)):=\left\{\begin{array}{l|l}
f \in k\{y\} & \begin{array}{l}
f \text { vanishes on all solutions of } F \\
\text { in all } \sigma \text {-field extension of of } k
\end{array}
\end{array}\right\}
$$

Strong Nullstellensatz

$$
\mathbb{I}(\mathbb{V}(F))=\{F\}
$$

$\{F\}=$ smallest perfect σ-ideal of $k\{y\}$ that contains F
I perfect: $f \sigma(f) \in I \Rightarrow f \in I$.

Classical difference algebra (J. Ritt and R. Cohn)

$k \sigma$-field
$F \subseteq k\{y\}=k\left[y_{1}, \ldots, y_{n}, \sigma\left(y_{1}\right), \ldots, \sigma\left(y_{n}\right), \sigma^{2}\left(y_{1}\right), \ldots, \sigma^{2}\left(y_{n}\right), \ldots\right]$

Classical difference algebra (J. Ritt and R. Cohn)

$k \sigma$-field
$F \subseteq k\{y\}=k\left[y_{1}, \ldots, y_{n}, \sigma\left(y_{1}\right), \ldots, \sigma\left(y_{n}\right), \sigma^{2}\left(y_{1}\right), \ldots, \sigma^{2}\left(y_{n}\right), \ldots\right]$

Weak Nullstellensatz
F has a solution in some σ-field extension of $k \Leftrightarrow 1 \notin\{F\}$.

Classical difference algebra (J. Ritt and R. Cohn)

$k \sigma$-field
$F \subseteq k\{y\}=k\left[y_{1}, \ldots, y_{n}, \sigma\left(y_{1}\right), \ldots, \sigma\left(y_{n}\right), \sigma^{2}\left(y_{1}\right), \ldots, \sigma^{2}\left(y_{n}\right), \ldots\right]$

Weak Nullstellensatz

F has a solution in some σ-field extension of $k \Leftrightarrow 1 \notin\{F\}$.

Decidability

Given $f \in k\{y\}$ and $F \subseteq k\{y\}$ finite, there exists an algorithm that decides if $f \in\{F\}$. In particular, the question if F has a solution in some σ-field extension of k is decidable.

Classical difference algebra (J. Ritt and R. Cohn)

$k \sigma$-field
$F \subseteq k\{y\}=k\left[y_{1}, \ldots, y_{n}, \sigma\left(y_{1}\right), \ldots, \sigma\left(y_{n}\right), \sigma^{2}\left(y_{1}\right), \ldots, \sigma^{2}\left(y_{n}\right), \ldots\right]$

Weak Nullstellensatz

F has a solution in some σ-field extension of $k \Leftrightarrow 1 \notin\{F\}$.

Decidability

Given $f \in k\{y\}$ and $F \subseteq k\{y\}$ finite, there exists an algorithm that decides if $f \in\{F\}$. In particular, the question if F has a solution in some σ-field extension of k is decidable.

σ-fields versus sequences

$$
\begin{gathered}
\sigma(y)+y=1 \\
y \sigma(y)=0
\end{gathered}
$$

has no solution in a σ-field.

σ-fields versus sequences

$$
\begin{gathered}
\sigma(y)+y=1 \\
y \sigma(y)=0
\end{gathered}
$$

has no solution in a σ-field.

$$
\begin{gathered}
y_{n+1}+y_{n}=1 \\
y_{n} y_{n+1}=0
\end{gathered}
$$

has solution $\left(y_{n}\right)_{n \in \mathbb{N}}=(0,1,0,1,0,1, \ldots)$.

Solutions in sequences (A. Ovchinnikov, G. Pogudin, T. Scanlon, 2020)
k algebraically closed σ-field, $F \subseteq k\{y\}=k\left\{y_{1}, \ldots, y_{n}\right\}$ finite

$$
\begin{aligned}
& \sigma: k^{\mathbb{N}} \rightarrow k^{\mathbb{N}}, \sigma\left(\left(a_{n}\right)_{n \in \mathbb{N}}\right)=\left(a_{n+1}\right)_{n \in \mathbb{N}} \\
& k \rightarrow k^{\mathbb{N}}, \lambda \mapsto\left(\sigma^{n}(\lambda)\right)_{n \in \mathbb{N}} .
\end{aligned}
$$

Solutions in sequences (A. Ovchinnikov, G. Pogudin, T. Scanlon, 2020)
k algebraically closed σ-field, $F \subseteq k\{y\}=k\left\{y_{1}, \ldots, y_{n}\right\}$ finite

$$
\begin{aligned}
& \sigma: k^{\mathbb{N}} \rightarrow k^{\mathbb{N}}, \sigma\left(\left(a_{n}\right)_{n \in \mathbb{N}}\right)=\left(a_{n+1}\right)_{n \in \mathbb{N}} \\
& k \rightarrow k^{\mathbb{N}}, \lambda \mapsto\left(\sigma^{n}(\lambda)\right)_{n \in \mathbb{N}} .
\end{aligned}
$$

Weak Nullstellensatz

F has a solution in $k^{\mathbb{N}} \Leftrightarrow 1 \notin[F]$.

$$
[F]=\left(F, \sigma(F), \sigma^{2}(F), \ldots\right)
$$

Solutions in sequences (A. Ovchinnikov, G. Pogudin, T.

 Scanlon, 2020)k algebraically closed σ-field, $F \subseteq k\{y\}=k\left\{y_{1}, \ldots, y_{n}\right\}$ finite
$\sigma: k^{\mathbb{N}} \rightarrow k^{\mathbb{N}}, \sigma\left(\left(a_{n}\right)_{n \in \mathbb{N}}\right)=\left(a_{n+1}\right)_{n \in \mathbb{N}}$
$k \rightarrow k^{\mathbb{N}}, \lambda \mapsto\left(\sigma^{n}(\lambda)\right)_{n \in \mathbb{N}}$.

Weak Nullstellensatz

F has a solution in $k^{\mathbb{N}} \Leftrightarrow 1 \notin[F]$.
$[F]=\left(F, \sigma(F), \sigma^{2}(F), \ldots\right)$

Decidability

Given $F \subseteq k\{y\}$ finite, there exists an algorithm that decides if $1 \in[F]$. In particular, the question if F has a solution in $k^{\mathbb{N}}$ is decidable.

Table of Contents

Old results

New results

Strong Nullstellensatz

k algebraically closed σ-field, $F \subseteq k\{y\}=k\left\{y_{1}, \ldots, y_{n}\right\}$
$\mathcal{I}(\mathcal{V}(F))=\left\{f \in k\{y\} \mid f\right.$ vanishes on all solutions of F in $\left.k^{\mathbb{N}}\right\}$

Strong Nullstellensatz

k algebraically closed σ-field, $F \subseteq k\{y\}=k\left\{y_{1}, \ldots, y_{n}\right\}$

$$
\mathcal{I}(\mathcal{V}(F))=\left\{f \in k\{y\} \mid f \text { vanishes on all solutions of } F \text { in } k^{\mathbb{N}}\right\}
$$

Strong Nullstellensatz

If k is uncoutable then

$$
\mathcal{I}(\mathcal{V}(F))=\sqrt{[F]} .
$$

Strong Nullstellensatz

k algebraically closed σ-field, $F \subseteq k\{y\}=k\left\{y_{1}, \ldots, y_{n}\right\}$

$$
\mathcal{I}(\mathcal{V}(F))=\left\{f \in k\{y\} \mid f \text { vanishes on all solutions of } F \text { in } k^{\mathbb{N}}\right\}
$$

Strong Nullstellensatz

If k is uncoutable then

$$
\mathcal{I}(\mathcal{V}(F))=\sqrt{[F]} .
$$

Counterexample

The strong Nullstellensatz fails for $k=\overline{\mathbb{Q}}$.

Strong Nullstellensatz for arbitrary k

$$
k \sigma \text {-field, } F \subseteq k\{y\}=k\left\{y_{1}, \ldots, y_{n}\right\}
$$

$$
I(V(F)):=\left\{f \in k\{y\} \left\lvert\, \begin{array}{c|c}
f \text { vanishes on all solutions of } F \text { in } K^{\mathbb{N}} \\
\text { for all field extensions } K \text { of } k
\end{array}\right.\right\}
$$

Strong Nullstellensatz for arbitrary k

$$
\begin{aligned}
& k \sigma \text {-field, } F \subseteq k\{y\}=k\left\{y_{1}, \ldots, y_{n}\right\} \\
& I(V(F)):=\left\{f \in k\{y\} \left\lvert\, \begin{array}{c}
f \text { vanishes on all solutions of } F \text { in } K^{\mathbb{N}} \\
\text { for all field extensions } K \text { of } k
\end{array}\right.\right\}
\end{aligned}
$$

Strong Nullstellensatz

$$
I(V(F))=\sqrt{[F]}
$$

Decidability

Recall: Decidability (Cohn)

Given $f \in k\{y\}$ and $F \subseteq k\{y\}$ finite, there exists an algorithm that decides if $f \in\{F\}$.

Decidability

Recall: Decidability (Cohn)

Given $f \in k\{y\}$ and $F \subseteq k\{y\}$ finite, there exists an algorithm that decides if $f \in\{F\}$.

Recall: Decidability (Ovchinnikov, Pogudin, Scanlon)
Given $F \subseteq k\{y\}$ finite, there exists an algorithm that decides if $1 \in \sqrt{[F]}$.

Decidability

Recall: Decidability (Cohn)

Given $f \in k\{y\}$ and $F \subseteq k\{y\}$ finite, there exists an algorithm that decides if $f \in\{F\}$.

Recall: Decidability (Ovchinnikov, Pogudin, Scanlon)

Given $F \subseteq k\{y\}$ finite, there exists an algorithm that decides if $1 \in \sqrt{[F]}$.

Undecidability

Given $f \in k\{y\}$ and $F \subseteq k\{y\}$ finite, the problem

$$
\text { " } f \in \sqrt{[F]} ? "
$$

is undecidable.

More undecidability

Recall: Decidability (Ovchinnikov, Pogudin, Scanlon)

Given $F \subseteq \mathbb{C}\{y\}$ finite, there exists an algorithm that decides if F has a solution in $\mathbb{C}^{\mathbb{N}}$.

More undecidability

Recall: Decidability (Ovchinnikov, Pogudin, Scanlon)

Given $F \subseteq \mathbb{C}\{y\}$ finite, there exists an algorithm that decides if F has a solution in $\mathbb{C}^{\mathbb{N}}$.

Undecidability

Given $F \subseteq \mathbb{R}\{y\}$ finite, the problem
"Does F have a solution in $\mathbb{R}^{\mathbb{N}}$?"
is undecidable.

Partial difference equation

$$
\begin{gathered}
\sigma_{1}\left(\sigma_{2}(y)\right)-\sigma_{1}(y)-\sigma_{2}(y)+y-y^{2} z=0 \\
\sigma_{1}\left(\sigma_{2}^{2}(z)\right) \sigma_{1}(y)+z=0
\end{gathered}
$$

Partial difference equation

$$
\begin{gathered}
\sigma_{1}\left(\sigma_{2}(y)\right)-\sigma_{1}(y)-\sigma_{2}(y)+y-y^{2} z=0 \\
\sigma_{1}\left(\sigma_{2}^{2}(z)\right) \sigma_{1}(y)+z=0 \\
y_{m+1, n+1}-y_{m+1, n}-y_{m, n+1}+y_{m, n}-y_{m, n}^{2} z_{m, n}=0 \\
z_{m+1, n+2} y_{m+1, n}+z_{m, n}=0
\end{gathered}
$$

Partial difference equation

$$
\begin{gathered}
\sigma_{1}\left(\sigma_{2}(y)\right)-\sigma_{1}(y)-\sigma_{2}(y)+y-y^{2} z=0 \\
\sigma_{1}\left(\sigma_{2}^{2}(z)\right) \sigma_{1}(y)+z=0 \\
y_{m+1, n+1}-y_{m+1, n}-y_{m, n+1}+y_{m, n}-y_{m, n}^{2} z_{m, n}=0 \\
z_{m+1, n+2} y_{m+1, n}+z_{m, n}=0
\end{gathered}
$$

Undecidability

Given

$$
F \subseteq k\left[\sigma_{1}^{\alpha_{1}}\left(\sigma_{2}^{\beta_{1}}\left(y_{1}\right)\right), \ldots, \sigma_{1}^{\alpha_{n}}\left(\sigma_{2}^{\beta_{n}}\left(y_{n}\right)\right) \mid \alpha_{1}, \beta_{1}, \ldots, \alpha_{n}, \beta_{n} \geq 0\right]
$$

finite, the problem
is undecidable.
"Does F have a solution in $k^{\mathbb{N}^{2}}$?"

The heart of the proof: Counterexample and undecidability of $f \in \sqrt{[F]}$

Lemma

$p: \mathbb{A}_{k}^{n} \rightarrow \mathbb{A}_{k}^{n}$ piecewise polynomial map, $V \subseteq \mathbb{A}_{k}^{n}$ closed. Then \exists $r \geq 1$ and $F \subseteq k\left\{y_{1}, \ldots, y_{r}\right\}$ finite and $f \in k\left\{y_{1}, \ldots, y_{n}\right\}$ such that the following are equivalent:

- There exists a sequence $\left(\mathbf{x}_{i}\right)_{i \in \mathbb{N}}=\left(x_{1, i}, \ldots, x_{n, i}\right)_{n \in \mathbb{N}} \in\left(k^{\mathbb{N}}\right)^{n}$ with $\mathbf{x}_{0} \in V, \mathbf{x}_{i+1}=p\left(\mathbf{x}_{i}\right)$ and $x_{n, i} \neq 0$ for $i \geq 1$.
- $f \notin \sqrt{[F]}$.

Thank you!

Reference:

- G. Pogudin, T. Scanlon and M. Wibmer, Solving difference equations in sequences: Universality and Undecidability, arXiv:1909.03239

