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Abstract

I We study algebraic structures underlying Volterra integral operators,
in particular the operator identities satisfied by such operators.

I While the operator satisfies the Rota-Baxter identity when the kernel
of the operator only depends on the phantom (dummy) variable, we
show that when the kernel is more generally separable, the operator
satisfies a generalized Reynolds identity which, in its original form,
can be tracked back to the famous study of Reynolds in fluid
mechanics in the late 19th century.

I Furthermore a generalized differential operator arises which
combined with the generalized Reynolds operator provides an
algebraic context to study Volterra operators and equations.

I Notions of operated algebra and matching Rota-Baxter algebras are
applied to give a general context of integral equations and to explore
the linearity of integral equations.
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Volterra integral equations
I Let C(V ) denote the algebra of continuous functions on an Euclidean

space. For a given K (x , t) ∈ C(R2) and a ∈ R, the integral operator

PK ,a : C(R)→ C(R),

PK ,a(f )(x) =

∫ x

a
K (x , t)f (t) dt ,

is called a Volterra (integral) operator with kernel K (x , t).
I If the upper limit x is fixed, then the operator is called a Fredholm

operator.
I An equation in which all integral operators are Volterra operators is

called a Volterra integral equations.
I A kernel K (x , t) is called separable if it can be decomposed as

K (x , t) = k(x)h(t) for some functions k and h in C(R). If k(x) is a
constant, that is K (x , t) is a function of the dummy variable t only,
then K is called phantom.
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Examples

I The Volterra’s population model for a species in a closed system
describes the population u(t) of a species when exposed to both
crowding and toxicity; it can be written as an integral equation of the
form

u(t) = u0 + a
∫ t

0
u(x) dx − b

∫ t

0
u(x)2 dx − c

∫ t

0
u(x)

∫ x

0
u(y) dy dx ,

where a,b, and c are the birth rate, crowding coefficient, and toxicity
coefficient, respectively, and u0 is the initial population.

I The Thomas-Fermi equation describes the potential y(x) of an atom
in terms of the radius x , and can be written as an integral equation of
the form

y(x) = 1 + Bx +

∫ x

0

∫ t

0
s−1/2y(s)3/2 ds dt ,

where B is a known parameter.
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Matching Rota-Baxter algebras

I For any λ ∈ k(= R), a Rota-Baxter algebra of weight λ is a k-algebra
A together with a linear operator P : A→ A satisfying

P(f )P(g) = P(fP(g)) + P(P(f )g) + λP(fg), ∀f ,g ∈ A.

I Fix Ω a non-empty set and let λΩ := (λω)ω∈Ω be a family from k
parameterized by Ω. An Ω-matching Rota-Baxter algebra of weight
λΩ, or simply a matching Rota-Baxter algebra is a k-algebra A
together with a family of linear operators PΩ := {Pω |ω ∈ Ω}, where
Pω : A→ A for all ω ∈ Ω, satisfying

Pα(f )Pβ(g) = Pα(fPβ(g))+Pβ(Pα(f )g)+λβ(Pα(fg)),∀f ,g ∈ A, α, β ∈ Ω.

If λω = 0,∀ω ∈ Ω, the matching Rota-Baxter algebra is said to have
weight 0.
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Volterra operators with phantom kernels

I A kernel K (x , t) is called phantom if it only dependent on t .
I For any K ,H ∈ C(R), PK (•) :=

∫ x
a K (t) • dt and PH satisfy the

matching Rota-Baxter identity

PK (f )PH(g) = PK (fPH(g)) + PH(PK (f )g),∀f ,g ∈ C(R).

I For a family Kω, ω ∈ Ω of phantom kernels, C(R) with the Volterra
operators PKω ,a is a matching Rota-Baxter algebra.
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Volterra operators with general kernels
I If the kernel of a Volterra operator is not phantom, then the operator

is almost never a Rota-Baxter operator.
I Example Let K (x , t) = x and f = g = 1, then

PK (f )(x) PK (g)(x) =

(∫ x

a
xdt
)2

= x2(x − a)2.

PK (PK (f )g)(x) + PK (fPK (g))(x) = 2x
(

x3 − a3

3
− a

x2 − a2

2

)
.

Thus PK (f )PK (g) 6= PK (PK (f )g) + PK (fPK (g)).
I Theorem Suppose K (x , t) = k(x)h(t) with k ∈ C1(R) and h ∈ C(R),

and suppose k is not constant on any open interval of R. Consider
the Volterra operator PK : C(R)→ C(R)

PK (f )(x) :=

∫ x

a
k(x)h(t)f (t)dt .

For given f ,g ∈ C(R), the action of PK on f ,g satisfies the
Rota-Baxter identity if and only if both sides of the equation is zero.
In particular, PK (f )PK (g) = 0.
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Generalized Reynolds operators
I A Reynolds algebra is a k-algebra A together with a linear operator

R : A→ A satisfying

R(f )R(g) = R(fR(g)) + R(R(f )g)− R(R(f )R(g)), ∀f ,g ∈ A.

Then R is called a Reynolds operator.
I Let K (x , t) = k(x)h(t) with k ∈ C1(R) and h ∈ C(R) both zero free.

Define

DK : C1(R)→ C(R),DK (f ) :=
1

h(x)

(
f (x)

k(x)

)′
.

Then DK satisfies the operator identity

DK (fg) = DK (f )g + fDK (g)− DK (1)fg, ∀f ,g ∈ C1(R).

Further the Volterra operator

PK : C(R)→ C1(R),PK (f ) := k(x)

∫ x

a
h(t)f (t)dt

satisfies the operator identity

PK (f )PK (g) = PK (PK (f )g) + PK (fPK (g))− PK (DK (1)PK (f )PK (g))
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Special cases and examples

I Since DK (1) = − k ′(x)
h(x)k(x)2 , DK (1) = 0 if and only if k(x) is a nonzero

constant. Thus when K is separable, the Volterra operator PK is a
Rota-Baxter operator (of weight zero) if and only if K is phantom.

I For K (x , t) = e−x+t = et/ex , we have DK (1) = 1. So the operator
PK : C((1,∞))→ C1((1,∞)) satisfies the identity

PK (f )PK (g) = PK (PK (f )g) + PK (fPK (g))− PK (PK (f )PK (g)).

This is the defining identity of the Reynolds operator arising from
turbulence theory in fluid mechanics and interested to R. Birkhoff
and G.-C. Rota many years ago.

I Next: set up an algebraic framework for integral equations
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What to expect for integral algebra
I In general and loose language, an algebraic integral equation is the

annihilation of an “integral” algebraic expression Φ(Y ,PΩ,A)
consisting of several ingredients and restrictions:

I a set Y of variables or unknown functions to be solved from the
integral equation;

I a set PΩ = {Pω |ω ∈ Ω} of integral operators in various forms, set
apart by

1. the lower or upper limits (each being fixed or variable, and in the later
case, independent variables or intermediate variables).

2. the kernels for the integral operators, as functions in both the dummy
variables of the integrals and the independent variables for the integral
equation;

Special cases are the Volterra operators and the Fredholm operators;
I a set A of “free term” or coefficient functions which can appear both

inside and outside of the integrals. Some of them can be constant,
treated as parameters;

I These ingredients can be put together only by the algebraic
operations together with the action of the integral operators.
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Motivations for algebraic integral equations I

I To motivate our general framework to interpret integral equations, let
us first recall how we formulate algebraic equations. An algebraic
equation consists several ingredients:

I a set X of variables;
I a set of “free term” elements from a prefixed ring or an algebra A.
I The ingredients can be put together by only the algebraic operations.
I The algebraic framework for algebraic equation is the polynomial

algebra, as a realization of the free (commutative) algebra.
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Motivations for algebraic integral equations II
I As another motivation which is more closely related to our situation,

let us consider differential equations, consisting of ingredients and
conditions:

I a set X of unknown functions;
I a set of differential operators;
I a set of “free term” or coefficient functions from a differential algebra

(A,d0);
I The ingredients can be put together by only the algebraic operations,

together with the differential operators.
I Note that here A carries its own derivation d0. Elements in A are

called coefficient functions because they are the coefficients in the
differential equation.

I We know that a differential equation with coefficients in a differential
algebra (A,d0) is an element in the differential polynomial algebra
A{X}, as a realization of the relative free (commutative) differential
algebra on (A,d0).
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Operated algebras
I From this viewpoint, an integral equation should be an element of a

suitably defined “integral polynomial algebra”. In view of the freeness
of the polynomial algebra k[X ] and the differential polynomial algebra
A{X}, this sought-after “integral polynomial algebra” should be the
free commutative “integral” algebra on a set X of unknown functions.

I Thus we should find a suitable notion of integral algebra which, in
contrast to differential algebras, can have different definitions
depending on the nature of the integral operators. To be versatile, we
begin by putting no conditions on the integral operators except its
linearity, in which case, such an algebra is called an operated
algebra, which can be traced back to Kurosh who called it an
Ω-algebra.

I Free operated algebras were constructed in terms of bracketed
words, rooted trees and Motzkin paths in [Gop,GGZy], with constant
coefficient.

I Here we extend the construction to free operated algebras with
coefficients in a base operated algebra, similar to the differential
polynomial algebra on a differential ring.
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Free operated algebras by rooted trees

I Let X and Ω be disjoint sets. Let F(X ,Ω) denote the set of vertex
decorated rooted trees (resp. forests) with the property that elements
of only Ω can decorate the internal vertices, namely vertices which
are not leafs. The unique vertex of the tree • is regarded as a leaf
vertex. In other words, elements of X can only be used to decorate
the leaf vertices. Of course, some of the leaf vertices can also be
decorated by elements from Ω.

I For example,

qα, q x , qq
α
β , qq

α
x , q∨qq αβγ

, q∨qq αxγ
, q∨qq αxy

, q∨qq qαββ
γ

, q∨qq qαβx
γ

, q∨qq qαβy
x

,

x , y ,∈ X , α, β, γ ∈ Ω, are in F(X ,Ω) whereas, the following are not in
F(X ,Ω):

qq xα , qq xy , q∨qq x
βα
, q∨qq qαxβ

γ

, x , y ∈ X , α, β, γ ∈ Ω.
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Free relative matching Rota-Baxter algebras I
I Let Ω be a nonempty set and (A, αΩ) an Ω-operated matching

Rota-Baxter algebra (MRBA). An (A, αΩ)-MRBA is an Ω-operated
MRBA (R,PΩ) together with a homomorphism (A, αΩ) −→ (R,PΩ) of
MRBAs.

I Let V be a k-module, e.g., V = kX . We use the notations

A := SA(V ) := A⊗ S(V ), A+ := S+
A (V ) := A⊗ S+(V ).

So A = A⊕ A+, that is, SA(V ) = A⊕ S+
A (V ).

I For a k-module U, denote the colored tensor power

U⊗Ωn := k{1⊗ω1 u1 ⊗ω2 u2 ⊗ω3 · · · ⊗ωn un |ui ∈ U, ωi ∈ Ω,2 ≤ i ≤ n}.

I Let
ShΩ(A+) := ⊕n≥0(A+)⊗Ωn

denote the Ω-shuffle product algebra on A+, with the convention that
A⊗0 = k. Then take the tensor product algebra

Xrel
Ω (A,V ) := A⊗ Sh(A+) := ⊕n≥0A⊗Ω (A+)⊗Ωn
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Free relative matching Rota-Baxter algebras II

I We note the direct sum

A⊗Ω (A+)⊗Ωn = (A⊗Ω (A+)⊗Ωn)⊕ (A+)⊗Ω(n+1).

I So a pure tensor u in A⊗Ω (A+)⊗Ωn is of the form
u = u0 ⊗ω1 · · · ⊗ωn un where u0 is either in A or in A+.

I We accordingly define
Pω(u) := PΩ,A,V (u)

:=


αω(u0)⊗ω1 u1 ⊗ω2 · · · ⊗ωn un
−1⊗ω αω1(u0)u1 ⊗ω2 u2 ⊗ω3 · · · ⊗ωn un, u0 ∈ A,
1⊗ω u0 ⊗ω1 u1 ⊗ω2 · · · ⊗ωn un, u0 ∈ A+.

I Theorem Let (A, αΩ) be a matching Rota-Baxter algebra and let V be
a k-module. The free (A, αΩ)-MRBA on V of weight 0 is Xrel

Ω (A,V ).

16



Operator linearity of phantom Volterra equations
I An integral equation is called operator linear if it does not contain any

products of Volterra integral operators. It is called linear if it is
operator linear and the unknown functions appear linearly in the
equation.

I Theorem Any Volterra integral equation with phantom kernels is
equivalent to one that is operator linear. Further, each of the (nested)
integrals acts on variable functions.

I The Thomas-Fermi equation

y(x) = 1 + Bx +

∫ x

0

∫ t

0
s−1/2y(s)3/2 ds dt

is already operator linear. But there is no variable function between
the outer and inner integrals. Integration by parts gives∫ x

0

∫ t

0
s−1/2y(s)3/2ds dt = x

∫ x

0
s−1/2y(s)3/2ds −

∫ x

0
t1/2y(t)3/2dt .
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Free generalized Reynolds algebras

I In order to give an algebraic framework for Volterra equations with
separable kernels, we construct free generalized Reynolds algebras,
with possible multiple operators.

I The difficulty lies with the cyclic property of the Reynolds identity:

R(f )R(g) = R(fR(g)) + R(R(f )g)− R(R(f )R(g)).

So there is no finite closed formula for this rewriting system.
I So we introduced complete operated and Reynolds algebras, and

constructed free objects in the corresponding categories.
I Then can hope to prove a pro-operator linear property of Volterra

equations with separable kernels. (work in progress).
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