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Strong minimality in context

I Let X be the solution set of an ODE of order n over
differential field K . X is strongly minimal if

Whenever y ∈ X and K1 is any differential field ex-
tending K , then td(y , y ′, . . . , y (n−1)/K1) = 0 or n.

I Strong minimality is itself a functional transcendence result,
but one thing it is very useful for is proving further results.

I Model theorists have developed a detailed classification of
strongly minimal sets which can be usefully applied.
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Painlevé equations

Émile Picard

I Picard: What differential
equations of the form
y ′′ = F (y , y ′, t) have the property
that the movable singularities of
any solution are poles? (Painlevé
property)

I Movable pole: 1
t−c . Movable

branch point: log(t − c)

I Solutions of linear ODEs have no
movable branch points.
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property)

I Movable pole: 1
t−c . Movable

branch point: log(t − c)

I Solutions of linear ODEs have no
movable branch points.

Freitag UIC
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Painlevé equations

Henri Poincaré

I Poincaré and Fuchs: Any
nonlinear order one ODE with (PP)
can be transformed into Riccati
equation or a Weierstrass equation.
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Painlevé equations

Lazarus Fuchs

I Poincaré and Fuchs: Any
nonlinear order one ODE with (PP)
can be transformed into Riccati
equation or a Weierstrass equation.

I Hadamard wrote that he hoped
someone would extend this work,
because it would show that:
“... continuing the work of Henri
Poincaré was not beyond human
capacity.”
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Painlevé equations

Paul Painlevé

I Poincaré and Fuchs: Any
nonlinear order one ODE with (PP)
can be transformed into Riccati
equation or a Weierstrass equation.

I Painlevé, Gambier, Fuchs: Any
order two equation whose solutions
have the (PP) can be transformed
by Möbius transformation to ones
coming from one of 50 families of
equations.

I Of these, 44 are expressible in
terms of previously known special
functions (e.g. elliptic functions,
solutions of linear ODEs)
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by Möbius transformation to ones
coming from one of 50 families of
equations.

I Of these, 44 are expressible in
terms of previously known special
functions (e.g. elliptic functions,
solutions of linear ODEs)

Freitag UIC



Painlevé equations

General problem: classify the (differential) algebraic relations over
C(t) between solutions of Painlevé equations.

PI : d2y
dt2 = 6y2 + t

PII (α) : d2y
dt2 = 2y3 + ty + α

PIII (α, β, γ, δ) : d2y
dt2 = 1

y

(
dy
dt

)2
− 1

t
dy
dt + 1

t (αy2 + β) + γy3 + δ
y

PIV (α, β) : d2y
dt2 = 1

2y

(
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)2
+ 3

2y
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y
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(
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)(
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)
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Painlevé equations

General problem: classify the (differential) algebraic relations over
C(t) between solutions of Painlevé equations.

I That is, given y1, . . . , yn each a generic solution to some
Painlevé equation, what are the possible algebraic relations
between y1, y

′
1, . . . , yn, y

′
n?

I Strong minimality plays a key roles in our approach to this
question.

I Before telling you about what is currently known, and what
we currently conjecture, I want to quickly explain a (new)
proof of the strong minimality of P6 with generic coefficients.

Freitag UIC



Painlevé six

d2x

dt2
=

1

2

(
1

x
+

1

x − 1
+

1
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)(
x ′
)2 −

(
1

t
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x ′
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+
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)
For the elliptic curve given by the projective closure of
y2 = x(x − 1)(x − t), the Manin map is given by:

µ(x , y) = − y

(x − t)2
+

(
2t(t − 1)

x ′

y

)′
+

t(t − 1)x ′

x − t)y
.
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Painlevé six

After simplifying, the Kernel of µ is given by

d2x
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This should look familiar, since it is P6 with parameters (0, 0, 0, 1
2 ).

Hrushovski showed that this equation is strongly minimal (and also
more general ones).
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Painlevé six

The family P6 has a series of birational transformations acting on
it:

P6
g∗−−−−→ P6y y

C4 g−−−−→ C4

where g is any element in the group generated by

s1(v1, v2, v3, v4) := (v2, v1, v3, v4)

s2(v1, v2, v3, v4) := (v1, v3, v2, v4)

s3(v1, v2, v3, v4) := (v1, v2, v4, v3)

s4(v1, v2, v3, v4) := (v1, v2,−v4,−v3)

s5(v1, v2, v3, v4) := (−v2 + 1,−v1 + 1, v3, v4)
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Painlevé six

I Suppose that P6(α, β, γ, δ) is not strongly minimal for
(α, β, γ, δ) generic over Q.

I This is equivalent to having (non-algebraic) solutions
d1, . . . dn to P6(α, β, γ, δ), for some n ∈ N such that

tdQ(α,β,γ,δ,t)(Q(α, β, γ, δ, t)〈d1, . . . , dn〉) = 2n − 1.

I So there is a differential polynomial with coefficients in
Q(α, β, γ, δ, t) which defines a co-order one differential
subvariety V(α,β,γ,δ,t) of P6(α, β, γ, δ)n.

I But then tp((α, β, γ, δ)/Q(t) implies the the existence of such
a variety V(α,β,γ,δ,t).
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Painlevé six

I Definable subsets of C4 are given by Q-Zariski-constructible
subsets of A4.

I By compactness, there must be some Zariski open subset U of
A4 over Q such that for any (a, b, c , d) ∈ U, V (a, b, c , d , t) is
a co-order 1 subvariety of P6(a, b, c , d)n.

I This open set U hits the orbit of the Manin Kernel.

I Strong minimality rules out the possibility of such a variety
V (a, b, c , d , t).

I Thus P6(α, β, γ, δ) for generic (α, β, γ, δ) must be strongly
minimal.
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Three parts of parts of the classification

General problem: classify the (differential) algebraic relations
over C(t) between solutions of Painlevé equations.

1. Algebraic relations between solutions of a single fixed Painlevé
equation. Very complete data for equations with generic
coefficients - P6 was completed just last year by Nagloo. For
nongeneric coefficients, little is known in general.

2. Algebraic relations between solutions of equations from
different families. Very complete data when one of the
equations from one of the families has generic coefficients
(Freitag). Essentially no other cases known.

3. Algebraic relations between solutions of equations in the same
family (different coefficients). Very complete data for one of
the equations having generic coefficients. P6 only completed
this year (Freitag and Nagloo).

I Progress on one of the three areas usually leads to progress in
the others.
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Algebraic relations between generic solutions of Painleve
equations

Current conjecture:

The algebraic relations between generic so-
lutions of Painlevé equations are given by

I Backlund transformations.

I Algebraic relations within the orbit of the Manin
kernel in P6.

I Isogenies of elliptic curves between fibers in the orbit
of the Manin Kernel in P6.

In particular, there are no algebraic relations between pairs of
equations from different families.
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Part II: around Fuchsian functions
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General Problem: The bi-algebraicity problem

I X ,Y algebraic varieties2 over C and let

φ : X → Y

be a complex analytic map which is not algebraic.

I For most algebraic subvarieties X0 ⊂ X , φ(X0) is not
algebraic.

I Pairs of algebraic subvarieties (X0,Y0) with X0 ⊂ X and
Y0 ⊂ Y such that φ(X0) = Y0 are called bi-algebraic for φ.

I Casale, F. Nagloo solved this problem for genus zero Fuchsian
functions (more on this in a moment).

I Our approach uses strong minimality in an essential way.

2More generally an open subset of an algebraic variety.
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Automorphic functions of Fuchsian groups

I Let Γ be a genus zero Fuchsian group of the first kind - a
discrete, finitely generated subgroup Γ ≤ PSL2(R).

I H is the upper half plane.

I Γ acts on H. (
a b
c d

)
· x =

ax + b

cx + d

I Take z ∈ H, consider the orbit Γz .

I Γ is discrete → no limit points in H.

I There can be limit points of the orbit in R ∪ {∞}.
I First kind = every point in R ∪ {∞} is a limit point.

I Assume Γ\H is genus zero.
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Automorphic functions

I The function jΓ(t) satisfies a nonlinear third order differential
equation:

S d
dt

(y) + (y ′)2 · RΓ(y) = 0 (?)

where RΓ is a rational function and

S d
dt

(x) =

(
x ′′

x ′

)′
− 1

2

(
x ′′

x ′

)2

is the Schwarzian derivative.

I For instance, the j-function satisfies the differential equation:

S d
dt

(y) +
y2 − 1968y + 2654208

2y2(y − 1728)2
(y ′)2 = 0
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Painlevé, irreducibility, and the Japanese school

S d
dt

(y) + (y ′)2 · RΓ(y) = 0 (?)

Conjecture: (1895) In his famous “Lecons de Stockholm”,
Painlevé conjectured that over any differential field extension K of
C(t),

tr .degK (y , y ′, y ′′) = 0 or 3.
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Progress on Painlevé’s conjecture

I Painlevé (1902-1903) eventually claimed proofs of the strong
minimality various differential equations using results from the
thesis of Drach (1898).

Drach’s thesis (despite
highly favorable reviews by
Picard and Darboux) was
flawed.

I Painlevé and Vessiot along with Cartan
played a role in pointing out the flaws of
Drach’s thesis in late 1898.

I Painlevé used the Drach theory to “prove”
the strong minimality of P1 and the
automorphic equations.

I He thought that Drach’s theory (a kind of
nonlinear differential Galois theory) would
soon be put on a firm foundation.

I People chose sides - Liouville: the first
Painlevé equation is not strongly minimal.
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Progress on Painlevé’s conjecture

Theorem
(Nishioka 1991) When K = C(t),

tr .degK (y , y ′, y ′′) = 0 or 3.

Theorem
(Casale-F.-Nagloo ≥ 2019) For any K,

tr .degK (y , y ′, y ′′) = 0 or 3.

Question: are there “soft” generalizations of the result?

Freitag UIC



Progress on Painlevé’s conjecture
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Progress on Painlevé’s conjecture

I Let Γ be a Fuchsian Group of first kind and not necessarily of
genus zero.

I If the compactification CΓ of the quotient Γ \H is defined
over Qalg , then CΓ is called a Belyi surface.

Theorem
(Belyi 1980) Let Γ be a Fuchsian Group of first kind.

1. If Γ is cocompact, then CΓ is a Belyi surface if and only if Γ is
a finite index subgroup of a cocompact Fuchsian triangle
group Γ(k,l ,m).

2. If Γ is not cocompact, then CΓ is a Belyi surface if and only if
one of the following holds

(i) Γ is a finite index subgroup of Γ(2,3,∞); or
(ii) Γ is a finite index subgroup of Γ(2,∞,∞); or
(iii) Γ is a finite index subgroup of Γ(∞,∞,∞).
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Progress on Painlevé’s conjecture

I The uniformizing functions of triangle groups fit into the
framework of (Casale, F. Nagloo).

I It is not hard to see that if Γ1 is finite index in Γ2, then jΓ1

and jΓ2 are interalgebraic over C(t).

I Strong minimality (and problems like ALW) are not affected
by interalgebraicity,

Theorem
Let Γ be a Fuchsian Group of first kind and assume that CΓ is a
Belyi surface. Then the set defined by the Schwarzian equation for
Γ is strongly minimal and geometrically trivial. Furthermore the
Ax-Lindemann-Weierstrass Theorem holds for Γ.
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I The uniformizing functions of triangle groups fit into the
framework of (Casale, F. Nagloo).

I It is not hard to see that if Γ1 is finite index in Γ2, then jΓ1

and jΓ2 are interalgebraic over C(t).

I Strong minimality (and problems like ALW) are not affected
by interalgebraicity,

Theorem
Let Γ be a Fuchsian Group of first kind and assume that CΓ is a
Belyi surface. Then the set defined by the Schwarzian equation for
Γ is strongly minimal and geometrically trivial. Furthermore the
Ax-Lindemann-Weierstrass Theorem holds for Γ.

Freitag UIC



Another soft target

I ∆(α, β, γ) = 〈a, b, c | a2 = b2 = c2 = (ab)α = (bc)β =
(ca)γ = 1〉. with 1

l + 1
m + 1

n < 1.

I ∆(α, β, γ) is a Fuchsian group.

I The uniformizing functions of triangle groups satisfy
Schwarzian differential equations:

St(y) + (y ′)2R(y) = 0. (?)

R(y) =
1

2

(
1− β−2

y2
+

1− γ−2

(y − 1)2
+
β−2 + γ−2 − α−2 − 1

y(y − 1)

)
.

I What about picking arbitrary α, β, γ in C3?
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Proposition

Let us assume that equation (?) with R = R4 with complex
parameters (α, β, γ) is not strongly minimal. One of the following
holds:

1. At least one of the four complex numbers, α−1 + β−1 + γ−1,
−α−1 + β−1 + γ−1, α−1 − β−1 + γ−1, α−1 + β−1 − γ−1 is an
odd integer.

2. The quantities α−1 or −α−1, β−1 or −β−1 and γ−1 or −γ−1

take, in an arbitrary order, values given in the following table:

±α−1 ±β−1 ±γ−1

1 1
2 + ` 1

2 + m arbitrary

2 1
2 + ` 1

2 + m 1
2 + n

3 2
3 + ` 1

3 + m 1
4 + n `+ m + n even

4 1
2 + ` 1

3 + m 1
4 + n

5 2
3 + ` 1

4 + m 1
4 + n `+ m + n even

6 1
2 + ` 1

3 + m 1
5 + n

7 2
5 + ` 1

3 + m 1
3 + n `+ m + n even

8 2
3 + ` 1

5 + m 1
5 + n `+ m + n even

9 1
2 + ` 2

5 + m 1
5 + n `+ m + n even

10 3
5 + ` 1

3 + m 1
5 + n `+ m + n even

11 2
5 + ` 2

5 + m 2
5 + n `+ m + n even

12 2
3 + ` 1

3 + m 1
5 + n `+ m + n even

13 4
5 + ` 1

5 + m 1
5 + n `+ m + n even

14 1
2 + ` 2

5 + m 1
3 + n `+ m + n even

15 3
5 + ` 2

5 + m 1
3 + n `+ m + n even

where `, m, n stand for arbitrary integer numbers.
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What’s next?

I Many of you know - the other main approach to ALW-type
theorems is via o-minimality. Are there settings in which the
combination of these methods would be fruitful?

I What about more general transcendence results?
Ax-Schanuel?

I What about generalizations to higher dimensional spaces and
discrete groups?
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