Generalized Hermite Reduction, Creative Telescoping, and Definite Integration of D-Finite Functions

Frédéric Chyzak

February 10–14, 2020, DART X (New York City, USA) The 10th international workshop on Differential Algebra and Related Topics

Based on joint work with A. Bostan, P. Lairez, and B. Salvy

Parametrized Definite Integrals

$$\int_{0}^{+\infty} x J_{1}(ax) I_{1}(ax) Y_{0}(x) K_{0}(x) dx = -\frac{\ln(1-a^{4})}{2\pi a^{2}} \quad \text{(Glasser \& Montaldi, 1994)}$$

$$\int_{0}^{\infty} \int_{0}^{\infty} J_{1}(x) J_{1}(y) J_{2}(c\sqrt{xy}) \frac{dx dy}{e^{x+y}} \quad \text{(has a 2nd-order linear ODE)}$$

$$\frac{1}{2\pi i} \oint \frac{(1+2xy+4y^{2})\exp\left(\frac{4x^{2}y^{2}}{1+4y^{2}}\right)}{y^{n+1}(1+4y^{2})^{\frac{3}{2}}} dy = \frac{H_{n}(x)}{\lfloor n/2 \rfloor!} \quad \text{(Doetsch, 1930)}$$

$$\int_{-1}^{+1} \frac{e^{-px} T_{n}(x)}{\sqrt{1-x^{2}}} dx = (-1)^{n} \pi I_{n}(p)$$

$$\int_{0}^{+\infty} x e^{-px^{2}} J_{n}(bx) I_{n}(cx) dx = \frac{1}{2p} \exp\left(\frac{c^{2}-b^{2}}{4p}\right) J_{n}\left(\frac{bc}{2p}\right)$$

$$\frac{1}{(2i\pi)^{2}} \oint \oint \frac{f(s, t/s, x/t)}{st} ds dt = 1 + 6 \cdot \int_{0}^{x} \frac{2F_{1}\left(\frac{1/3, 2/3}{2}\left|\frac{27w(2-3w)}{(1-4w)(1-64w)}\right)}{(1-4w)(1-64w)} dw$$
where $f(s, t, u) = \frac{(1-s)(1-t)(1-u)}{1-2(s+t+u)+3(st+tu+us)-4stu}$
(Bostan, Chyzak, van Hoeij, Pech, 2011)

Differentiating under the Integral Sign

Zeilberger's derivation (1982) of a classical integral

Given
$$f(b, x) = e^{-x^2} \cos 2bx$$
, find $F(b) = \int_{-\infty}^{+\infty} f(b, x) \, dx = ?$.

$$\frac{dF}{db}(b) = \int_{-\infty}^{+\infty} -2xe^{-x^2}\sin 2bx \, dx = \\ \left[e^{-x^2}\sin 2bx\right]_{x=-\infty}^{x=+\infty} + \int_{-\infty}^{+\infty} -2be^{-x^2}\cos 2bx \, dx = -2b F(b).$$

Differentiating under the Integral Sign

Zeilberger's derivation (1982) of a classical integral

Given
$$f(b, x) = e^{-x^2} \cos 2bx$$
, find $F(b) = \int_{-\infty}^{+\infty} f(b, x) dx = ?$.

$$\frac{dF}{db}(b) = \int_{-\infty}^{+\infty} -2xe^{-x^2}\sin 2bx \, dx = \\ \left[e^{-x^2}\sin 2bx\right]_{x=-\infty}^{x=+\infty} + \int_{-\infty}^{+\infty} -2be^{-x^2}\cos 2bx \, dx = -2b F(b).$$

Continuous form of "Creative Telescoping":

$$\frac{df}{db}(b,x) + 2bf(b,x) = \frac{dg}{dx}(b,x) \quad \text{for} \quad g(b,x) = -\frac{1}{2x}\frac{df}{db}(b,x).$$

After integration over x from $-\infty$ to $+\infty$:

$$\frac{dF}{db}(b) + 2bF(b) = \left[\frac{dg}{dx}(b,x)\right]_{x=-\infty}^{x=+\infty} = 0 - 0 = 0$$

Hermite Reduction (1872)

$$EA - mFA' = P \implies \int \frac{P}{A^{m+1}} = \frac{F}{A^m} + \int \frac{E + F'}{A^m}$$

Cela posé, l'intégrale $\int \frac{P\,dx}{A^{n+1}}$ se traitera comme il suit : nous effectuerons sur A et sa dérivée A' les opérations du plus grand commun diviseur, de manière à obtenir deux polynômes G et H, satisfaisant à la condition

AG - A'H = 1.

Nous formerons ensuite deux sèries de fonctions entieres :

 $V_{4}, V_{1}, \dots, V_{n-1}, P_{1}, P_{2}, \dots, P_{n}$

par ces relations, où les polynômes Q, Q,, Q2,... sont entièrement arbitraires, savoir :

$$\alpha V_i = HP - AQ_i$$

 $(\alpha - 1)V_i = HP_i - AQ_i$
 $(\alpha - 2)V_i = HP_i - AQ_i$
 $V_{n-i} = HP_{n-i} - AQ_{n-i}$,
 $P_i = GP - A'Q - V'_i$
 $P_i = GP - A'Q - V'_i$

Pa = 6Paul - A' One - V'

Maintenant je prouverai qu'en faisant

$$V := V_s + \Lambda V_s + \Lambda^2 V_s + \ldots + \Lambda^{n-1} V_{n-1}$$

 $J = P_n$

on a l'égalité

$$\frac{P}{A^{u+i}} = \frac{U}{A} + \left(\frac{V}{A^{u}}\right)';$$

d'où

$$\int \frac{\mathbf{P}\,dx}{\mathbf{A}^{n+1}} = \int \frac{\mathbf{U}\,dx}{\mathbf{A}} + \frac{\mathbf{V}}{\mathbf{A}^{n}},$$

de sorte que $\frac{V}{\Lambda^a}$ est la partie algébrique de l'intégrale proposée, et $\int \frac{U dx}{\Lambda}$ la partie transcendante.

A cet effet, j'élimine G et H entre les trois égalités

$$\begin{split} \mathbf{A}\mathbf{G} &- \mathbf{A}' \mathbf{H} = \mathbf{r}, \\ (\alpha - i) \mathbf{V}_i = \mathbf{H} \mathbf{P}_i - \mathbf{A} \mathbf{Q}_i, \\ \mathbf{P}_{i+i} = \mathbf{G} \mathbf{P}_i - \mathbf{A}' \mathbf{Q}_i - \mathbf{V}_i', \end{split}$$

ce qui donne

 $\mathbf{AP}_{i+i} = \mathbf{P}_i + (\alpha - i) \mathbf{A}' \mathbf{V}_i - \mathbf{AV}'_i.$

Or on peut écrire cette relation de la manière suivante :

$$\frac{\mathbf{P}_i}{\mathbf{A}^{n-i+1}} - \frac{\mathbf{P}_{i+1}}{\mathbf{A}^{n-1}} = \left(\frac{\mathbf{V}_i}{\mathbf{A}^{n-1}}\right)'$$

En supposant ensuite $i = 0, 1, 2, ..., \alpha - 1$ et ajoutant membre à membre, nous en conclurons

$$\frac{P}{A^{s+i}} - \frac{P_s}{A} = \left(\frac{V_s}{A^s} + \frac{V_i}{A^{s-i}} + \dots + \frac{V_{a-i}}{A} \right)',$$

ce qui fait bien voir qu'on satisfait à la condition proposée

$$\frac{P}{A^{n+1}} = \frac{U}{A} + \left(\frac{V}{A^n}\right)'$$

par les valeurs

$$\begin{split} V &= V_t + \Lambda V_1 + \Lambda^s V_1 + \ldots + \Lambda^{s-s} V_{s-s}, \\ U &= P_s, \end{split}$$

comme il s'agissait de le démontrer.

Ostrogradsky–Hermite Reduction

$$EA - mFA' = P \implies \int \frac{P}{A^{m+1}} = \frac{F}{A^m} + \int \frac{E + F'}{A^m}$$

Cela posé, l'intégrale $\int \frac{P\,dx}{A^{n+1}}$ se traitera comme il suit : nous effectuerons sur Λ et sa dérivée Λ' les opérations du plus grand commun diviseur, de manière à obtenir deux polynômes G et H, satisfaisant à la condition

AG - A'H = 1.

Nous formerons ensuite deux sèries de fonctions entieres :

 $V_{4}, V_{1}, \dots, V_{n-1}, P_{1}, P_{2}, \dots, P_{n}$

par ces relations, où les polynômes Q, Q,, Q2,... sont entièrement arbitraires, savoir :

$$\begin{split} & \alpha v_i = nP - AQ_i \\ & (\alpha - i) V_i = HP_i - AQ_i, \\ & (\alpha - a) V_i = HP_i - AQ_i, \\ & & \\ & & \\ & & \\ & & \\ & & V_{n-i} = HP_{n-i} - AQ_{n-i}, \\ & & P_i = GP - A'Q - V \end{split}$$

 $\mathbf{P}_{t} := \mathbf{G} \mathbf{P}_{t} - \mathbf{A}' \mathbf{Q}_{t} - \mathbf{V}_{t}',$

Pa = 6Paul - A' One - V'

Maintenant je prouverai qu'en faisant

$$V := V_s + \Lambda V_s + \Lambda^2 V_s + \ldots + \Lambda^{n-1} V_{n-1}$$

 $J = P_n$

on a l'égalité

$$\frac{P}{A^{u+1}} = \frac{U}{A} + \left(\frac{V}{A^{u}}\right)';$$

d'où

$$\int \frac{\mathbf{P} \, dx}{\mathbf{A}^{n+1}} = \int \frac{\mathbf{U} \, dx}{\mathbf{A}} + \frac{\mathbf{V}}{\mathbf{A}^n},$$

de sorte que $\frac{V}{\Lambda^a}$ est la partie algébrique de l'intégrale proposée, et $\int \frac{U dx}{\Lambda}$ la partie transcendante.

A cet effet, j'élimine G et H entre les trois égalités

$$\begin{split} \Lambda \mathbf{G} &- \mathbf{A}' \mathbf{H} = \mathbf{i}, \\ (\alpha - i) \mathbf{V}_i = \mathbf{H} \mathbf{P}_i - \Lambda \mathbf{Q}_i, \\ \mathbf{P}_{i+i} = \mathbf{G} \mathbf{P}_i - \mathbf{A}' \mathbf{Q}_i - \end{split}$$

v'..

ce qui donne

 $\mathbf{AP}_{i+i} = \mathbf{P}_i + (\alpha - i) \mathbf{A}' \mathbf{V}_i - \mathbf{AV}'_i$

Or on peut écrire cette relation de la manière suivante :

$$\frac{\mathbf{P}_i}{\mathbf{A}^{n-i+1}} - \frac{\mathbf{P}_{i+1}}{\mathbf{A}^{n-1}} = \left(\frac{\mathbf{V}_i}{\mathbf{A}^{n-1}}\right)'$$

En supposant ensuite $i = 0, 1, 2, ..., \alpha - 1$ et ajoutant membre à membre, nous en conclurons

$$\frac{P}{A^{s+i}} - \frac{P_s}{A} = \left(\frac{V_s}{A^s} + \frac{V_i}{A^{s-i}} + \dots + \frac{V_{a-i}}{A} \right)',$$

ce qui fait bien voir qu'on satisfait à la condition proposée

$$\frac{P}{A^{n+1}} \! = \! \frac{U}{A} + \left(\frac{V}{A^n} \right)' -$$

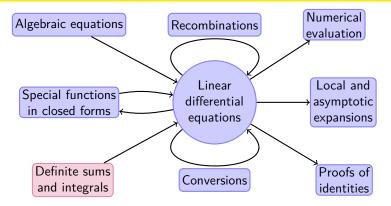
par les valeurs

$$\begin{split} V &= V_4 + \Lambda V_1 + \Lambda^2 V_2 + \ldots + \Lambda^{n-1} V_{n-1}, \\ U &= P_n, \end{split}$$

comme il s'agissait de le démontrer.

See also (Ostrogradsky, 1833, 1844/45).

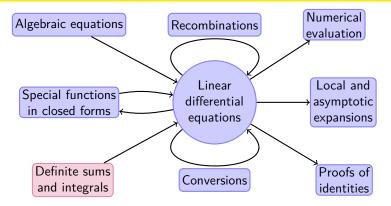
Linear Differential Equations as a Data Structure



Def: differentially finite functions (a.k.a. **D-finite**)

A function f(x) is D-finite if its derivatives f(x), f'(x), f''(x), ..., span a finite-dimensional vector space over $\mathbb{C}(x)$.

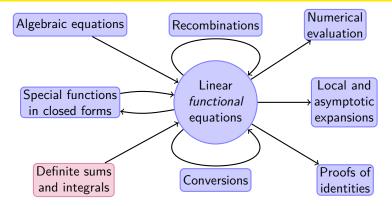
Linear Differential Equations as a Data Structure



Def: multivariate D-finite functions

A function f(x, y, z) is D-finite iff its derivatives $\frac{\partial^{i+j+k}f}{\partial_x^i \partial_y^j \partial_z^k}(x, y, z)$, $i, j, k \ge 0$, span a finite-dimensional vector space over $\mathbb{C}(x, y, z)$.

Linear Differential Equations as a Data Structure



Def: multivariate ∂ -finite functions

A function $f_{n,m}(x, y, z)$ is ∂ -finite iff a similar confinement holds for derivatives w.r.t. x, y, z, shifts w.r.t. n, m, etc.

Creative Telescoping for Sums and Integrals

$$U_n = \sum_{k=a}^b u_{n,k} = ?$$

Given a relation $a_r(n)u_{n+r,k} + \cdots + a_0(n)u_{n,k} = v_{n,k+1} - v_{n,k}$, summation leads by "telescoping" to

 $a_r(n)U_{n+r}+\cdots+a_0(n)U_n=v_{n,b+1}-v_{n,a}\stackrel{\text{often}}{=}0.$

$$U(t) = \int_a^b u(t, x) \, dx = ?$$

Given a relation $a_r(t)\frac{\partial^r u}{\partial t^r} + \dots + a_0(t)u = \frac{\partial}{\partial x}v(t,x)$, integrating leads by "telescoping" to $a_r(t)\frac{\partial^r U}{\partial t^r} + \dots + a_0(t)U = v(t,b) - v(t,a) \stackrel{\text{often}}{=} 0.$

Adapts easily to
$$U(t) = \sum_{k=a}^{b} u_k(t)$$
, $U_n = \int_a^b u_n(x) dx$, etc.

Generalized Hermite Reduction and the Integration of D-Finite Functions

Creative Telescoping for Sums and Integrals

$$U_n = \sum_{k=a}^b u_{n,k} = ?$$

Given a relation $a_r(n)u_{n+r,k} + \cdots + a_0(n)u_{n,k} = v_{n,k+1} - v_{n,k}$, summation leads by "telescoping" to

 $a_r(n)U_{n+r}+\cdots+a_0(n)U_n=v_{n,b+1}-v_{n,a}\stackrel{\text{often}}{=}0.$

$$U(t) = \int_{a}^{b} u(t, x) dx = ?$$

Given a relation $a_{r}(t) \frac{\partial^{r} u}{\partial t^{r}} + \dots + a_{0}(t)u = \frac{\partial}{\partial x}v(t, x)$, integrating leads
by "telescoping" to
 $a_{r}(t) \frac{\partial^{r} U}{\partial t^{r}} + \dots + a_{0}(t)U = v(t, b) - v(t, a) \stackrel{\text{often}}{=} 0.$

Telescoper

Certificate

History of Algorithms for Creative Telescoping

Algorithmic Literature (≤ 2018)

Fasennyer (1947, 1949): Rainville (1960): Verbaeten (1974): Gosper (1978): Lipshitz (1988): Zeilberger (1982, 1990, 1991): Takayama (1990): Almkvist, Zeilberger (1990): Wilf, Zeilberger (1992): Honregger (1992): Koornwinder (1993): Paule, Schorn (1995): Majewicz (1996): Risee (1996): Petkovšek, Wilf, Zeilberger (1996): Paule, Riese (1997): Wegschaider (1997): Chyzak, Salvy (1998): Sturmfels, Takayama (1998): Chyzak (2000): Saito, Sturmfels, Takayama (2000): Oaku, Takayama (2001): Le (2001): Riese (2001): Tefera (2000). 2002): Riese (2003): Apagodu, Zeilberger (2006): Kauers (2007): Chen W.Y.C., Sun (2009): Chyzak, Kauers, Salvy (2009): Koutschan (2010): Bostan, Chen S., Chyzak, Li (2010): Chen S., Kauers, Salvy (2013): Bostan, Chen S., Chyzak, Li, Xin (2013): Chen S., Huang, Kauers, Li (2015): Lairez (2016): Chen S., Kauers, Koutschan (2016): Huang (2016): Bostan, Dumont, Salvy (2016): Hoeven (2017): Chen S., Hoeij, Kauers, Koutschan (2018): Bostan, Chyzak, Lairez, Salvy (2018): Chen S., Koutschan (2016): Hoarg, Routsch, 2016): Hoarg, Routsch, Dumont, Salvy (2016): Hoeven (2017): Chen S., Hoeij, Kauers, Koutschan (2018): Bostan, Chyzak, Lairez, Salvy (2016): Bostan, Dumont, Salvy (2016): Hoeven (2017): Chen S., Hoeij, Kauers, Koutschan (2018): Bostan, Chyzak, Lairez, Salvy (2018): Chen S., Koutschan (2016): Bostan, Chyzak, Lirez, Salvy (2016): Bostan, Dumont, Salvy (2016): Hoeven (2017): Chen S., Hoeij, Kauers, Koutschan (2018): Bostan, Chyzak, Lairez, Salvy (2018): Charge Salvy (2016): Chen S., Kauers, Li (2016): Bostan, Chyzak, Lairez, Salvy (2016): Bostan, Dumont, Salvy (2016): Hoeven (2017): Chen S., Hoeij, Kauers, Koutschan (2018): Bostan, Chyzak, Lairez, Salvy (2018): Charge Salvy (2016): Chen Salvy (2018): Charge Salvy (2016): Chen Salvy (2018): Charge Salvy (2016): Charge

Applicable to

first-order vs higher-order equations; shift vs differential vs q-analogues vs mixed; ∂ -finite vs non- ∂ -finite; w/ vs wo/ certificate.

Approaches

- bound denominators + bound degrees + linear algebra
- bound denominators + solve functional equations
- elimination by skew Gröbner bases/skew resultants
- reduction of singularity order + linear algebra

History of Algorithms for Creative Telescoping

Algorithmic Literature (≤ 2018)

Fasennyer (1947, 1949): Rainville (1960): Verbaeten (1974): Gosper (1978): Lipshitz (1988): Seilberger (1982, 1990, 1991): Takayama (1990); Almkvist, Zeilberger (1990); Wilf, Zeilberger (1992); Honnegger (1992); Kornwinder (1993): Paule, Schorn (1995); Majewicz (1996); Neise (2003); Apagodu, Zeilberger (2006); Kalayama (2000); Oaku, Takayama (2001); Le (2001); Riese (2001); Tefera (2000, 2002); Riese (2003); Apagodu, Zeilberger (2006); Kauers (2007); Chen W.Y.C., Sun (2009); Chyzak, Kauers, Salvy (2009); Koutschan (2010); Bostan, Chen S., Chyzak, Li (2010); Chen S., Kauers, Salvy (2013); Bostan, Chen S., Chyzak, Li (2013); Chen S., Huang, Kauers, Li (2015); Lairez (2016); Chen S., Kauers, Kauers, Salvy (2016); Bostan, Chen S., Chyzak, Li, Xin (2013); Chen S., Huang, Kauers, Li (2015); Lairez (2016); Chen S., Kauers, Kauers, Kauver, Salvy (2016); Bostan, Dumont, Salvy (2016); Hoeven (2017); Chen S., Hoeij, Kauers, Koutschan (2016); Huang (2016); Bostan, Dumont, Salvy (2016); Hoeven (2017); Chen S., Hoeij, Kauers, Koutschan (2016); Hoeven (2017); Chen S., Hoeij, Kauers, Koutschan (2016); Bostan, Chargak, Lairez, Salvy (2016).

Applicable to

first-order vs higher-order equations; shift vs differential vs q-analogues vs mixed; ∂ -finite vs non- ∂ -finite; w/ vs wo/ certificate.

Approaches

- bound denominators + bound degrees + linear algebra
- bound denominators + solve functional equations
- elimination by skew Gröbner bases/skew resultants
- reduction of singularity order + linear algebra

History of Algorithms for Creative Telescoping

Algorithmic Literature (≤ 2018)

Fasennyer (1947, 1949): Rainville (1960): Verbaeten (1974): Gosper (1978): Lipshitz (1988): Zeilberger (1982, 1990, 1991): Takayama (1990); Almkvist, Zeilberger (1990); Wilf, Zeilberger (1992); Honnegger (1992); Kornwinder (1993): Paule, Schorn (1995); Majewicz (1996); Riese (1996); Riese (1996); Riese (1996); Paule, Riese (1997): Wegschaider (1997); Chyzak, Salvy (1998): Sturmfels, Takayama (1998): Chyzak (2000); Saito, Sturmfels, Takayama (2000); Oaku, Takayama (2001); Le (2001); Riese (2001). Tefera (2000), 2002); Riese (2003); Apagodu, Zeilberger (2006); Kauers (2007); Chen W.Y.C., Sun (2009); Chyzak, Kauers, Salvy (2009); Koutschan (2010); Bostan, Chen S., Chyzak, Li (2010); Chen S., Kauers, Salvy (2013); Chen S., Kauers, Salvy (2013); Bostan, Chen S., Chyzak, Li, Xin (2013); Chen S., Huang, Kauers, Li (2015); Lairez (2016); Chen S., Kauers, Kauers, Salvy (2016); Bostan, Dumont, Salvy (2016); Hoeven (2017); Chen S., Hoeij, Kauers, Koutschan (2016); Huang (2016); Bostan, Dumont, Salvy (2016); Hoeven (2017); Chen S., Hoeij, Kauers, Koutschan (2016); Huang (2016); Bostan, Dumont, Salvy (2016); Hoeven (2017); Chen S., Hoeij, Kauers, Koutschan (2016); Hoeven (2017); Chen S., Hoeij, Kauers, Koutschan (2016); Hostan, Chyzak, Lairez, Salvy (2016).

Applicable to

first-order vs higher-order equations; shift vs differential vs q-analogues vs mixed; ∂ -finite vs non- ∂ -finite; w/ vs wo/ certificate.

Approaches

- bound denominators + bound degrees + linear algebra
- bound denominators + solve functional equations
- elimination by skew Gröbner bases/skew resultants
- reduction of singularity order + linear algebra

Problem

Integrate
$$f(n, p, x) = \frac{\exp(-px)T_n(x)}{\sqrt{1-x^2}}$$
 w.r.t. x and prove the identity

$$F(n, p) := \int_{-1}^{+1} f(n, p, x) \, dx = (-1)^n \pi I_n(p).$$

Problem

Integrate
$$f(n, p, x) = \frac{\exp(-px)T_n(x)}{\sqrt{1-x^2}}$$
 w.r.t. x and prove the identity

$$F(n, p) := \int_{-1}^{+1} f(n, p, x) \, dx = (-1)^n \pi I_n(p).$$

Generating LFEs by algorithm for closure under product yields:

$$\begin{split} \frac{\partial f}{\partial p}(n, p, x) + xf(n, p, x) &= 0, \\ nf(n+1, p, x) + (1-x^2) \frac{\partial f}{\partial x}(n, p, x) \\ &+ (p(1-x^2) - (n+1)x)f(n, p, x) = 0, \\ (1-x^2) \frac{\partial^2 f}{\partial x^2}(n, p, x) - (2px^2 + 3x - 2p) \frac{\partial f}{\partial x}(n, p, x) \\ &- (p^2x^2 + 3px - n^2 - p^2 + 1)f(n, p, x) = 0. \end{split}$$

Problem

Integrate
$$f(n, p, x) = \frac{\exp(-px)T_n(x)}{\sqrt{1-x^2}}$$
 w.r.t. x and prove the identity

$$F(n, p) := \int_{-1}^{+1} f(n, p, x) dx = (-1)^n \pi I_n(p).$$

Compact notation using $f_n = f(n+1, p, x)$, $f_x = \frac{\partial f}{\partial x}(n, p, x)$, etc:

$$f_p + xf = 0,$$

$$nf_n + (1 - x^2)f_x + (p(1 - x^2) - (n + 1)x)f = 0,$$

$$(1 - x^2)f_{xx} - (2px^2 + 3x - 2p)f_x - (p^2x^2 + 3px - n^2 - p^2 + 1)f = 0.$$

Problem

Integrate
$$f(n, p, x) = \frac{\exp(-px)T_n(x)}{\sqrt{1-x^2}}$$
 w.r.t. x and prove the identity

$$F(n, p) := \int_{-1}^{+1} f(n, p, x) \, dx = (-1)^n \pi I_n(p).$$

Compact notation using $f_n = f(n+1, p, x)$, $f_x = \frac{\partial f}{\partial x}(n, p, x)$, etc:

$$f_{p} + xf = 0,$$

$$nf_{n} + (1 - x^{2})f_{x} + (p(1 - x^{2}) - (n + 1)x)f = 0,$$

$$(1 - x^{2})f_{xx} - (2px^{2} + 3x - 2p)f_{x} - (p^{2}x^{2} + 3px - n^{2} - p^{2} + 1)f = 0.$$

Observe: any $f_{n^{\mu}p^{\nu}x^{w}}$ is a $\mathbb{Q}(n, p, x)$ -linear combination of f_{x} and f.

Problem

Integrate
$$f(n, p, x) = \frac{\exp(-px)T_n(x)}{\sqrt{1-x^2}}$$
 w.r.t. x and prove the identity

$$F(n, p) := \int_{-1}^{+1} f(n, p, x) \, dx = (-1)^n \pi I_n(p).$$

Compact notation using $f_n = f(n+1, p, x)$, $f_x = \frac{\partial f}{\partial x}(n, p, x)$, etc:

$$f_{p} + xf = 0,$$

$$nf_{n} + (1 - x^{2})f_{x} + (p(1 - x^{2}) - (n + 1)x)f = 0,$$

$$(1 - x^{2})f_{xx} - (2px^{2} + 3x - 2p)f_{x} - (p^{2}x^{2} + 3px - n^{2} - p^{2} + 1)f = 0.$$

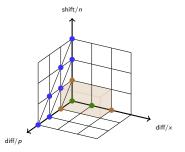
Goal: Find a telescoper such that there is a certificate satisfying $\sum_{u,v} c_{u,v}(n,p) f_{n^u p^v} = g_x \quad \text{for} \quad g = b(n,p,x) f_x + a(n,p,x) f.$

$$\int_{-1}^{+1} f(n, p, x) dx = F(n, p) = ?$$

$$f_p = (\dots) f_x + (\dots) f,$$

$$f_n = (\dots) f_x + (\dots) f,$$

$$f_{xx} = (\dots) f_x + (\dots) f.$$



For r = 1, 2, ... until a nonzero equation can be found, solve:

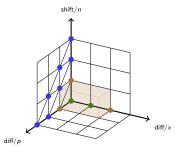
$$\sum_{u+v\leq r} c_{u,v}(n,p) f_{n^u p^v} = \frac{\partial}{\partial x} (b(n,p,x) f_x + a(n,p,x) f).$$

$$\int_{-1}^{+1} f(n, p, x) dx = F(n, p) = ?$$

$$f_p = (\dots) f_x + (\dots) f,$$

$$f_n = (\dots) f_x + (\dots) f,$$

$$f_{xx} = (\dots) f_x + (\dots) f.$$



For r = 1, 2, ... until a nonzero equation can be found, solve:

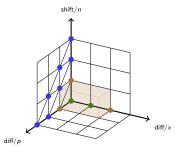
$$\sum_{u+v\leq r}(\ldots)c_{u,v}(n,p)f_x+(\ldots)c_{u,v}(n,p)f=\frac{\partial}{\partial x}(b(n,p,x)f_x+a(n,p,x)f).$$

$$\int_{-1}^{+1} f(n, p, x) dx = F(n, p) = ?$$

$$f_p = (\dots) f_x + (\dots) f,$$

$$f_n = (\dots) f_x + (\dots) f,$$

$$f_{xx} = (\dots) f_x + (\dots) f.$$



For r = 1, 2, ... until a nonzero equation can be found, solve:

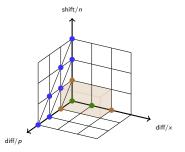
$$\sum_{u+v\leq r} (\ldots) c_{u,v} f_x + (\ldots) c_{u,v} f = ((\ldots)b + b_x + a) f_x + ((\ldots)b + a_x) f.$$

$$\int_{-1}^{+1} f(n, p, x) dx = F(n, p) = ?$$

$$f_p = (\dots) f_x + (\dots) f,$$

$$f_n = (\dots) f_x + (\dots) f,$$

$$f_{xx} = (\dots) f_x + (\dots) f.$$



For r = 1, 2, ... until a nonzero equation can be found, solve:

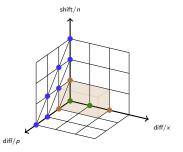
$$\sum_{u+v\leq r}(\ldots)c_{u,v}=(\ldots)b+b_x+a \text{ and } \sum_{u+v\leq r}(\ldots)c_{u,v}=(\ldots)b+a_x.$$

$$\int_{-1}^{+1} f(n, p, x) dx = F(n, p) = ?$$

$$f_{p} = (\dots) f_{x} + (\dots) f,$$

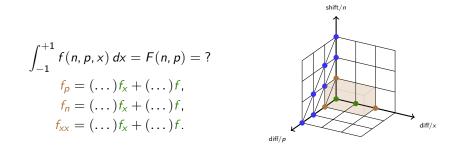
$$f_{n} = (\dots) f_{x} + (\dots) f,$$

$$f_{xx} = (\dots) f_{x} + (\dots) f.$$



For r = 1, 2, ... until a nonzero equation can be found:

- eliminating a yields: $b_{xx} + (\dots)b_x + (\dots)b = \sum_{u+v \leq r} (\dots)c_{u,v}$;
- a variant of Abramov's decision algorithm finds $b \in \mathbb{Q}(n, p, x)$ and the $c_{u,v} \in \mathbb{Q}(n, p)$; substituting next gives *a*.

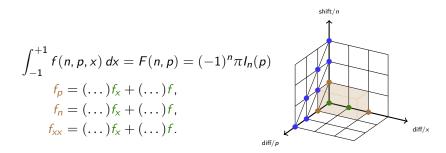


For the running example, the algorithm stops at r = 2 and outputs:

$$pf_{p} + pf_{n} - nf = g_{x} \text{ for } ng = (1 - x^{2})f_{x} + (p(1 - x^{2}) - x)f,$$

$$pf_{nn} - 2(n+1)f_{n} - pf = g_{x} \text{ for}$$

$$ng = 2x(1 - x^{2})f_{x} + 2((px + n)(1 - x^{2}) - x^{2})f.$$



Upon integrating and using properties of $T_n(\pm 1)$:

$$pF_p + pF_n - nF = [g]_{x=-1}^{x=+1} = 0,$$

$$pF_{nn} - 2(n+1)F_n - pF = [g]_{x=-1}^{x=+1} = 0.$$

One recognizes the equations for the right-hand side $(-1)^n \pi I_n(p)$.

```
[chyzak@slowfox (16:08:44) ~]$ maple -b Mgfun.mla -B
    1\^/1
            Maple 2018 (X86 64 LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2018
\ MAPLE / All rights reserved. Maple is a trademark of
<____> Waterloo Maple Inc.
             Type ? for help.
> with(Mgfun);
[MG Internals, creative telescoping, dfinite expr to diffeq,
   dfinite_expr_to_rec, dfinite_expr_to_sys, diag_of_sys, int_of_sys,
   pol to sys, rational creative telescoping, sum of sys, sys*sys, sys+sys]
> f := ChebyshevT(n,x)/sqrt(1-x^2)*exp(-p*x);
                            ChebyshevT(n, x) exp(-p x)
                       f ·= -----
                                    2 1/2
                                  (-x + 1)
> ct := creative telescoping(f, {n::shift, p::diff}, x::diff);
memory used=30.3MB, alloc=78.3MB, time=0.37
                        /d
ct := [[p _F(n + 1, p) + p |-- _F(n, p)| - n _F(n, p),
                          \dp
   x_f(n, p, x) - f(n + 1, p, x)], [
   -p F(n, p) + p F(n + 2, p) + (-2 n - 2) F(n + 1, p),
   -2 \times f(n + 1, p, x) + 2 f(n, p, x)
```

Chyzak's Algorithm: Three Issues

- The telescoper (wanted output) is a by-product of the certificate, which is obtained in dense, expanded form (likely to be unneeded in further calculations).
- In dense, expanded form, the certificate is intrinsically large.
- The rational-solving step is sensitive to r, allowing for little reuse of intermediate calculations.

Chyzak's Algorithm: Three Issues

- The telescoper (wanted output) is a by-product of the certificate, which is obtained in dense, expanded form (likely to be unneeded in further calculations).
- In dense, expanded form, the certificate is intrinsically large.
- The rational-solving step is sensitive to r, allowing for little reuse of intermediate calculations.

Example (walks in \mathbb{N}^2 using \nwarrow , \leftarrow , \downarrow , \rightarrow , \nearrow , counted by length):

$$\oint \oint \frac{-(1+x)(1+x^2-xy^2)}{(1+x^2)(1-y)(t-xy+ty+tx^2+tx^2y+txy^2)} \, dx \, dy$$

 $(16312320t^{20} + \dots)f_{t^5} + (407808000t^{19} + \dots)f_{t^4} + \dots = \frac{\partial g}{\partial x} + \frac{\partial h}{\partial y}$ LHS = 2 kB, g = 33 kB, h = 896 kB

Rational Integration: the Classics

Hermite reduction (Ostrogradsky, 1833, 1844/45; Hermite, 1872)

Given P/Q, Hermite reduction finds polynomials A and a such that

$$\int \frac{P(x)}{Q(x)} dx = \frac{A(x)}{Q^-(x)} + \int \frac{a(x)}{Q^*(x)} dx,$$

where $Q^*(x)$ is the squarefree part of Q(x), $Q(x) = Q^-(x)Q^*(x)$, and deg $a < \deg Q^*$.

Squarefree factorization

Given Q monic, one can in good complexity compute m and 2-by-2 coprime monic Q_i satisfying

$$Q = Q_1^1 Q_2^2 \dots Q_m^m, \quad Q^- = Q_2^1 \dots Q_m^{m-1}, \quad Q^* = Q_1 Q_2 \dots Q_m.$$

Rational Integration: the Classics

Hermite reduction (Ostrogradsky, 1833, 1844/45; Hermite, 1872)

Given P/Q, Hermite reduction finds polynomials A and a such that

$$\int \frac{P(x)}{Q(x)} dx = \frac{A(x)}{Q^-(x)} + \int \frac{a(x)}{Q^*(x)} dx,$$

where $Q^*(x)$ is the squarefree part of Q(x), $Q(x) = Q^-(x)Q^*(x)$, and deg $a < \deg Q^*$.

Logarithmic part = obstruction to existence of rational primitive

For $R(w) = \operatorname{res}_x(b(x), a(x) - b'(x)w)$,

$$\int \frac{a(x)}{b(x)} dx = \sum_{R(c)=0} c \ln(\gcd(b(x), a(x) - b'(x)c))$$

(Trager, 1976).

$$F(t) := \oint \frac{P(t,x)}{Q(t,x)} \, dx = ? \qquad \text{ODE w.r.t. } t?$$

Hermite reduction in K(x)

Given P/Q, find polynomials A and a with deg $a < \deg Q^*$ such that

$$\int \frac{P}{Q} \, dx = \frac{A}{Q^-} + \int \frac{a}{Q^*} \, dx.$$

$$F(t) := \oint \frac{P(t,x)}{Q(t,x)} \, dx = ? \qquad \text{ODE w.r.t. } t?$$

Hermite reduction in K(x)

Given P/Q, find polynomials A and a with deg $a < \deg Q^*$ such that

$$\frac{P}{Q} = \frac{\partial}{\partial x} \left(\frac{A}{Q^{-}} \right) + \frac{a}{Q^{*}}.$$

$$F(t) := \oint \frac{P(t,x)}{Q(t,x)} \, dx = ? \qquad \text{ODE w.r.t. } t?$$

Bivariate Hermite reduction for creative telescoping in K(t, x)

$$\frac{P}{Q} = \frac{\partial}{\partial x} \left(\frac{A^{(0)}}{Q^{-}} \right) + \frac{a^{(0)}}{Q^{*}}$$

$$F(t) := \oint \frac{P(t,x)}{Q(t,x)} \, dx = ? \qquad \text{ODE w.r.t. } t?$$

Bivariate Hermite reduction for creative telescoping in K(t, x)

$$\frac{P}{Q} = \frac{\partial}{\partial x} \left(\frac{A^{(0)}}{Q^{-}} \right) + \frac{a^{(0)}}{Q^{*}}.$$
$$\left(\frac{P}{Q} \right)_{t} = \frac{\partial}{\partial x} \left(\left(\frac{A^{(0)}}{Q^{-}} \right)_{t} \right) + \frac{a^{(0)}_{t}}{Q^{*}} - \frac{a^{(0)}Q^{*}_{t}}{(Q^{*})^{2}}$$

$$F(t) := \oint \frac{P(t,x)}{Q(t,x)} \, dx = ? \qquad \text{ODE w.r.t. } t?$$

Bivariate Hermite reduction for creative telescoping in K(t, x)

$$\frac{P}{Q} = \frac{\partial}{\partial x} \left(\frac{A^{(0)}}{Q^-} \right) + \frac{a^{(0)}}{Q^*}.$$
$$\left(\frac{P}{Q} \right)_t = \frac{\partial}{\partial x} \left(\left(\frac{A^{(0)}}{Q^-} \right)_t \right) + \frac{a^{(0)}_t}{Q^*} + \frac{\partial}{\partial x} \left(\frac{B^{(0)}}{Q^*} \right) + \frac{b^{(0)}}{Q^*}$$

$$F(t) := \oint \frac{P(t,x)}{Q(t,x)} \, dx = ? \qquad \text{ODE w.r.t. } t?$$

Bivariate Hermite reduction for creative telescoping in K(t, x)

$$\frac{P}{Q} = \frac{\partial}{\partial x} \left(\frac{A^{(0)}}{Q^{-}} \right) + \frac{a^{(0)}}{Q^{*}}.$$
$$\left(\frac{P}{Q} \right)_{t} = \frac{\partial}{\partial x} \left(\left(\frac{A^{(0)}}{Q^{-}} \right)_{t} + \frac{B^{(0)}}{Q^{*}} \right) + \frac{a^{(0)}_{t} + b^{(0)}}{Q^{*}}$$

$$F(t) := \oint \frac{P(t,x)}{Q(t,x)} \, dx = ? \qquad \text{ODE w.r.t. } t?$$

Bivariate Hermite reduction for creative telescoping in K(t, x)

$$\frac{P}{Q} = \frac{\partial}{\partial x} \left(\frac{A^{(0)}}{Q^{-}} \right) + \frac{a^{(0)}}{Q^{*}}.$$
$$\left(\frac{P}{Q} \right)_{t} = \frac{\partial}{\partial x} \left(E^{(1)} \right) + \frac{a^{(1)}}{Q^{*}}.$$

$$F(t) := \oint \frac{P(t,x)}{Q(t,x)} \, dx = ? \qquad \text{ODE w.r.t. } t?$$

Bivariate Hermite reduction for creative telescoping in K(t, x)

$$\frac{P}{Q} = \frac{\partial}{\partial x} \left(\frac{A^{(0)}}{Q^{-}} \right) + \frac{a^{(0)}}{Q^{*}}.$$
$$\left(\frac{P}{Q} \right)_{t^{i}} = \frac{\partial}{\partial x} \left(E^{(i)} \right) + \frac{a^{(i)}}{Q^{*}}.$$

$$F(t) := \oint \frac{P(t,x)}{Q(t,x)} \, dx = ? \qquad \text{ODE w.r.t. } t?$$

Bivariate Hermite reduction for creative telescoping in K(t, x)

$$\frac{P}{Q} = \frac{\partial}{\partial x} \left(\frac{A^{(0)}}{Q^{-}} \right) + \frac{a^{(0)}}{Q^{*}}.$$
$$\left(\frac{P}{Q} \right)_{t^{i}} = \frac{\partial}{\partial x} \left(E^{(i)} \right) + \frac{a^{(i)}}{Q^{*}}$$

• Confinement $\deg_x a^{(i)} < d := \deg_x Q^* \le \deg_x Q$:

$$\sum_{i=0}^{d} c_{i}(t) a^{(i)}(t, x) = 0 \implies \sum_{i=0}^{d} c_{i} F_{t^{i}} = 0.$$

• Incremental algorithm that does not compute $(P/Q)_{t^i}$.

• Degree bounds in K(t) + eval./interpol. \implies good complexity.

Key Idea: Reduce Coordinates, not Functions

D-finite functions can have complicated singularities. Rational functions have only poles.

Previous algorithms

New algorithm

$f \rightarrow [f]$	$f = R_0 f \to [R_0] f$
$f_t \rightarrow [f_t]$	$f_t = R_1 f \to [R_1] f$
$f_{tt} \rightarrow [f_{tt}]$	$f_{tt} = R_2 f \to [R_2] f$
:	:

Operator Notation

Algebra of linear differential operators with rational coefficients

Operator Notation

Algebra of linear differential operators with rational coefficients

$$\mathbb{A} = \mathcal{K}(t, x) \langle \partial_t, \partial_x \rangle, \qquad M_f = \mathbb{A}(f) = \{ P(f) : P \in \mathbb{A} \}$$
$$P = \sum p_{i,j}(t, x) \partial_t^j \partial_x^j \in \mathbb{A} \implies P(f) = \sum p_{i,j}(t, x) f_{t^i x^j} \in M_f$$
$$\mathbb{S} = \mathcal{K}(t, x) \langle \partial_x \rangle \subset \mathbb{A}$$

Hypotheses of D-finiteness

- f is D-finite w.r.t. $\mathbb{A} \implies d := \dim_{K(t,x)}(M_f) < \infty$.
- Let $h \in M_f$ be cyclic, that is to say, $M_f = \bigoplus_{i=0}^{d-1} K(t, x) h_{x^i} = \mathbb{S}(h)$.
- For all $g \in M_f$, there is $A_g \in S$ such that $g = A_g(h)$.

Operator Notation

Algebra of linear differential operators with rational coefficients

$$\mathbb{A} = \mathcal{K}(t, x) \langle \partial_t, \partial_x \rangle, \qquad M_f = \mathbb{A}(f) = \{ P(f) : P \in \mathbb{A} \}$$
$$P = \sum p_{i,j}(t, x) \partial_t^j \partial_x^j \in \mathbb{A} \implies P(f) = \sum p_{i,j}(t, x) f_{t^i x^j} \in M_f$$
$$\mathbb{S} = \mathcal{K}(t, x) \langle \partial_x \rangle \subset \mathbb{A}$$

Hypotheses of D-finiteness

- f is D-finite w.r.t. $\mathbb{A} \implies d := \dim_{K(t,x)}(M_f) < \infty$.
- Let $h \in M_f$ be cyclic, that is to say, $M_f = \bigoplus_{i=0}^{d-1} K(t, x) h_{x^i} = \mathbb{S}(h)$.
- For all $g \in M_f$, there is $A_g \in S$ such that $g = A_g(h)$.

Interpretation of creative telescoping

Given f, find a telescoper $T \in K(t)\langle \partial_t \rangle$ and a certificate $g \in M_f$ such that $T(f) = \partial_x(g)$. This really computes $(K(t)\langle \partial_t \rangle)(f) \cap \partial_x(M_f)$.

Lagrange's Identity

Dual of operators

$$P = \sum_{i=0}^{r} p_i(t, x) \partial_x^i \in \mathbb{S} \longleftrightarrow P^* = \sum_{i=0}^{r} (-\partial_x)^i p_i(t, x) \in \mathbb{S}$$

Lagrange's Identity

Dual of operators

$$P = \sum_{i=0}^{r} p_i(t, x) \partial_x^i \in \mathbb{S} \longleftrightarrow P^* = \sum_{i=0}^{r} (-\partial_x)^i p_i(t, x) \in \mathbb{S}$$

Lagrange's identity

There is a map \mathcal{L}_P , bilinear w.r.t. $(h, \ldots, h_{x^{(r-1)}})$ and $(u, \ldots, u_{x^{(r-1)}})$, such that

$$\forall u \in K(t,x), \ \forall h \in M_f, \ uP(h) - P^*(u)h = \partial_x(\mathcal{L}_P(h,u)).$$

Lagrange's Identity

Dual of operators

$$P = \sum_{i=0}^{r} p_i(t, x) \partial_x^i \in \mathbb{S} \longleftrightarrow P^* = \sum_{i=0}^{r} (-\partial_x)^i p_i(t, x) \in \mathbb{S}$$

Lagrange's identity

There is a map \mathcal{L}_P , bilinear w.r.t. $(h, \ldots, h_{x^{(r-1)}})$ and $(u, \ldots, u_{x^{(r-1)}})$, such that

$$\forall u \in K(t, x), \ \forall h \in M_f, \ uP(h) - P^*(u)h = \partial_x (\mathcal{L}_P(h, u)).$$

Proof: $\mathcal{L}_P(h, u) = \sum_{i=0}^r \sum_{j=0}^{i-1} (-1)^j (p_i u)_{x^j} h_{x^{i-j-1}}.$

Lagrange's identity:

$$\forall h \in M_f, \ \forall u \in K(t, x), \ uP(h) - P^*(u)h = \partial_x(\mathcal{L}_P(h, u)).$$

Let *h* be cyclic and $L \in S$ be such that L(h) = 0. Then, for all $g \in M_f$:

Operator to rational function: $\mathbb{A}(f) = \mathbb{S}(h) \rightarrow K(t, x)h$ $g \in A_g^*(1)h + \partial_x(M_f).$ [by $u = 1, P = A_g]$

Lagrange's identity:

$$\forall h \in M_f, \ \forall u \in K(t, x), \ uP(h) - P^*(u)h = \partial_x(\mathcal{L}_P(h, u)).$$

Let *h* be cyclic and $L \in S$ be such that L(h) = 0. Then, for all $g \in M_f$:

Operator to rational function: $\mathbb{A}(f) = \mathbb{S}(h) \to K(t, x)h$ $g \in A_g^*(1)h + \partial_x(M_f).$ [by $u = 1, P = A_g$]

Equivalent rational factors: $K(t, x)h \rightarrow (K(t, x) \mod L^*(K(t, x)))h$ $\forall u \in K(t, x), g \in (A_g^*(1) - L^*(u))h + \partial_x(M_f).$ [by P = L]

Lagrange's identity:

$$\forall h \in M_f, \ \forall u \in K(t, x), \ uP(h) - P^*(u)h = \partial_x(\mathcal{L}_P(h, u)).$$

Let *h* be cyclic and $L \in S$ be such that L(h) = 0. Then, for all $g \in M_f$:

Operator to rational function: $\mathbb{A}(f) = \mathbb{S}(h) \to K(t, x)h$ $g \in A_g^*(1)h + \partial_x(M_f).$ [by $u = 1, P = A_g$]

Equivalent rational factors: $K(t, x)h \rightarrow (K(t, x) \mod L^*(K(t, x)))h$ $\forall u \in K(t, x), g \in (A_g^*(1) - L^*(u))h + \partial_x(M_f).$ [by P = L]

Testing derivatives (for L of minimal order)

 $g\in\partial_x(M_f)\Rightarrow \exists q\in K(t,x),\ A_g^*(1)=L^*(q).\quad [\text{by }A_g^*(1)\in\partial_x\mathbb{S}+\mathbb{S}L]$

Lagrange's identity:

$$\forall h \in M_f, \ \forall u \in K(t, x), \ uP(h) - P^*(u)h = \partial_x(\mathcal{L}_P(h, u)).$$

Let *h* be cyclic and $L \in S$ be such that L(h) = 0. Then, for all $g \in M_f$:

Operator to rational function: $\mathbb{A}(f) = \mathbb{S}(h) \to K(t, x)h$ $g \in A_g^*(1)h + \partial_x(M_f).$

Equivalent rational factors: $K(t,x)h \rightarrow (K(t,x) \mod L^*(K(t,x)))h$

 $\forall u \in K(t,x), g \in (A_g^*(1) - L^*(u))h + \partial_x(M_f).$

Testing derivatives (for L of minimal order)

 $g \in \partial_x(M_f) \Leftrightarrow \exists q \in K(t,x), \ A_g^*(1) = L^*(q).$

Lagrange's identity:

$$\forall h \in M_f, \ \forall u \in K(t, x), \ uP(h) - P^*(u)h = \partial_x(\mathcal{L}_P(h, u)).$$

Let *h* be cyclic and $L \in S$ be such that L(h) = 0. Then, for all $g \in M_f$:

Operator to rational function: $\mathbb{A}(f) = \mathbb{S}(h) \to K(t, x)h$ $g \in A_g^*(1)h + \partial_x(M_f).$

Equivalent rational factors: $K(t, x)h \rightarrow (K(t, x) \mod L^*(K(t, x)))h$ $\forall u \in K(t, x), g \in (A_g^*(1) - L^*(u))h + \partial_x(M_f).$ [Reduction?]

Testing derivatives (for *L* of minimal order)

$$g \in \partial_x(M_f) \Leftrightarrow \exists q \in K(t, x), \ A_g^*(1) = L^*(q).$$
 [Algorithm?]

Running Example (continued)

Problem

Integrate
$$f(n, p, x) = \frac{\exp(-px)T_n(x)}{\sqrt{1-x^2}}$$
 w.r.t. x and prove the identity

$$F(n, p) := \int_{-1}^{+1} f(n, p, x) dx = (-1)^n \pi I_n(p).$$

In operator notation, f is cancelled by all left-linear combinations of:

$$\frac{\partial_p + x1}{\partial_x + (1 - x^2)\partial_x + (p(1 - x^2) - (n + 1)x)1, } (1 - x^2)\partial_x^2 - (2px^2 + 3x - 2p)\partial_x - (p^2x^2 + 3px - n^2 - p^2 + 1)1.$$

Goal: Find a telescoper such that there is a certificate satisfying

$$\sum_{u,v} c_{u,v}(n,p) \partial_n^u \partial_p^v = \partial_x \left(b(n,p,x) \partial_x + a(n,p,x) 1 \right)$$

modulo the operators above.

Running Example (continued)

Problem

Integrate
$$f(n, p, x) = \frac{\exp(-px)T_n(x)}{\sqrt{1-x^2}}$$
 w.r.t. x and prove the identity

$$F(n, p) := \int_{-1}^{+1} f(n, p, x) dx = (-1)^n \pi I_n(p).$$

In operator notation, f is cyclic, so h := f, and it is cancelled by:

$$\partial_{p} + x1, \qquad n\partial_{n} + (1 - x^{2})\partial_{x} + (p(1 - x^{2}) - (n + 1)x)1,$$

$$L := (1 - x^{2})\partial_{x}^{2} - (2px^{2} + 3x - 2p)\partial_{x} - (p^{2}x^{2} + 3px - n^{2} - p^{2} + 1)1.$$

Goal: Find a telescoper such that there is a certificate satisfying

$$\sum_{u,v} c_{u,v}(n,p) \partial_n^u \partial_p^v = \partial_x \left(b(n,p,x) \partial_x + a(n,p,x) 1 \right)$$

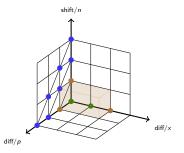
modulo the operators above.

$$\int_{-1}^{+1} f(n, p, x) dx = F(n, p) = ?$$

$$L_1 := \partial_p - (\dots)\partial_x - (\dots)1,$$

$$L_2 := \partial_n - (\dots)\partial_x - (\dots)1,$$

$$L_3 := \partial_x^2 - (\dots)\partial_x - (\dots)1.$$



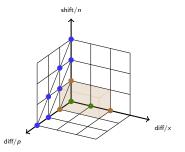
$$\int_{-1}^{+1} f(n, p, x) dx = F(n, p) = ?$$

$$L_1 := \partial_p - (\dots) \partial_x - (\dots) 1,$$

$$L_2 := \partial_n - (\dots) \partial_x - (\dots) 1,$$

$$L_3 := \partial_x^2 - (\dots) \partial_x - (\dots) 1.$$

$$L := L_3, \quad I := \mathbb{A}L_1 + \mathbb{A}L_2 + \mathbb{A}L_3.$$



For P = 1, ∂_n , ∂_p , ∂_n^2 , $\partial_n \partial_p$, ∂_p^2 : • set g = P(h), so that $A_g = \operatorname{rem}(P, I) = v(p, n, x)\partial_x + u(p, n, x)1$,

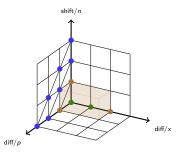
$$\int_{-1}^{+1} f(n, p, x) dx = F(n, p) = ?$$

$$L_1 := \partial_p - (\dots) \partial_x - (\dots) 1,$$

$$L_2 := \partial_n - (\dots) \partial_x - (\dots) 1,$$

$$L_3 := \partial_x^2 - (\dots) \partial_x - (\dots) 1.$$

$$L := L_3, \quad I := \mathbb{A}L_1 + \mathbb{A}L_2 + \mathbb{A}L_3.$$



For P = 1, ∂_n , ∂_p , ∂_n^2 , $\partial_n\partial_p$, ∂_p^2 : • set g = P(h), so that $A_g = \operatorname{rem}(P, I) = v(p, n, x)\partial_x + u(p, n, x)1$, • $A_g^* = -v\partial_x + (u - v_x)$, so that $g = (u - v_x)f + \partial_x(\dots)$.

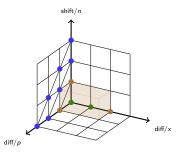
$$\int_{-1}^{+1} f(n, p, x) dx = F(n, p) = ?$$

$$L_{1} := \partial_{p} - (\dots)\partial_{x} - (\dots)1,$$

$$L_{2} := \partial_{n} - (\dots)\partial_{x} - (\dots)1,$$

$$L_{3} := \partial_{x}^{2} - (\dots)\partial_{x} - (\dots)1.$$

$$L := L_{3}, \quad I := \mathbb{A}L_{1} + \mathbb{A}L_{2} + \mathbb{A}L_{3}.$$



For P = 1, ∂_n , ∂_p , ∂_n^2 , $\partial_n\partial_p$, ∂_p^2 : • set g = P(h), so that $A_g = \operatorname{rem}(P, I) = v(p, n, x)\partial_x + u(p, n, x)1$, • $A_g^* = -v\partial_x + (u - v_x)$, so that $g = (u - v_x)f + \partial_x(\dots)$. For those P, $u - v_x \in K(p, n)[x]$ with degree ≤ 3 , while

$$L^{*}(p^{2}x^{0}) = p^{2}x^{2} - px - (n^{2} + p^{2}),$$

$$L^{*}(p^{2}x^{1}) = p^{2}x^{3} - 3px^{2} - (n^{2} + p^{2} - 1)x + 2p.$$

Generalized Hermite Reduction and the Integration of D-Finite Functions

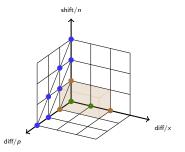
$$\int_{-1}^{+1} f(n, p, x) dx = F(n, p) = ?$$

$$L_{1} := \partial_{p} - (\dots)\partial_{x} - (\dots)1,$$

$$L_{2} := \partial_{n} - (\dots)\partial_{x} - (\dots)1,$$

$$L_{3} := \partial_{x}^{2} - (\dots)\partial_{x} - (\dots)1.$$

$$L := L_{3}, \quad I := \mathbb{A}L_{1} + \mathbb{A}L_{2} + \mathbb{A}L_{3}.$$



For P = 1, ∂_n , ∂_p , ∂_n^2 , $\partial_n\partial_p$, ∂_p^2 :

 $P(f) = (u - v_x)f + \partial_x(\dots) = (\mu_P(p, n)x^1 + \lambda_P(p, n)x^0)f + \partial_x(\dots).$

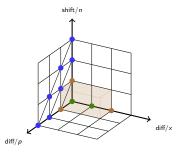
$$\int_{-1}^{+1} f(n, p, x) dx = F(n, p) = ?$$

$$L_{1} := \partial_{p} - (\dots) \partial_{x} - (\dots) 1,$$

$$L_{2} := \partial_{n} - (\dots) \partial_{x} - (\dots) 1,$$

$$L_{3} := \partial_{x}^{2} - (\dots) \partial_{x} - (\dots) 1.$$

$$L := L_{3}, \quad I := \mathbb{A}L_{1} + \mathbb{A}L_{2} + \mathbb{A}L_{3}.$$



For P = 1, ∂_n , ∂_p , ∂_n^2 , $\partial_n\partial_p$, ∂_p^2 :

 $P(f) = (u - v_x)f + \partial_x(\dots) = (\mu_P(p, n)x^1 + \lambda_P(p, n)x^0)f + \partial_x(\dots).$

Linear algebra over K(p, n) finds a basis of telescopers

$$\left(\sum_{P} c_{P} P\right)(f) = \partial_{x}(\dots).$$

Frédéric Chyzak

Generalized Hermite Reduction and the Integration of D-Finite Functions

Local decomposition of a rational function $R \in K(x)$

$$R = R_{(\infty)} + \sum_{\alpha} R_{(\alpha)} \text{ for some } R_{(\alpha)} \in \frac{1}{x-\alpha} K(\alpha)[\frac{1}{x-\alpha}] \text{ and } R_{(\infty)} \in K[x].$$

Local decomposition of a rational function $R \in K(x)$

$$R = R_{(\infty)} + \sum_{\alpha} R_{(\alpha)} \text{ for some } R_{(\alpha)} \in \frac{1}{x-\alpha} K(\alpha)[\frac{1}{x-\alpha}] \text{ and } R_{(\infty)} \in K[x].$$

Local study of the action of L^*

 $\exists \text{ polynomials } I_{\alpha} \text{ and } I_{\infty}, \exists \text{ integers } \sigma_{\alpha} \text{ and } \sigma_{\infty}, \text{ such that } \forall s \in \mathbb{Z},$ $L^*((x-\alpha)^{-s}) \underset{x \to \alpha}{=} I_{\alpha}(-s)(x-\alpha)^{\sigma_{\alpha}-s} + \mathcal{O}((x-\alpha)^{\sigma_{\alpha}-(s-1)}),$ $L^*((1/x)^{-s}) \underset{x \to \infty}{=} I_{\infty}(-s)(1/x)^{\sigma_{\infty}-s} + \mathcal{O}((1/x)^{\sigma_{\infty}-(s-1)}).$

Local decomposition of a rational function $R \in K(x)$

$$R = R_{(\infty)} + \sum_{\alpha} R_{(\alpha)} \text{ for some } R_{(\alpha)} \in \frac{1}{x-\alpha} K(\alpha)[\frac{1}{x-\alpha}] \text{ and } R_{(\infty)} \in K[x].$$

Local study of the action of L^*

 $\exists \text{ polynomials } I_{\alpha} \text{ and } I_{\infty}, \exists \text{ integers } \sigma_{\alpha} \text{ and } \sigma_{\infty}, \text{ such that } \forall s \in \mathbb{Z}, \\ L^*((x-\alpha)^{-s-\sigma_{\alpha}}) \underset{x \to \alpha}{=} I_{\alpha}(-s-\sigma_{\alpha})(x-\alpha)^{-s} + \mathcal{O}((x-\alpha)^{-(s-1)}), \\ L^*((1/x)^{-s-\sigma_{\infty}}) \underset{x \to \infty}{=} I_{\infty}(-s-\sigma_{\infty})(1/x)^{-s} + \mathcal{O}((1/x)^{-(s-1)}).$

Local decomposition of a rational function $R \in K(x)$

$$R = R_{(\infty)} + \sum_{\alpha} R_{(\alpha)} \text{ for some } R_{(\alpha)} \in \frac{1}{x-\alpha} K(\alpha)[\frac{1}{x-\alpha}] \text{ and } R_{(\infty)} \in K[x].$$

Local study of the action of L^*

 $\exists \text{ polynomials } I_{\alpha} \text{ and } I_{\infty}, \exists \text{ integers } \sigma_{\alpha} \text{ and } \sigma_{\infty}, \text{ such that } \forall s \in \mathbb{Z}, \\ (x-\alpha)^{-s} \underset{x \to \alpha}{=} I_{\alpha}(-s-\sigma_{\alpha})^{-1}L^{*}((x-\alpha)^{-s-\sigma_{\alpha}}) + \mathcal{O}((x-\alpha)^{-(s-1)}), \\ (1/x)^{-s} \underset{x \to \infty}{=} I_{\infty}(-s-\sigma_{\infty})^{-1}L^{*}((1/x)^{-s-\sigma_{\infty}}) + \mathcal{O}((1/x)^{-(s-1)}).$

Local decomposition of a rational function $R \in K(x)$

$$R = R_{(\infty)} + \sum_{\alpha} R_{(\alpha)} \text{ for some } R_{(\alpha)} \in \frac{1}{x-\alpha} K(\alpha)[\frac{1}{x-\alpha}] \text{ and } R_{(\infty)} \in K[x].$$

Local study of the action of L^*

 $\exists \text{ polynomials } I_{\alpha} \text{ and } I_{\infty}, \exists \text{ integers } \sigma_{\alpha} \text{ and } \sigma_{\infty}, \text{ such that } \forall s \in \mathbb{Z}, \\ (x-\alpha)^{-s} \underset{x \to \alpha}{=} I_{\alpha}(-s-\sigma_{\alpha})^{-1}L^{*}((x-\alpha)^{-s-\sigma_{\alpha}}) + \mathcal{O}((x-\alpha)^{-(s-1)}), \\ (1/x)^{-s} \underset{x \to \infty}{=} I_{\infty}(-s-\sigma_{\infty})^{-1}L^{*}((1/x)^{-s-\sigma_{\infty}}) + \mathcal{O}((1/x)^{-(s-1)}).$

Weak reduction strategy

- reduce at finite α (in any order) before at ∞ ,
- skip monomials for which $I_{\alpha}(-s \sigma_{\alpha}) = 0$ or $I_{\infty}(-s \sigma_{\infty}) = 0$.

Canonical Form Modulo $L^*(K(x))$

Problem: $L^*(K(x))$ does not weakly reduce to $\{0\}$

For
$$c_0 = I_{\alpha}(-s - \sigma_{\alpha})$$
 and some c_1 , write $R := L^*((x - \alpha)^{-s - \sigma_{\alpha}})$ as

$$R = c_0(x - \alpha)^{-s} + c_1(x - \alpha)^{-(s-1)} + \mathcal{O}((x - \alpha)^{-(s-2)}).$$

• If $c_0 \neq 0$, this reduces to

$$L^*\left((x-\alpha)^{-s-\sigma_{\alpha}}-(x-\alpha)^{-s-\sigma_{\alpha}}\right)=0.$$

• If $c_0 = 0$ and $c_1 \neq 0$, this reduces to some $L^*\left((x - \alpha)^{-s - \sigma_{\alpha}} - \frac{c_1}{c_2}(x - \alpha)^{-(s-1) - \sigma_{\alpha}}\right),$

which is unlikely to further reduce to 0.

Canonical Form Modulo $L^*(K(x))$

Problem: $L^*(K(x))$ does not weakly reduce to $\{0\}$

For
$$c_0 = l_{\alpha}(-s - \sigma_{\alpha})$$
 and some c_1 , write $R := L^*((x - \alpha)^{-s - \sigma_{\alpha}})$ as

$$R = c_0(x - \alpha)^{-s} + c_1(x - \alpha)^{-(s-1)} + \mathcal{O}((x - \alpha)^{-(s-2)}).$$

• If $c_0 \neq 0$, this reduces to

$$L^*\left((x-\alpha)^{-s-\sigma_{\alpha}}-(x-\alpha)^{-s-\sigma_{\alpha}}\right)=0.$$

• If $c_0 = 0$ and $c_1 \neq 0$, this reduces to some $L^*\left((x - \alpha)^{-s - \sigma_{\alpha}} - \frac{c_1}{c_2}(x - \alpha)^{-(s-1) - \sigma_{\alpha}}\right),$

which is unlikely to further reduce to 0.

Solution

- finitely-many potential obstructions, described by the integer zeros of the I_{α} and I_{∞} ,
- this can be computed, leading to a canonical-form computation.

[chyzak@slowfox (04:21:54) ~]\$ maple -b Mgfun.mla -B 1\^/1 Maple 2018 (X86 64 LINUX) . |\| |/| . Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2018 \ MAPLE / All rights reserved. Maple is a trademark of <____> Waterloo Maple Inc. Type ? for help. > read "redct.mpl"; > f := ChebyshevT(n,x)/sqrt(1-x^2)*exp(-p*x); ChebyshevT(n, x) exp(-p x) f ·= -----2 1/2 (-x + 1)> redct(Int(f,x=-1..1),[n::shift,p::diff]); memory used=3.5MB, alloc=8.3MB, time=0.09 2 [p D[n] + p D[p] - n, p D[n] - 2 n D[n] - p - 2 D[n]]> f := 2*BesselJ(m+n,2*t*x)*ChebyshevT(m-n,x)/sqrt(1-x^2); 2 BesselJ(m + n, 2 t x) ChebyshevT(m - n, x) ------2 1/2 (-x + 1)> redct(Int(f.x),[t::diff, n::shift, m::shift]); memory used=1189.8MB, alloc=144.8MB, time=9.98 2 [t D[m] + t D[n] + t D[t] - m - n, t D[m] - 2 m D[m] + t - 2 D[m], 2 t D[n] - 2 n D[n] + t - 2 D[n]

Timings: More than 140 integrals tested

0					(5)	· · ·	(7)
new (mpl)	13s	> 1h	> 1h	1.5s	1.5s	165s	53s
Chyzak's (mma)	19s	253s	45s	232s	516s	>1h	>1h
Koutschan's (mma)							

$$\int \frac{2J_{m+n}(2tx)T_{m-n}(x)}{\sqrt{1-x^2}} dx \quad [\text{diff. } t, \text{ shift } n \text{ and } m], \qquad (1) \qquad \int C_m^{(\mu)}(x)C_n^{(\nu)}(x)(1-x^2)^{\nu-1/2} dx \quad [\text{shift } n, m, \mu, \nu], \qquad (5)$$

$$\int_0^1 C_n^{(\lambda)}(x)C_\ell^{(\lambda)}(x)C_\ell^{(\lambda)}(x)(1-x^2)^{\lambda-\frac{1}{2}} dx \quad [\text{shift } n, m, \ell], \qquad (2) \qquad (5)$$

$$\int x^\ell C_m^{(\mu)}(x)C_n^{(\nu)}(x)(1-x^2)^{\nu-1/2} dx \quad [\text{shift } n, m, \mu, \nu], \qquad (6)$$

$$\int x^\ell C_m^{(\mu)}(x)C_n^{(\nu)}(x)(1-x^2)^{\nu-1/2} dx \quad [\text{shift } \ell, m, n, \mu, \nu], \qquad (6)$$

$$\int x^\ell C_m^{(\mu)}(x)C_n^{(\nu)}(x)(1-x^2)^{\nu-1/2} dx \quad [\text{shift } \ell, m, n, \mu, \nu], \qquad (6)$$

$$\int x^\ell C_m^{(\mu)}(x)C_n^{(\nu)}(x)(1-x^2)^{\nu-1/2} dx \quad [\text{shift } \ell, m, n, \mu, \nu], \qquad (6)$$

$$\int x^\ell C_m^{(\mu)}(x)C_n^{(\nu)}(x)(1-x^2)^{\nu-1/2} dx \quad [\text{shift } \ell, m, n, \mu, \nu], \qquad (6)$$

$$\int x^\ell C_m^{(\mu)}(x)C_n^{(\nu)}(x)(1-x^2)^{\nu-1/2} dx \quad [\text{shift } \ell, m, n, \mu, \nu], \qquad (6)$$

$$\int (x+a)^{\gamma+\lambda-1}(a-x)^{\beta-1}C_m^{(\gamma)}(x/a)C_n^{(\lambda)}(x/a) dx \quad [\text{diff. } a, \text{shift } n, m, \beta, \gamma, \lambda]. \qquad (7)$$

t: Heuristic got these faster answers by looking for telescopers of non-minimal orders, yet smaller sizes.

Timings: More than 140 integrals tested

0	(1)	(2)		· · ·	(5)	· · ·	(7)
new (mpl)	13s	> 1h	> 1h	1.5s	1.5s	165s	53s
Chyzak's (mma)	19s	253s	45s	232s	516s	>1h	>1h
Koutschan's (mma)	1.9s†	2.3s	5.3s	>1h	2.3s†	5.4s	2.2s†

t: Heuristic got these faster answers by looking for telescopers of non-minimal orders, yet smaller sizes.

Need to investigate failures:

- non-mathematical bugs? "not ours"?
- impact of apparent singularities of *P**?

Summary

