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Parametrized Definite Integrals
∫ +∞

0
x J1(ax) I1(ax)Y0(x)K0(x) dx = − ln(1− a4)

2πa2 (Glasser & Montaldi, 1994)

∫ ∞

0

∫ ∞

0
J1(x) J1(y) J2(c

√
xy) dx dy

ex+y (has a 2nd-order linear ODE)

1
2πi

∮ (1+ 2xy + 4y2) exp
(

4x2y2
1+4y2

)
yn+1(1+ 4y2)

3
2

dy =
Hn(x)
bn/2c! (Doetsch, 1930)

∫ +1

−1

e−px Tn(x)√
1− x2

dx = (−1)nπ In(p)

∫ +∞

0
xe−px2Jn(bx)In(cx) dx =

1
2p exp

(
c2 − b2

4p

)
Jn

(
bc
2p

)

1
(2iπ)2

∮ ∮ f (s, t/s, x/t)
st ds dt = 1+ 6 ·

∫ x

0

2F1

(
1/3, 2/3

2

∣∣∣∣ 27w(2−3w)
(1−4w)3

)
(1− 4w)(1− 64w)

dw

where f (s, t, u) = (1− s)(1− t)(1− u)
1− 2(s + t + u) + 3(st + tu + us)− 4stu

(Bostan, Chyzak, van Hoeij, Pech, 2011)
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Differentiating under the Integral Sign

Zeilberger’s derivation (1982) of a classical integral

Given f (b, x) = e−x2 cos 2bx , find F (b) =
∫ +∞

−∞
f (b, x) dx = ?.

dF
db (b) =

∫ +∞

−∞
−2xe−x2 sin 2bx dx =[

e−x2 sin 2bx
]x=+∞

x=−∞
+
∫ +∞

−∞
−2be−x2 cos 2bx dx = −2b F (b).

Continuous form of “Creative Telescoping”:
df
db (b, x) + 2b f (b, x) = dg

dx (b, x) for g(b, x) = − 1
2x

df
db (b, x).

After integration over x from −∞ to +∞:
dF
db (b) + 2bF (b) =

[
dg
dx (b, x)

]x=+∞

x=−∞
= 0− 0 = 0.
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Hermite Reduction (1872)

EA−mFA′ = P =⇒
∫ P

Am+1 =
F

Am +
∫ E + F ′

Am

See also (Ostrogradsky, 1833, 1844/45).
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Ostrogradsky–Hermite Reduction

EA−mFA′ = P =⇒
∫ P

Am+1 =
F

Am +
∫ E + F ′

Am

See also (Ostrogradsky, 1833, 1844/45).
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Linear Differential Equations as a Data Structure

Linear
differential
equations

Recombinations

Conversions

Algebraic equations

Special functions
in closed forms

Definite sums
and integrals

Numerical
evaluation

Local and
asymptotic
expansions

Proofs of
identities

Def: differentially finite functions (a.k.a. D-finite)
A function f (x) is D-finite if its derivatives f (x), f ′(x), f ′′(x), . . . , span
a finite-dimensional vector space over C(x).
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Linear Differential Equations as a Data Structure

Linear
differential
equations

Recombinations

Conversions

Algebraic equations

Special functions
in closed forms

Definite sums
and integrals

Numerical
evaluation

Local and
asymptotic
expansions

Proofs of
identities

Def: multivariate D-finite functions

A function f (x , y , z) is D-finite iff its derivatives ∂i+j+k f
∂ix ∂j

y ∂kz
(x , y , z),

i , j , k ≥ 0, span a finite-dimensional vector space over C(x , y , z).
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Linear Differential Equations as a Data Structure

Linear
functional
equations

Recombinations

Conversions

Algebraic equations

Special functions
in closed forms

Definite sums
and integrals

Numerical
evaluation

Local and
asymptotic
expansions

Proofs of
identities

Def: multivariate ∂-finite functions
A function fn,m(x , y , z) is ∂-finite iff a similar confinement holds for
derivatives w.r.t. x , y , z , shifts w.r.t. n, m, etc.
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Creative Telescoping for Sums and Integrals

Un =
b
∑
k=a

un,k = ?

Given a relation ar (n)un+r ,k + · · ·+ a0(n)un,k = vn,k+1 − vn,k ,
summation leads by “telescoping” to

ar (n)Un+r + · · ·+ a0(n)Un = vn,b+1 − vn,a
often
= 0.

U(t) =
∫ b

a
u(t, x) dx = ?

Given a relation ar (t)
∂r u
∂tr + · · ·+ a0(t)u =

∂

∂x v(t, x), integrating leads
by “telescoping” to

ar (t)
∂r U
∂tr + · · ·+ a0(t)U = v(t, b)− v(t, a) often

= 0.

Adapts easily to U(t) =
b
∑
k=a

uk (t), Un =
∫ b

a
un(x) dx , etc.
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Creative Telescoping for Sums and Integrals

Un =
b
∑
k=a

un,k = ?

Given a relation ar (n)un+r ,k + · · ·+ a0(n)un,k = vn,k+1 − vn,k ,
summation leads by “telescoping” to

ar (n)Un+r + · · ·+ a0(n)Un = vn,b+1 − vn,a
often
= 0.

U(t) =
∫ b

a
u(t, x) dx = ?

Given a relation ar (t)
∂r u
∂tr + · · ·+ a0(t)u =

∂

∂x v(t, x), integrating leads
by “telescoping” to

ar (t)
∂r U
∂tr + · · ·+ a0(t)U = v(t, b)− v(t, a) often

= 0.

Telescoper Certificate
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History of Algorithms for Creative Telescoping

Algorithmic Literature (≤ 2018)
Fasenmyer (1947, 1949); Rainville (1960); Verbaeten (1974); Gosper (1978); Lipshitz (1988); Zeilberger (1982, 1990, 1991); Takayama
(1990); Almkvist, Zeilberger (1990); Wilf, Zeilberger (1992); Hornegger (1992); Koornwinder (1993); Paule, Schorn (1995); Majewicz
(1996); Riese (1996); Petkovšek, Wilf, Zeilberger (1996); Paule, Riese (1997); Wegschaider (1997); Chyzak, Salvy (1998); Sturmfels,
Takayama (1998); Chyzak (2000); Saito, Sturmfels, Takayama (2000); Oaku, Takayama (2001); Le (2001); Riese (2001); Tefera (2000,
2002); Riese (2003); Apagodu, Zeilberger (2006); Kauers (2007); Chen W.Y.C., Sun (2009); Chyzak, Kauers, Salvy (2009); Koutschan
(2010); Bostan, Chen S., Chyzak, Li (2010); Chen S., Kauers, Singer (2012); Bostan, Lairez, Salvy (2013); Bostan, Chen S., Chyzak, Li,
Xin (2013); Chen S., Huang, Kauers, Li (2015); Lairez (2016); Chen S., Kauers, Koutschan (2016); Huang (2016); Bostan, Dumont,
Salvy (2016); Hoeven (2017); Chen S., Hoeij, Kauers, Koutschan (2018); Bostan, Chyzak, Lairez, Salvy (2018).

Applicable to
first-order vs higher-order equations; shift vs differential vs q-analogues vs
mixed; ∂-finite vs non-∂-finite; w/ vs wo/ certificate.

Approaches
bound denominators + bound degrees + linear algebra
bound denominators + solve functional equations
elimination by skew Gröbner bases/skew resultants
reduction of singularity order + linear algebra
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Running Example

Problem

Integrate f (n, p, x) = exp(−px)Tn(x)√
1− x2

w.r.t. x and prove the identity

F (n, p) :=
∫ +1

−1
f (n, p, x) dx = (−1)nπIn(p).
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Running Example

Problem

Integrate f (n, p, x) = exp(−px)Tn(x)√
1− x2

w.r.t. x and prove the identity

F (n, p) :=
∫ +1

−1
f (n, p, x) dx = (−1)nπIn(p).

Generating LFEs by algorithm for closure under product yields:

∂f
∂p (n, p, x) + xf (n, p, x) = 0,

nf (n + 1, p, x) + (1− x2) ∂f
∂x (n, p, x)
+
(
p(1− x2)− (n + 1)x

)
f (n, p, x) = 0,

(1− x2) ∂2f
∂x2 (n, p, x)− (2px2 + 3x − 2p) ∂f

∂x (n, p, x)
− (p2x2 + 3px − n2 − p2 + 1)f (n, p, x) = 0.
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Running Example

Problem

Integrate f (n, p, x) = exp(−px)Tn(x)√
1− x2

w.r.t. x and prove the identity

F (n, p) :=
∫ +1

−1
f (n, p, x) dx = (−1)nπIn(p).

Compact notation using fn = f (n + 1, p, x), fx = ∂f
∂x (n, p, x), etc:

fp + xf = 0,
nfn + (1− x2)fx +

(
p(1− x2)− (n + 1)x

)
f = 0,

(1− x2)fxx − (2px2 + 3x − 2p)fx − (p2x2 + 3px − n2 − p2 + 1)f = 0.
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Running Example

Problem

Integrate f (n, p, x) = exp(−px)Tn(x)√
1− x2
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F (n, p) :=
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−1
f (n, p, x) dx = (−1)nπIn(p).

Compact notation using fn = f (n + 1, p, x), fx = ∂f
∂x (n, p, x), etc:

fp + xf = 0,
nfn + (1− x2)fx +

(
p(1− x2)− (n + 1)x

)
f = 0,

(1− x2)fxx − (2px2 + 3x − 2p)fx − (p2x2 + 3px − n2 − p2 + 1)f = 0.

Observe: any fnupv xw is a Q(n, p, x)-linear combination of fx and f .
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Running Example

Problem

Integrate f (n, p, x) = exp(−px)Tn(x)√
1− x2

w.r.t. x and prove the identity

F (n, p) :=
∫ +1

−1
f (n, p, x) dx = (−1)nπIn(p).

Compact notation using fn = f (n + 1, p, x), fx = ∂f
∂x (n, p, x), etc:

fp + xf = 0,
nfn + (1− x2)fx +

(
p(1− x2)− (n + 1)x

)
f = 0,

(1− x2)fxx − (2px2 + 3x − 2p)fx − (p2x2 + 3px − n2 − p2 + 1)f = 0.

Goal: Find a telescoper such that there is a certificate satisfying

∑
u,v

cu,v (n, p)fnupv = gx for g = b(n, p, x)fx + a(n, p, x)f .
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Chyzak’s Algorithm (2000): an Example

∫ +1

−1
f (n, p, x) dx = F (n, p) = ?

fp = (. . . )fx + (. . . )f ,
fn = (. . . )fx + (. . . )f ,

fxx = (. . . )fx + (. . . )f .
diff/p

diff/x

shift/n

For r = 1, 2, . . . until a nonzero equation can be found, solve:

∑
u+v≤r

cu,v (n, p)fnupv =
∂

∂x
(
b(n, p, x)fx + a(n, p, x)f

)
.
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Chyzak’s Algorithm (2000): an Example

∫ +1

−1
f (n, p, x) dx = F (n, p) = ?

fp = (. . . )fx + (. . . )f ,
fn = (. . . )fx + (. . . )f ,

fxx = (. . . )fx + (. . . )f .
diff/p

diff/x

shift/n

For r = 1, 2, . . . until a nonzero equation can be found, solve:

∑
u+v≤r

(. . . )cu,v (n, p)fx + (. . . )cu,v (n, p)f =
∂

∂x
(
b(n, p, x)fx + a(n, p, x)f

)
.
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Chyzak’s Algorithm (2000): an Example

∫ +1

−1
f (n, p, x) dx = F (n, p) = ?

fp = (. . . )fx + (. . . )f ,
fn = (. . . )fx + (. . . )f ,

fxx = (. . . )fx + (. . . )f .
diff/p

diff/x

shift/n

For r = 1, 2, . . . until a nonzero equation can be found, solve:

∑
u+v≤r

(. . . )cu,v fx + (. . . )cu,v f =
(
(. . . )b + bx + a

)
fx +

(
(. . . )b + ax

)
f .
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Chyzak’s Algorithm (2000): an Example

∫ +1

−1
f (n, p, x) dx = F (n, p) = ?

fp = (. . . )fx + (. . . )f ,
fn = (. . . )fx + (. . . )f ,

fxx = (. . . )fx + (. . . )f .
diff/p

diff/x

shift/n

For r = 1, 2, . . . until a nonzero equation can be found, solve:

∑
u+v≤r

(. . . )cu,v = (. . . )b + bx + a and ∑
u+v≤r

(. . . )cu,v = (. . . )b + ax .
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Chyzak’s Algorithm (2000): an Example

∫ +1

−1
f (n, p, x) dx = F (n, p) = ?

fp = (. . . )fx + (. . . )f ,
fn = (. . . )fx + (. . . )f ,

fxx = (. . . )fx + (. . . )f .
diff/p

diff/x

shift/n

For r = 1, 2, . . . until a nonzero equation can be found:
eliminating a yields: bxx + (. . . )bx + (. . . )b = ∑

u+v≤r
(. . . )cu,v ;

a variant of Abramov’s decision algorithm finds b ∈ Q(n, p, x) and
the cu,v ∈ Q(n, p); substituting next gives a.
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Chyzak’s Algorithm (2000): an Example

∫ +1

−1
f (n, p, x) dx = F (n, p) = ?

fp = (. . . )fx + (. . . )f ,
fn = (. . . )fx + (. . . )f ,

fxx = (. . . )fx + (. . . )f .
diff/p

diff/x

shift/n

For the running example, the algorithm stops at r = 2 and outputs:

pfp + pfn − nf = gx for ng = (1− x2)fx +
(
p(1− x2)− x

)
f ,

pfnn − 2(n + 1)fn − pf = gx for
ng = 2x(1− x2)fx + 2

(
(px + n)(1− x2)− x2

)
f .
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Chyzak’s Algorithm (2000): an Example

∫ +1

−1
f (n, p, x) dx = F (n, p) = (−1)nπIn(p)

fp = (. . . )fx + (. . . )f ,
fn = (. . . )fx + (. . . )f ,

fxx = (. . . )fx + (. . . )f .
diff/p

diff/x

shift/n

Upon integrating and using properties of Tn(±1):

pFp + pFn − nF = [g ]x=+1
x=−1 = 0,

pFnn − 2(n + 1)Fn − pF = [g ]x=+1
x=−1 = 0.

One recognizes the equations for the right-hand side (−1)nπIn(p).
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[chyzak@slowfox (16:08:44) ~]$ maple -b Mgfun.mla -B
|\^/| Maple 2018 (X86 64 LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2018
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> with(Mgfun);
[MG_Internals, creative_telescoping, dfinite_expr_to_diffeq,

dfinite_expr_to_rec, dfinite_expr_to_sys, diag_of_sys, int_of_sys,

pol_to_sys, rational_creative_telescoping, sum_of_sys, sys*sys, sys+sys]

> f := ChebyshevT(n,x)/sqrt(1-x^2)*exp(-p*x);
ChebyshevT(n, x) exp(-p x)

f := --------------------------
2 1/2

(-x + 1)

> ct := creative_telescoping(f, {n::shift, p::diff}, x::diff);
memory used=30.3MB, alloc=78.3MB, time=0.37

/d \
ct := [[p _F(n + 1, p) + p |-- _F(n, p)| - n _F(n, p),

\dp /

x _f(n, p, x) - _f(n + 1, p, x)], [

-p _F(n, p) + p _F(n + 2, p) + (-2 n - 2) _F(n + 1, p),

-2 x _f(n + 1, p, x) + 2 _f(n, p, x)]]

Frédéric Chyzak Generalized Hermite Reduction and the Integration of D-Finite Functions



11 / 24

Creative telescoping Hermite reduction Generalized Hermite

Chyzak’s Algorithm: Three Issues

1 The telescoper (wanted output) is a by-product of the certificate,
which is obtained in dense, expanded form (likely to be unneeded in
further calculations).

2 In dense, expanded form, the certificate is intrinsically large.
3 The rational-solving step is sensitive to r , allowing for little reuse of

intermediate calculations.

Example (walks in N2 using ↖,←, ↓,→,↗, counted by length):∮ ∮ −(1+ x)(1+ x2 − xy2)
(1+ x2)(1− y)(t − xy + ty + tx2 + tx2y + txy2) dx dy

(16312320t20 + · · · )ft5 + (407808000t19 + · · · )ft4 + . . . =
∂g
∂x +

∂h
∂y

LHS = 2 kB, g = 33 kB, h = 896 kB

Frédéric Chyzak Generalized Hermite Reduction and the Integration of D-Finite Functions



11 / 24

Creative telescoping Hermite reduction Generalized Hermite

Chyzak’s Algorithm: Three Issues
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Rational Integration: the Classics

Hermite reduction (Ostrogradsky, 1833, 1844/45; Hermite, 1872)
Given P/Q, Hermite reduction finds polynomials A and a such that∫ P(x)

Q(x) dx =
A(x)

Q−(x) +
∫ a(x)

Q∗(x) dx ,

where Q∗(x) is the squarefree part of Q(x), Q(x) = Q−(x)Q∗(x), and
deg a < deg Q∗.

Squarefree factorization
Given Q monic, one can in good complexity compute m and 2-by-2
coprime monic Qi satisfying

Q = Q1
1Q2

2 . . . Qm
m , Q− = Q1

2 . . . Qm−1
m , Q∗ = Q1Q2 . . . Qm.
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Rational Integration: the Classics

Hermite reduction (Ostrogradsky, 1833, 1844/45; Hermite, 1872)
Given P/Q, Hermite reduction finds polynomials A and a such that∫ P(x)

Q(x) dx =
A(x)

Q−(x) +
∫ a(x)

Q∗(x) dx ,

where Q∗(x) is the squarefree part of Q(x), Q(x) = Q−(x)Q∗(x), and
deg a < deg Q∗.

Logarithmic part = obstruction to existence of rational primitive
For R(w) = resx (b(x), a(x)− b′(x)w),∫ a(x)

b(x) dx = ∑
R(c)=0

c ln(gcd(b(x), a(x)− b′(x)c))

(Trager, 1976).
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Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

F (t) :=
∮ P(t, x)

Q(t, x) dx = ? ODE w.r.t. t?

Hermite reduction in K (x)
Given P/Q, find polynomials A and a with deg a < deg Q∗ such that∫ P

Q dx =
A

Q− +
∫ a

Q∗ dx .
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Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

F (t) :=
∮ P(t, x)

Q(t, x) dx = ? ODE w.r.t. t?

Hermite reduction in K (x)
Given P/Q, find polynomials A and a with deg a < deg Q∗ such that

P
Q =

∂

∂x

(
A

Q−

)
+

a
Q∗ .
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Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

F (t) :=
∮ P(t, x)

Q(t, x) dx = ? ODE w.r.t. t?

Bivariate Hermite reduction for creative telescoping in K (t, x)

P
Q =

∂

∂x

(
A(0)

Q−

)
+

a(0)
Q∗ .
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Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

F (t) :=
∮ P(t, x)

Q(t, x) dx = ? ODE w.r.t. t?

Bivariate Hermite reduction for creative telescoping in K (t, x)

P
Q =

∂

∂x

(
A(0)

Q−

)
+

a(0)
Q∗ .

(
P
Q

)
t
=

∂

∂x

((
A(0)

Q−

)
t

)
+

a(0)t
Q∗ −

a(0)Q∗t
(Q∗)2 .

Frédéric Chyzak Generalized Hermite Reduction and the Integration of D-Finite Functions



13 / 24

Creative telescoping Hermite reduction Generalized Hermite

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

F (t) :=
∮ P(t, x)

Q(t, x) dx = ? ODE w.r.t. t?

Bivariate Hermite reduction for creative telescoping in K (t, x)

P
Q =

∂

∂x

(
A(0)

Q−

)
+

a(0)
Q∗ .

(
P
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∂
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)
t
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∂
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Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

F (t) :=
∮ P(t, x)

Q(t, x) dx = ? ODE w.r.t. t?

Bivariate Hermite reduction for creative telescoping in K (t, x)

P
Q =

∂

∂x

(
A(0)

Q−

)
+

a(0)
Q∗ .

(
P
Q

)
t
=

∂

∂x

((
A(0)

Q−

)
t
+

B(0)

Q∗

)
+

a(0)t + b(0)

Q∗ .
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Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

F (t) :=
∮ P(t, x)

Q(t, x) dx = ? ODE w.r.t. t?

Bivariate Hermite reduction for creative telescoping in K (t, x)

P
Q =

∂

∂x

(
A(0)

Q−

)
+

a(0)
Q∗ .

(
P
Q

)
t
=

∂

∂x

(
E (1)

)
+

a(1)
Q∗ .
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Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

F (t) :=
∮ P(t, x)

Q(t, x) dx = ? ODE w.r.t. t?

Bivariate Hermite reduction for creative telescoping in K (t, x)

P
Q =

∂

∂x

(
A(0)

Q−

)
+

a(0)
Q∗ .

(
P
Q

)
t i
=

∂

∂x

(
E (i)

)
+

a(i)
Q∗ .
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Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

F (t) :=
∮ P(t, x)

Q(t, x) dx = ? ODE w.r.t. t?

Bivariate Hermite reduction for creative telescoping in K (t, x)

P
Q =

∂

∂x

(
A(0)

Q−

)
+

a(0)
Q∗ .

(
P
Q

)
t i
=

∂

∂x

(
E (i)

)
+

a(i)
Q∗ .

Confinement degx a(i) < d := degx Q∗ ≤ degx Q:

d
∑
i=0

ci (t)a(i)(t, x) = 0 =⇒
d
∑
i=0

ciFt i = 0.

Incremental algorithm that does not compute (P/Q)t i .
Degree bounds in K (t) + eval./interpol. =⇒ good complexity.
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Key Idea: Reduce Coordinates, not Functions
�
�

�
�

D-finite functions can have complicated singularities.
Rational functions have only poles.

Previous algorithms New algorithm

f → [f ] f = R0 f → [R0] f
ft → [ft ] ft = R1 f → [R1] f

ftt → [ftt ] ftt = R2 f → [R2] f
...

...
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Operator Notation

Algebra of linear differential operators with rational coefficients

A = K (t, x)〈∂t , ∂x 〉, Mf = A(f ) = {P(f ) : P ∈ A}
P = ∑ pi ,j (t, x)∂i

t ∂j
x ∈ A =⇒ P(f ) = ∑ pi ,j (t, x)ft i x j ∈ Mf

S = K (t, x)〈∂x 〉 ⊂ A

Hypotheses of D-finiteness
f is D-finite w.r.t. A =⇒ d := dimK (t,x)(Mf ) < ∞.

Let h ∈ Mf be cyclic, that is to say, Mf =
⊕d−1

i=0 K (t, x)hx i = S(h).
For all g ∈ Mf , there is Ag ∈ S such that g = Ag (h).

Interpretation of creative telescoping
Given f , find a telescoper T ∈ K (t)〈∂t〉 and a certificate g ∈ Mf such
that T (f ) = ∂x (g). This really computes

(
K (t)〈∂t〉

)
(f ) ∩ ∂x (Mf ).
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Lagrange’s Identity

Dual of operators

P =
r

∑
i=0

pi (t, x)∂i
x ∈ S

∗←→ P∗ =
r

∑
i=0

(−∂x )
ipi (t, x) ∈ S

Lagrange’s identity
There is a map LP , bilinear w.r.t. (h, . . . , hx (r−1)) and (u, . . . , ux (r−1)),
such that

∀u ∈ K (t, x), ∀h ∈ Mf , uP(h)− P∗(u)h = ∂x (LP(h, u)).

Proof: LP(h, u) =
r

∑
i=0

i−1
∑
j=0

(−1)j (piu)x j hx i−j−1 .
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Consequences of Lagrange’s Identity

Lagrange’s identity:

∀h ∈ Mf , ∀u ∈ K (t, x), uP(h)− P∗(u)h = ∂x (LP(h, u)).

Let h be cyclic and L ∈ S be such that L(h) = 0. Then, for all g ∈ Mf :

Operator to rational function: A(f ) = S(h)→ K (t, x)h
g ∈ A∗g (1)h + ∂x (Mf ). [by u = 1, P = Ag ]

Equivalent rational factors: K (t, x)h→
(
K (t, x) mod L∗

(
K (t, x)

))
h

∀u ∈ K (t, x), g ∈
(
A∗g (1)− L∗(u)

)
h + ∂x (Mf ).

Testing derivatives (for L of minimal order)
g ∈ ∂x (Mf )∃q ∈ K (t, x), A∗g (1) = L∗(q).
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)
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Testing derivatives (for L of minimal order)
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(
K (t, x)

))
h

∀u ∈ K (t, x), g ∈
(
A∗g (1)− L∗(u)

)
h + ∂x (Mf ). [by P = L]

Testing derivatives (for L of minimal order)
g ∈ ∂x (Mf )⇒ ∃q ∈ K (t, x), A∗g (1) = L∗(q). [by A∗g (1) ∈ ∂x S + SL]
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Consequences of Lagrange’s Identity

Lagrange’s identity:

∀h ∈ Mf , ∀u ∈ K (t, x), uP(h)− P∗(u)h = ∂x (LP(h, u)).

Let h be cyclic and L ∈ S be such that L(h) = 0. Then, for all g ∈ Mf :

Operator to rational function: A(f ) = S(h)→ K (t, x)h
g ∈ A∗g (1)h + ∂x (Mf ).

Equivalent rational factors: K (t, x)h→
(
K (t, x) mod L∗

(
K (t, x)

))
h

∀u ∈ K (t, x), g ∈
(
A∗g (1)− L∗(u)

)
h + ∂x (Mf ). [Reduction?]

Testing derivatives (for L of minimal order)
g ∈ ∂x (Mf )⇔ ∃q ∈ K (t, x), A∗g (1) = L∗(q). [Algorithm?]
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Running Example (continued)

Problem

Integrate f (n, p, x) = exp(−px)Tn(x)√
1− x2

w.r.t. x and prove the identity

F (n, p) :=
∫ +1

−1
f (n, p, x) dx = (−1)nπIn(p).

In operator notation, f is cancelled by all left-linear combinations of:

∂p + x1, n∂n + (1− x2)∂x +
(
p(1− x2)− (n + 1)x

)
1,

(1− x2)∂2x − (2px2 + 3x − 2p)∂x − (p2x2 + 3px − n2 − p2 + 1)1.

Goal: Find a telescoper such that there is a certificate satisfying

∑
u,v

cu,v (n, p)∂u
n∂v

p = ∂x (b(n, p, x)∂x + a(n, p, x)1)

modulo the operators above.
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1− x2

w.r.t. x and prove the identity

F (n, p) :=
∫ +1

−1
f (n, p, x) dx = (−1)nπIn(p).

In operator notation, f is cyclic, so h := f , and it is cancelled by:

∂p + x1, n∂n + (1− x2)∂x +
(
p(1− x2)− (n + 1)x

)
1,

L := (1− x2)∂2x − (2px2 + 3x − 2p)∂x − (p2x2 + 3px − n2 − p2 + 1)1.
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modulo the operators above.
Frédéric Chyzak Generalized Hermite Reduction and the Integration of D-Finite Functions



19 / 24

Creative telescoping Hermite reduction Generalized Hermite

Reduction-Based CT Algorithm (2018): an Example
∫ +1

−1
f (n, p, x) dx = F (n, p) = ?

L1 := ∂p − (. . . )∂x − (. . . )1,
L2 := ∂n − (. . . )∂x − (. . . )1,
L3 := ∂2x − (. . . )∂x − (. . . )1.

L := L3, I := AL1 + AL2 + AL3.
diff/p

diff/x

shift/n
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Reduction-Based CT Algorithm (2018): an Example
∫ +1

−1
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L2 := ∂n − (. . . )∂x − (. . . )1,
L3 := ∂2x − (. . . )∂x − (. . . )1.

L := L3, I := AL1 + AL2 + AL3.
diff/p

diff/x

shift/n

For P = 1, ∂n, ∂p , ∂2n, ∂n∂p , ∂2p :
set g = P(h), so that Ag = rem(P, I) = v(p, n, x)∂x + u(p, n, x)1,

A∗g = −v∂x + (u − vx ), so that g = (u − vx )f + ∂x (. . . ).
For those P, u − vx ∈ K (p, n)[x ] with degree ≤ 3, while

L∗(p2x0) = p2x2 − px − (n2 + p2),
L∗(p2x1) = p2x3 − 3px2 − (n2 + p2 − 1)x + 2p.
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L∗(p2x1) = p2x3 − 3px2 − (n2 + p2 − 1)x + 2p.
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Reduction-Based CT Algorithm (2018): an Example
∫ +1

−1
f (n, p, x) dx = F (n, p) = ?

L1 := ∂p − (. . . )∂x − (. . . )1,
L2 := ∂n − (. . . )∂x − (. . . )1,
L3 := ∂2x − (. . . )∂x − (. . . )1.

L := L3, I := AL1 + AL2 + AL3.
diff/p

diff/x

shift/n

For P = 1, ∂n, ∂p , ∂2n, ∂n∂p , ∂2p :
set g = P(h), so that Ag = rem(P, I) = v(p, n, x)∂x + u(p, n, x)1,
A∗g = −v∂x + (u − vx ), so that g = (u − vx )f + ∂x (. . . ).
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Reduction-Based CT Algorithm (2018): an Example
∫ +1

−1
f (n, p, x) dx = F (n, p) = ?

L1 := ∂p − (. . . )∂x − (. . . )1,
L2 := ∂n − (. . . )∂x − (. . . )1,
L3 := ∂2x − (. . . )∂x − (. . . )1.

L := L3, I := AL1 + AL2 + AL3.
diff/p

diff/x

shift/n

For P = 1, ∂n, ∂p , ∂2n, ∂n∂p , ∂2p :

P(f ) = (u − vx )f + ∂x (. . . ) =
(
µP(p, n)x1 + λP(p, n)x0

)
f + ∂x (. . . ).

Linear algebra over K (p, n) finds a basis of telescopers(
∑
P

cPP
)
(f ) = ∂x (. . . ).
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Reduction Modulo L∗(K (x))

Local decomposition of a rational function R ∈ K (x)

R = R(∞) + ∑
α

R(α) for some R(α) ∈ 1
x−α K (α)[ 1

x−α ] and R(∞) ∈ K [x ].

Weak reduction strategy
reduce at finite α (in any order) before at ∞,
skip monomials for which Iα(−s − σα) = 0 or I∞(−s − σ∞) = 0.
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Reduction Modulo L∗(K (x))

Local decomposition of a rational function R ∈ K (x)

R = R(∞) + ∑
α

R(α) for some R(α) ∈ 1
x−α K (α)[ 1

x−α ] and R(∞) ∈ K [x ].

Local study of the action of L∗

∃ polynomials Iα and I∞, ∃ integers σα and σ∞, such that ∀s ∈ Z,

L∗
(
(x − α)−s) =

x→α
Iα(−s)(x − α)σα−s +O((x − α)σα−(s−1)),

L∗
(
(1/x)−s) =

x→∞
I∞(−s)(1/x)σ∞−s +O((1/x)σ∞−(s−1)).

Weak reduction strategy
reduce at finite α (in any order) before at ∞,
skip monomials for which Iα(−s − σα) = 0 or I∞(−s − σ∞) = 0.
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Canonical Form Modulo L∗(K (x))

Problem: L∗(K (x)) does not weakly reduce to {0}

For c0 = Iα(−s − σα) and some c1, write R := L∗
(
(x − α)−s−σα

)
as

R = c0(x − α)−s + c1(x − α)−(s−1) +O((x − α)−(s−2)).
If c0 6= 0, this reduces to

L∗
(
(x − α)−s−σα − (x − α)−s−σα

)
= 0.

If c0 = 0 and c1 6= 0, this reduces to some

L∗
(
(x − α)−s−σα − c1

c2
(x − α)−(s−1)−σα

)
,

which is unlikely to further reduce to 0.

Solution
finitely-many potential obstructions, described by the integer zeros
of the Iα and I∞,
this can be computed, leading to a canonical-form computation.
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[chyzak@slowfox (04:21:54) ~]$ maple -b Mgfun.mla -B
|\^/| Maple 2018 (X86 64 LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2018
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> read "redct.mpl";
> f := ChebyshevT(n,x)/sqrt(1-x^2)*exp(-p*x);

ChebyshevT(n, x) exp(-p x)
f := --------------------------

2 1/2
(-x + 1)

> redct(Int(f,x=-1..1),[n::shift,p::diff]);
memory used=3.5MB, alloc=8.3MB, time=0.09

2
[p D[n] + p D[p] - n, p D[n] - 2 n D[n] - p - 2 D[n]]

> f := 2*BesselJ(m+n,2*t*x)*ChebyshevT(m-n,x)/sqrt(1-x^2);
2 BesselJ(m + n, 2 t x) ChebyshevT(m - n, x)

f := --------------------------------------------
2 1/2

(-x + 1)

> redct(Int(f,x),[t::diff, n::shift, m::shift]);
memory used=1189.8MB, alloc=144.8MB, time=9.98

2
[t D[m] + t D[n] + t D[t] - m - n, t D[m] - 2 m D[m] + t - 2 D[m],

2
t D[n] - 2 n D[n] + t - 2 D[n]]
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Timings: More than 140 integrals tested
Algorithm (1) (2) (3) (4) (5) (6) (7)
new (mpl) 13s > 1h > 1h 1.5s 1.5s 165s 53s
Chyzak’s (mma) 19s 253s 45s 232s 516s >1h >1h
Koutschan’s (mma) 1.9s† 2.3s 5.3s >1h 2.3s† 5.4s 2.2s†

∫ 2Jm+n (2tx)Tm−n (x)√
1− x2

dx [diff. t, shift n and m], (1)

∫ 1
0

C(λ)
n (x)C(λ)

m (x)C(λ)
`

(x)(1− x2)λ−
1
2 dx [shift n, m, `], (2)

∫ ∞

0
xJ1(ax)I1(ax)Y0(x)K0(x) dx [diff. a], (3)

∫
n2+x+1

n2+1

(
(x+1)2

(x−4)(x−3)2(x2−5)3

)n√
x2 − 5 e

x3+1
x(x−3)(x−4)2 dx

[shift n],

(4)

∫
C(µ)

m (x)C(ν)
n (x)(1− x2)ν−1/2 dx [shift n, m, µ, ν],

(5)∫
x`C(µ)

m (x)C(ν)
n (x)(1− x2)ν−1/2 dx [shift `, m, n, µ, ν],

(6)∫
(x + a)γ+λ−1(a− x)β−1C(γ)

m (x/a)C(λ)
n (x/a) dx

[diff. a, shift n, m, β, γ, λ].
(7)

†: Heuristic got these faster answers by looking for telescopers of non-minimal
orders, yet smaller sizes.

Need to investigate failures:
non-mathematical bugs? “not ours”?
impact of apparent singularities of P∗?
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Summary

Approach by solving functional equations (1991+)

see failures to solve as obstructions,
recombine obstructions

Primal reduction-based approach (2010+)

work on rational coordinates
to simplify singularities,
Lagrange’s formula

Dual reduction-based approach (2018)
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