Generalized Hermite Reduction, Creative Telescoping, and Definite Integration of D-Finite Functions

Frédéric Chyzak

February 10-14, 2020, DART X (New York City, USA)
The 10th international workshop on Differential Algebra and Related Topics Based on joint work with A. Bostan, P. Lairez, and B. Salvy

Parametrized Definite Integrals

$$
\begin{aligned}
& \int_{0}^{+\infty} x J_{1}(a x) I_{1}(a x) Y_{0}(x) K_{0}(x) d x=-\frac{\ln \left(1-a^{4}\right)}{2 \pi a^{2}} \quad \text { (Glasser \& Montaldi, 1994) } \\
& \int_{0}^{\infty} \int_{0}^{\infty} J_{1}(x) J_{1}(y) J_{2}(c \sqrt{x y}) \frac{d x d y}{e^{x+y}} \quad \text { (has a 2nd-order linear ODE) } \\
& \frac{1}{2 \pi i} \oint \frac{\left(1+2 x y+4 y^{2}\right) \exp \left(\frac{4 x^{2} y^{2}}{1+4 y^{2}}\right)}{y^{n+1}\left(1+4 y^{2}\right)^{\frac{3}{2}}} d y=\frac{H_{n}(x)}{\lfloor n / 2\rfloor!} \\
& \quad \int_{-1}^{+1} \frac{e^{-p x} T_{n}(x)}{\sqrt{1-x^{2}}} d x=(-1)^{n} \pi I_{n}(p) \\
& \quad \text { (Doetsch, 1930) } \\
& \int_{0}^{+\infty} x e^{-p x^{2} J_{n}(b x) I_{n}(c x) d x=\frac{1}{2 p} \exp \left(\frac{c^{2}-b^{2}}{4 p}\right) J_{n}\left(\frac{b c}{2 p}\right)} \\
& \frac{1}{(2 i \pi)^{2}} \oint \oint \frac{f(s, t / s, x / t)}{s t} d s d t=1+6 \cdot \int_{0}^{x} \frac{2 F_{1}\left(\begin{array}{c}
1 / 3,2 / 3 \\
2
\end{array} \frac{27 w(2-3 w)}{(1-4 w)^{3}}\right)}{(1-4 w)(1-64 w)} d w \\
& \text { where } f(s, t, u)=\frac{(1-s)(1-t)(1-u)}{1-2(s+t+u)+3(s t+t u+u s)-4 s t u}
\end{aligned}
$$

(Bostan, Chyzak, van Hoeij, Pech, 2011)

Differentiating under the Integral Sign

Zeilberger's derivation (1982) of a classical integral

$$
\begin{aligned}
& \text { Given } f(b, x)=e^{-x^{2}} \cos 2 b x, \text { find } F(b)=\int_{-\infty}^{+\infty} f(b, x) d x=? \\
& \frac{d F}{d b}(b)=\int_{-\infty}^{+\infty}-2 x e^{-x^{2}} \sin 2 b x d x= \\
& \quad\left[e^{-x^{2}} \sin 2 b x\right]_{x=-\infty}^{x=+\infty}+\int_{-\infty}^{+\infty}-2 b e^{-x^{2}} \cos 2 b x d x=-2 b F(b) .
\end{aligned}
$$

Differentiating under the Integral Sign

Zeilberger's derivation (1982) of a classical integral

$$
\begin{aligned}
& \text { Given } f(b, x)=e^{-x^{2}} \cos 2 b x, \text { find } F(b)=\int_{-\infty}^{+\infty} f(b, x) d x=? \\
& \frac{d F}{d b}(b)=\int_{-\infty}^{+\infty}-2 x e^{-x^{2}} \sin 2 b x d x= \\
& \quad\left[e^{-x^{2}} \sin 2 b x\right]_{x=-\infty}^{x=+\infty}+\int_{-\infty}^{+\infty}-2 b e^{-x^{2}} \cos 2 b x d x=-2 b F(b)
\end{aligned}
$$

Continuous form of "Creative Telescoping":

$$
\frac{d f}{d b}(b, x)+2 b f(b, x)=\frac{d g}{d x}(b, x) \quad \text { for } \quad g(b, x)=-\frac{1}{2 x} \frac{d f}{d b}(b, x)
$$

After integration over x from $-\infty$ to $+\infty$:

$$
\frac{d F}{d b}(b)+2 b F(b)=\left[\frac{d g}{d x}(b, x)\right]_{x=-\infty}^{x=+\infty}=0-0=0
$$

Hermite Reduction (1872)

$$
E A-m F A^{\prime}=P \Longrightarrow \int \frac{P}{A^{m+1}}=\frac{F}{A^{m}}+\int \frac{E+F^{\prime}}{A^{m}}
$$

Cela posé, l'intégrale $\int \frac{\mathrm{P} d x}{\Lambda^{a+1}}$ se traitera comme il suil : nous effecetuerons sur A et sa dérivee A^{\prime} les opérations du plus grand commun diviseur, de manière à obtenir deux polynòmes G et H, satisfaisant a la condition

$$
\mathrm{AG}-\mathrm{A}^{\prime} \mathrm{H}=1 .
$$

Nous formerons ensuite deux series de tonctions enteres:

$$
\begin{aligned}
& \mathbf{V}_{s}, v_{1}, \ldots, V_{w-1}, \\
& P_{i}, P_{2}, \ldots, P_{k},
\end{aligned}
$$

par ces relations, où les polynòmes Q, Q_{4}, Q_{1}, \ldots sont entièrement arbitraires, savoir :

$$
\begin{aligned}
& \alpha \mathrm{V},=\mathrm{HP}-\mathrm{AQ}, \\
& (\alpha-1) V_{1}=H P_{1}-A Q_{1}, \\
& (\alpha-2) V_{2}=H P_{1}-A Q_{1} \text {, } \\
& \mathbf{V}_{\mathrm{a}-\mathrm{t}}=H \mathrm{P}_{\mathrm{n}-1}-\mathrm{A} \mathrm{Q}_{\mathrm{n}-11} \\
& \mathrm{P}_{\mathrm{t}}=\mathrm{GP}-\mathrm{A}^{\prime} \mathbf{0}-\mathrm{V}_{\mathrm{t}}^{\prime}, \\
& \mathbf{P}_{\mathbf{r}}=\mathrm{G} \mathbf{P}_{\mathrm{t}}-\mathrm{A}^{\prime} \mathbf{Q}_{\mathbf{1}}-\mathbf{V}_{\mathrm{t}}^{\prime} \\
& \mathrm{P}_{\mathrm{s}}=\mathrm{GP}_{\alpha-1}-\mathrm{A}^{\prime} \mathrm{Q}_{\alpha-1}-\mathrm{V}_{\alpha-}^{\prime}
\end{aligned}
$$

Maintenant je prouverai qu'en faisant

$$
\begin{aligned}
& \mathbf{V}=\mathrm{V}_{\mathrm{s}}+\mathrm{A} \mathbf{V}_{\mathrm{t}}+\mathrm{A}^{:} \mathrm{V}_{2}+\ldots+\mathrm{A}^{0-1} \mathrm{~V}_{\mathrm{en}}, \\
& \mathrm{U}=\mathbf{P}_{\mathrm{x}},
\end{aligned}
$$

on a l'égalité

$$
\frac{\mathrm{P}}{\mathrm{~A}^{\alpha+1}}=\frac{\mathrm{U}}{\mathrm{~A}}+\left(\frac{\mathrm{V}}{\mathrm{~A}^{\prime}}\right)^{\prime} ;
$$

d'ou

$$
\int \frac{\mathrm{P} d x}{\mathrm{~A}^{x+1}}=\int \frac{\mathrm{U} d x}{\mathrm{~A}}+\frac{\mathrm{V}}{\mathrm{~A}^{2}},
$$

de sorte que $\frac{V}{\Lambda^{a}}$ est la partie algébrique de l'intégrale proposée, et $\int \frac{\mathrm{U} d x}{\boldsymbol{A}}$ la partie transcendante.
A cet effet, j'élimine G et H entre les trois égalités

$$
\begin{aligned}
\mathrm{AG}-\mathrm{A}^{\prime} \mathrm{H} & =\mathbf{1}, \\
(z-i) \mathrm{V}_{i} & =\mathrm{HP}_{i}-\mathrm{A} Q_{i}, \\
\mathrm{P}_{i+1} & =\mathrm{GP}_{i}-\mathrm{A}^{\prime} \mathrm{Q}_{i}-\mathrm{V}_{i}^{\prime},
\end{aligned}
$$

ce qui donne

$$
\mathbf{A} \mathbf{P}_{i+2}=\mathbf{P}_{i}+(\alpha-i) \mathbf{A}^{\prime} \mathbf{V}_{i}-\mathbf{A} \mathbf{V}_{i}^{\prime} .
$$

Or on peut écrire cette relation de la manière suivante :

$$
\frac{\mathbf{P}_{i}}{\mathbf{A}^{*-t+1}}-\frac{\mathbf{P}_{i+1}}{\mathbf{A}^{*-2}}=\left(\frac{\mathbf{V}_{i}}{\mathbf{A}^{\alpha-1}}\right)^{\prime}
$$

En supposant ensuite $i=0,1,2, \ldots, \alpha-1$ et ajoutant membre a membre, nous en conclurons

$$
\frac{P}{A^{x+1}}-\frac{P_{a}}{A}=\left(\frac{V_{1}}{A^{n}}+\frac{V_{1}}{A^{n-1}}+\cdots+\frac{V_{a-1}}{A}\right)^{\prime}
$$

ce qui fait bien voir qu'on satisfait a la condition proposée

$$
\frac{\mathbf{P}}{\mathbf{A}^{0+1}}=\frac{\mathbf{U}}{\mathrm{A}}+\left(\frac{\mathbf{V}}{\mathbf{A}^{x}}\right)^{\prime}
$$

par les valeurs

$$
\begin{aligned}
& V=V_{1}+A V_{1}+A^{2} V_{2}+\ldots+A^{*-1} V_{n-1}, \\
& U=P_{n},
\end{aligned}
$$

comme il s'agissait de le démontrer.

Ostrogradsky-Hermite Reduction

$$
E A-m F A^{\prime}=P \Longrightarrow \int \frac{P}{A^{m+1}}=\frac{F}{A^{m}}+\int \frac{E+F^{\prime}}{A^{m}}
$$

Cela posé, l'intégrale $\int \frac{\mathrm{p} d x}{\Lambda^{a+1}}$ se traitera comme il suil : nous effeectuerons sur A et sa dérivee A^{\prime} les opérations du plus grand commun diviseur, de manière à obtenir deux polynòmes G et H, satisfaisant à la condition

$$
\mathrm{AG}-\mathrm{N}^{\prime} \mathrm{H}=\mathrm{I} .
$$

Nous formerons ensuite deux sermes de 10nctions entueres:

$$
\begin{aligned}
& \mathbf{V}_{4}, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{a-1}}, \\
& \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{s},}
\end{aligned}
$$

par ces relations, où les polynòmes Q, Q_{4}, Q_{3}, \ldots sont entièrement arbitraires, savoir :

$$
\begin{aligned}
& \alpha \mathrm{V},=\mathrm{HP}-\mathrm{AQ}, \\
& (\alpha-1) V_{1}=H P_{4}-A Q_{1}, \\
& (\alpha-2) V_{2}=H P_{1}-A Q_{1} \text {, } \\
& \mathbf{V}_{\mathrm{axt}}=H \mathrm{P}_{\mathrm{x}-1}-\mathrm{A} Q_{\text {n-il }} \\
& \mathrm{P}_{\mathrm{t}}=\mathrm{GP}-\mathrm{A}^{\prime} \mathbf{0}-\mathrm{V}_{\mathrm{t}}^{\prime}, \\
& \mathbf{P}_{\mathbf{r}}=\mathrm{G} \mathbf{P}_{\mathrm{t}}-\mathrm{A}^{\prime} \mathbf{Q}_{\mathbf{1}}-\mathbf{V}_{\mathrm{t}}^{\prime} \\
& \mathrm{P}_{\mathrm{s}}=\mathrm{GP}_{\alpha-1}-\mathrm{A}^{\prime} \mathrm{Q}_{\alpha-1}-\mathrm{V}_{\alpha-\alpha}^{\prime} .
\end{aligned}
$$

Maintenant je prouverai qu'en faisant

$$
\begin{aligned}
& \mathbf{V}=\mathbf{V}_{0}+A \mathbf{V}_{t}+A^{:} \mathbf{V}_{2}+\ldots+A^{0-1} V_{e-1,} \\
& \mathrm{U}=\mathbf{P}_{\mathrm{x}},
\end{aligned}
$$

on a l'égalité

$$
\frac{\mathrm{P}}{\mathrm{~A}^{\alpha+1}}=\frac{\mathrm{U}}{\mathrm{~A}}+\left(\frac{\mathrm{V}}{\mathrm{~A}^{\boldsymbol{c}}}\right)^{\prime}
$$

d'ou

$$
\int \frac{\mathrm{P} d x}{\mathrm{~A}^{x+1}}=\int \frac{\mathrm{U} d x}{\mathrm{~A}}+\frac{\mathrm{V}}{\mathrm{~A}^{2}},
$$

de sorte que $\frac{V}{\Lambda^{a}}$ est la partie algébrique de l'intégrale proposée, et $\int \frac{U d x}{\Delta}$ la partie transcendante.
A cet effet, j^{\prime} élimine \mathbf{G} et H entre les trois égalités

$$
\begin{aligned}
& \mathrm{AG}-\mathrm{A}^{\prime} \mathrm{H}=\mathbf{1}, \\
&(\alpha-i) \mathrm{V}_{i}=\mathrm{HP} \mathrm{P}_{i}-\mathrm{A} \mathrm{Q}_{i}, \\
& \mathrm{P}_{i+1}=\mathrm{GP}_{i}-\mathrm{A}^{\prime} Q_{i}-\mathrm{V}_{i}^{\prime}, \\
& \mathrm{AP}_{i+2}=\mathbf{P}_{i}+(\alpha-i) \mathrm{A}^{\prime} \mathrm{V}_{i}-\mathrm{AV}_{i}^{\prime}
\end{aligned}
$$

ce qui donne

Or on peut écrire cette relation de la manière suivante :

$$
\frac{\mathbf{P}_{i}}{\mathbf{A}^{*-l+1}}-\frac{\mathbf{P}_{i+1}}{\mathbf{A}^{*-2}}=\left(\frac{\mathbf{V}_{i}}{\mathbf{A}^{\alpha-1}}\right)^{\prime}
$$

En supposant ensuite $i=0,1,2, \ldots, \%-1$ et ajoutant membre a membre, nous en conclurons

$$
\frac{P}{A^{\alpha+1}}-\frac{P_{a}}{A}=\left(\frac{V_{1}}{A^{*}}+\frac{V_{1}}{A^{n-1}}+\cdots+\frac{V_{\alpha-1}}{A}\right)^{\prime}
$$

ce qui fait bien voir qu'on satisfaità la condition proposée

$$
\frac{\mathbf{P}}{\mathbf{A}^{a+1}}=\frac{\mathbf{U}}{\mathrm{A}}+\left(\frac{\mathbf{V}}{\mathbf{A}^{\alpha}}\right)^{\prime}
$$

par les valeurs

$$
\begin{aligned}
& \mathrm{V}=\mathrm{V}_{1}+\mathrm{A} \mathrm{~V}_{1}+\mathrm{A}^{2} \mathrm{~V}_{2}+\ldots+\mathrm{A}^{\epsilon-1} \mathrm{~V}_{*-1}, \\
& \mathrm{U}=\mathrm{P}_{*,},
\end{aligned}
$$

comme il s'agissait de le démontrer.

See also (Ostrogradsky, 1833, 1844/45).

Linear Differential Equations as a Data Structure

Def: differentially finite functions (a.k.a. D-finite)

A function $f(x)$ is D-finite if its derivatives $f(x), f^{\prime}(x), f^{\prime \prime}(x), \ldots$, span a finite-dimensional vector space over $\mathbb{C}(x)$.

Linear Differential Equations as a Data Structure

Def: multivariate D-finite functions

A function $f(x, y, z)$ is D-finite iff its derivatives $\frac{\partial^{i+j+k}}{\partial_{x}^{j} \partial_{y}^{j} \partial_{z}^{k}}(x, y, z)$, $i, j, k \geq 0$, span a finite-dimensional vector space over $\mathbb{C}(x, y, z)$.

Linear Differential Equations as a Data Structure

Def: multivariate ∂-finite functions

A function $f_{n, m}(x, y, z)$ is ∂-finite iff a similar confinement holds for derivatives w.r.t. x, y, z, shifts w.r.t. n, m, etc.

Creative Telescoping for Sums and Integrals

$U_{n}=\sum_{k=a}^{b} u_{n, k}=?$
Given a relation $a_{r}(n) u_{n+r, k}+\cdots+a_{0}(n) u_{n, k}=v_{n, k+1}-v_{n, k}$, summation leads by "telescoping" to

$$
a_{r}(n) U_{n+r}+\cdots+a_{0}(n) U_{n}=v_{n, b+1}-v_{n, a} \stackrel{\text { often }}{=} 0 .
$$

$U(t)=\int_{a}^{b} u(t, x) d x=?$
Given a relation $a_{r}(t) \frac{\partial^{r} u}{\partial t^{r}}+\cdots+a_{0}(t) u=\frac{\partial}{\partial x} v(t, x)$, integrating leads by "telescoping" to

$$
a_{r}(t) \frac{\partial^{r} U}{\partial t^{r}}+\cdots+a_{0}(t) U=v(t, b)-v(t, a) \stackrel{\text { often }}{=} 0 .
$$

Adapts easily to $U(t)=\sum_{k=a}^{b} u_{k}(t), \quad U_{n}=\int_{a}^{b} u_{n}(x) d x$, etc.

Creative Telescoping for Sums and Integrals

$$
U_{n}=\sum_{k=a}^{b} u_{n, k}=?
$$

Given a relation $a_{r}(n) u_{n+r, k}+\cdots+a_{0}(n) u_{n, k}=v_{n, k+1}-v_{n, k}$, summation leads by "telescoping" to

$$
a_{r}(n) U_{n+r}+\cdots+a_{0}(n) U_{n}=v_{n, b+1}-v_{n, a} \stackrel{\text { often }}{=} 0 .
$$

$U(t)=\int_{a}^{b} u(t, x) d x=?$
Given a relation $a_{r}(t) \frac{\partial^{r} u}{\partial t^{r}}+\cdots+a_{0}(t) u=\frac{\partial}{\partial x} v(t, x)$, integrating leads by "telescoping" to

$$
a_{r}(t) \frac{\partial^{r} U}{\partial t^{r}}+\cdots+a_{0}(t) U=v(t, b)-v(t, a) \stackrel{\text { often }}{=} 0 .
$$

Telescoper

Certificate

History of Algorithms for Creative Telescoping

Algorithmic Literature (≤ 2018)

Fasenmyer (1947, 1949); Rainville (1960); Verbaeten (1974); Gosper (1978); Lipshitz (1988); Zeilberger (1982, 1990, 1991); Takayama (1990); Almkvist, Zeilberger (1990); Wilf, Zeilberger (1992); Hornegger (1992); Koornwinder (1993); Paule, Schorn (1995); Majewicz (1996); Riese (1996); Petkovšek, Wilf, Zeilberger (1996); Paule, Riese (1997); Wegschaider (1997); Chyzak, Salvy (1998); Sturmfels, Takayama (1998); Chyzak (2000); Saito, Sturmfels, Takayama (2000); Oaku, Takayama (2001); Le (2001); Riese (2001); Tefera (2000, 2002); Riese (2003); Apagodu, Zeilberger (2006); Kauers (2007); Chen W.Y.C., Sun (2009); Chyzak, Kauers, Salvy (2009); Koutschan (2010); Bostan, Chen S., Chyzak, Li (2010); Chen S., Kauers, Singer (2012); Bostan, Lairez, Salvy (2013); Bostan, Chen S., Chyzak, Li, Xin (2013); Chen S., Huang, Kauers, Li (2015); Lairez (2016); Chen S., Kauers, Koutschan (2016); Huang (2016); Bostan, Dumont, Salvy (2016); Hoeven (2017); Chen S., Hoeij, Kauers, Koutschan (2018); Bostan, Chyzak, Lairez, Salvy (2018).

Applicable to

first-order vs higher-order equations; shift vs differential vs q-analogues vs mixed; ∂-finite vs non- ∂-finite; w/ vs wo/ certificate.

Approaches

- bound denominators + bound degrees + linear algebra
- bound denominators + solve functional equations
- elimination by skew Gröbner bases/skew resultants
- reduction of singularity order + linear algebra

History of Algorithms for Creative Telescoping

Algorithmic Literature (≤ 2018)

Fasenmyer (1947, 1949); Rainville (1960); Verbaeten (1974); Gosper (1978); Lipshitz (1988); Zeilberger (1982, 1990, 1991); Takayama (1990); Almkvist, Zeilberger (1990); Wilf, Zeilberger (1992); Hornegger (1992); Koornwinder (1993); Paule, Schorn (1995); Majewicz (1996); Riese (1996); Petkovšek, Wilf, Zeilberger (1996); Paule, Riese (1997); Wegschaider (1997); Chyzak, Salvy (1998); Sturmfels, Takayama (1998); Chyzak (2000); Saito, Sturmfels, Takayama (2000); Oaku, Takayama (2001); Le (2001); Riese (2001); Tefera (2000, 2002); Riese (2003); Apagodu, Zeilberger (2006); Kauers (2007); Chen W.Y.C., Sun (2009); Chyzak, Kauers, Salvy (2009); Koutschan (2010); Bostan, Chen S., Chyzak, Li (2010); Chen S., Kauers, Singer (2012); Bostan, Lairez, Salvy (2013); Bostan, Chen S., Chyzak, Li, Xin (2013); Chen S., Huang, Kauers, Li (2015); Lairez (2016); Chen S., Kauers, Koutschan (2016); Huang (2016); Bostan, Dumont, Salvy (2016); Hoeven (2017); Chen S., Hoeij, Kauers, Koutschan (2018); Bostan, Chyzak, Lairez, Salvy (2018).

Applicable to

first-order vs higher-order equations; shift vs differential vs q-analogues vs mixed; ∂-finite vs non- ∂-finite; w/ vs wo/ certificate.

Approaches

- bound denominators + bound degrees + linear algebra
- bound denominators + solve functional equations
- elimination by skew Gröbner bases/skew resultants
- reduction of singularity order + linear algebra

History of Algorithms for Creative Telescoping

Algorithmic Literature (≤ 2018)

Fasenmyer (1947, 1949); Rainville (1960); Verbaeten (1974); Gosper (1978); Lipshitz (1988); Zeilberger (1982, 1990, 1991); Takayama (1990); Almkvist, Zeilberger (1990); Wilf, Zeilberger (1992); Hornegger (1992); Koornwinder (1993); Paule, Schorn (1995); Majewicz (1996); Riese (1996); Petkovšek, Wilf, Zeilberger (1996); Paule, Riese (1997); Wegschaider (1997); Chyzak, Salvy (1998); Sturmfels, Takayama (1998); Chyzak (2000); Saito, Sturmfels, Takayama (2000); Oaku, Takayama (2001); Le (2001); Riese (2001); Tefera (2000, 2002); Riese (2003); Apagodu, Zeilberger (2006); Kauers (2007); Chen W.Y.C., Sun (2009); Chyzak, Kauers, Salvy (2009); Koutschan (2010); Bostan, Chen S., Chyzak, Li (2010); Chen S., Kauers, Singer (2012); Bostan, Lairez, Salvy (2013); Bostan, Chen S., Chyzak, Li, Xin (2013); Chen S., Huang, Kauers, Li (2015); Lairez (2016); Chen S., Kauers, Koutschan (2016); Huang (2016); Bostan, Dumont, Salvy (2016); Hoeven (2017); Chen S., Hoeij, Kauers, Koutschan (2018); Bostan, Chyzak, Lairez, Salvy (2018).

Applicable to

first-order vs higher-order equations; shift vs differential vs q-analogues vs mixed; ∂-finite vs non- ∂-finite; w/ vs wo/ certificate.

Approaches

- bound denominators + bound degrees + linear algebra
- bound denominators + solve functional equations
- elimination by skew Gröbner bases/skew resultants
- reduction of singularity order + linear algebra

Running Example

Problem

Integrate $f(n, p, x)=\frac{\exp (-p x) T_{n}(x)}{\sqrt{1-x^{2}}}$ w.r.t. x and prove the identity

$$
F(n, p):=\int_{-1}^{+1} f(n, p, x) d x=(-1)^{n} \pi I_{n}(p) .
$$

Running Example

Problem

Integrate $f(n, p, x)=\frac{\exp (-p x) T_{n}(x)}{\sqrt{1-x^{2}}}$ w.r.t. x and prove the identity

$$
F(n, p):=\int_{-1}^{+1} f(n, p, x) d x=(-1)^{n} \pi I_{n}(p)
$$

Generating LFEs by algorithm for closure under product yields:

$$
\begin{aligned}
& \begin{aligned}
\frac{\partial f}{\partial p}(n, p, x)+x f(n, p, x) & =
\end{aligned} \\
& \begin{aligned}
n f(n+1, p, x)+\left(1-x^{2}\right) & \frac{\partial f}{\partial x}(n, p, x)
\end{aligned} \\
&+\left(p\left(1-x^{2}\right)-(n+1) x\right) f(n, p, x)=0
\end{aligned} \quad \begin{aligned}
\left(1-x^{2}\right) \frac{\partial^{2} f}{\partial x^{2}}(n, p, x)- & \left(2 p x^{2}+3 x-2 p\right) \frac{\partial f}{\partial x}(n, p, x) \\
& -\left(p^{2} x^{2}+3 p x-n^{2}-p^{2}+1\right) f(n, p, x)=0
\end{aligned}
$$

Running Example

Problem

Integrate $f(n, p, x)=\frac{\exp (-p x) T_{n}(x)}{\sqrt{1-x^{2}}}$ w.r.t. x and prove the identity

$$
F(n, p):=\int_{-1}^{+1} f(n, p, x) d x=(-1)^{n} \pi I_{n}(p)
$$

Compact notation using $f_{n}=f(n+1, p, x), f_{x}=\frac{\partial f}{\partial x}(n, p, x)$, etc:

$$
\begin{gathered}
f_{p}+x f=0 \\
n f_{n}+\left(1-x^{2}\right) f_{x}+\left(p\left(1-x^{2}\right)-(n+1) x\right) f=0 \\
\left(1-x^{2}\right) f_{x x}-\left(2 p x^{2}+3 x-2 p\right) f_{x}-\left(p^{2} x^{2}+3 p x-n^{2}-p^{2}+1\right) f=0
\end{gathered}
$$

Running Example

Problem

Integrate $f(n, p, x)=\frac{\exp (-p x) T_{n}(x)}{\sqrt{1-x^{2}}}$ w.r.t. x and prove the identity

$$
F(n, p):=\int_{-1}^{+1} f(n, p, x) d x=(-1)^{n} \pi I_{n}(p)
$$

Compact notation using $f_{n}=f(n+1, p, x), f_{x}=\frac{\partial f}{\partial x}(n, p, x)$, etc:

$$
\begin{gathered}
f_{p}+x f=0 \\
n f_{n}+\left(1-x^{2}\right) f_{x}+\left(p\left(1-x^{2}\right)-(n+1) x\right) f=0 \\
\left(1-x^{2}\right) f_{x x}-\left(2 p x^{2}+3 x-2 p\right) f_{x}-\left(p^{2} x^{2}+3 p x-n^{2}-p^{2}+1\right) f=0
\end{gathered}
$$

Observe: any $f_{n^{u} p^{v} x^{w}}$ is a $\mathbb{Q}(n, p, x)$-linear combination of f_{x} and f.

Running Example

Problem

Integrate $f(n, p, x)=\frac{\exp (-p x) T_{n}(x)}{\sqrt{1-x^{2}}}$ w.r.t. x and prove the identity

$$
F(n, p):=\int_{-1}^{+1} f(n, p, x) d x=(-1)^{n} \pi I_{n}(p)
$$

Compact notation using $f_{n}=f(n+1, p, x), f_{x}=\frac{\partial f}{\partial x}(n, p, x)$, etc:

$$
\begin{gathered}
f_{p}+x f=0 \\
n f_{n}+\left(1-x^{2}\right) f_{x}+\left(p\left(1-x^{2}\right)-(n+1) x\right) f=0 \\
\left(1-x^{2}\right) f_{x x}-\left(2 p x^{2}+3 x-2 p\right) f_{x}-\left(p^{2} x^{2}+3 p x-n^{2}-p^{2}+1\right) f=0
\end{gathered}
$$

Goal: Find a telescoper such that there is a certificate satisfying

$$
\sum_{u, v} c_{u, v}(n, p) f_{n^{u} p^{v}}=g_{x} \quad \text { for } \quad g=b(n, p, x) f_{x}+a(n, p, x) f
$$

Chyzak's Algorithm (2000): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
f_{p}=(\ldots) f_{x}+(\ldots) f \\
f_{n}=(\ldots) f_{x}+(\ldots) f \\
f_{x x}=(\ldots) f_{x}+(\ldots) f
\end{gathered}
$$

For $r=1,2, \ldots$ until a nonzero equation can be found, solve:

$$
\sum_{u+v \leq r} c_{u, v}(n, p) f_{n^{u} p^{v}}=\frac{\partial}{\partial x}\left(b(n, p, x) f_{x}+a(n, p, x) f\right)
$$

Chyzak's Algorithm (2000): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
f_{p}=(\ldots) f_{x}+(\ldots) f \\
f_{n}=(\ldots) f_{x}+(\ldots) f \\
f_{x x}=(\ldots) f_{x}+(\ldots) f
\end{gathered}
$$

For $r=1,2, \ldots$ until a nonzero equation can be found, solve:

$$
\sum_{u+v \leq r}(\ldots) c_{u, v}(n, p) f_{x}+(\ldots) c_{u, v}(n, p) f=\frac{\partial}{\partial x}\left(b(n, p, x) f_{x}+a(n, p, x) f\right)
$$

Chyzak's Algorithm (2000): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
f_{p}=(\ldots) f_{x}+(\ldots) f \\
f_{n}=(\ldots) f_{x}+(\ldots) f \\
f_{x x}=(\ldots) f_{x}+(\ldots) f
\end{gathered}
$$

For $r=1,2, \ldots$ until a nonzero equation can be found, solve:
$\sum_{u+v \leq r}(\ldots) c_{u, v} f_{x}+(\ldots) c_{u, v} f=\left((\ldots) b+b_{x}+a\right) f_{x}+\left((\ldots) b+a_{x}\right) f$.

Chyzak's Algorithm (2000): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
f_{p}=(\ldots) f_{x}+(\ldots) f \\
f_{n}=(\ldots) f_{x}+(\ldots) f \\
f_{x x}=(\ldots) f_{x}+(\ldots) f
\end{gathered}
$$

For $r=1,2, \ldots$ until a nonzero equation can be found, solve:
$\sum_{u+v \leq r}(\ldots) c_{u, v}=(\ldots) b+b_{x}+a$ and $\sum_{u+v \leq r}(\ldots) c_{u, v}=(\ldots) b+a_{x}$.

Chyzak's Algorithm (2000): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
f_{p}=(\ldots) f_{x}+(\ldots) f \\
f_{n}=(\ldots) f_{x}+(\ldots) f \\
f_{x x}=(\ldots) f_{x}+(\ldots) f
\end{gathered}
$$

For $r=1,2, \ldots$ until a nonzero equation can be found:

- eliminating a yields: $b_{x x}+(\ldots) b_{x}+(\ldots) b=\sum_{u+v \leq r}(\ldots) c_{u, v}$;
- a variant of Abramov's decision algorithm finds $b \in \mathbb{Q}(n, p, x)$ and the $c_{u, v} \in \mathbb{Q}(n, p)$; substituting next gives a.

Chyzak's Algorithm (2000): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
f_{p}=(\ldots) f_{x}+(\ldots) f \\
f_{n}=(\ldots) f_{x}+(\ldots) f \\
f_{x x}=(\ldots) f_{x}+(\ldots) f
\end{gathered}
$$

For the running example, the algorithm stops at $r=2$ and outputs:

$$
\begin{aligned}
& p f_{p}+p f_{n}-n f=g_{x} \text { for } n g=\left(1-x^{2}\right) f_{x}+\left(p\left(1-x^{2}\right)-x\right) f \\
& p f_{n n}-2(n+1) f_{n}-p f=g_{x} \text { for } \\
& \qquad n g=2 x\left(1-x^{2}\right) f_{x}+2\left((p x+n)\left(1-x^{2}\right)-x^{2}\right) f
\end{aligned}
$$

Chyzak's Algorithm (2000): an Example

Upon integrating and using properties of $T_{n}(\pm 1)$:

$$
\begin{aligned}
p F_{p}+p F_{n}-n F & =[g]_{x=-1}^{x=+1}=0, \\
p F_{n n}-2(n+1) F_{n}-p F & =[g]_{x=-1}^{x=+1}=0 .
\end{aligned}
$$

One recognizes the equations for the right-hand side $(-1)^{n} \pi I_{n}(p)$.

```
[chyzak@slowfox (16:08:44) ~]$ maple -b Mgfun.mla -B
    \\^/| Maple 2018 (X86 64 LINUX)
._I\| |/I_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2018
    MAPLE / All rights reserved. Maple is a trademark of
    <_-_- _-__> Waterloo Maple Inc.
    Type ? for help.
> with(Mgfun);
[MG_Internals, creative_telescoping, dfinite_expr_to_diffeq,
    dfinite_expr_to_rec, dfinite_expr_to_sys, diag_of_sys, int_of_sys,
    pol_to_sys, rational_creative_telescoping, sum_of_sys, sys*sys, sys+sys]
> f := ChebyshevT(n,x)/sqrt(1-x^2)*exp(-p*x);
    ChebyshevT(n, x) exp(-p x)
    f := ------------------------
> ct := creative_telescoping(f, {n::shift, p::diff}, x::diff);
memory used=30.3MB, alloc=78.3MB, time=0.37
ct := [[p_F(n + 1, p) + p \ \d_ _d _F(n, p)\ \ n n_F(n, p),
    x _f(n, p, x) - _f(n + 1, p, x)], [
    -p _F(n, p) + p _F(n + 2, p) + (-2 n - 2) _F(n + 1, p),
    -2 x _f(n + 1, p, x) + 2 _f(n, p, x)]]
```


Chyzak's Algorithm: Three Issues

(1) The telescoper (wanted output) is a by-product of the certificate, which is obtained in dense, expanded form (likely to be unneeded in further calculations).
(3) In dense, expanded form, the certificate is intrinsically large.
(3) The rational-solving step is sensitive to r, allowing for little reuse of intermediate calculations.

Chyzak's Algorithm: Three Issues

(1) The telescoper (wanted output) is a by-product of the certificate, which is obtained in dense, expanded form (likely to be unneeded in further calculations).
(2) In dense, expanded form, the certificate is intrinsically large.
(3) The rational-solving step is sensitive to r, allowing for little reuse of intermediate calculations.

Example (walks in \mathbb{N}^{2} using $\nwarrow, \leftarrow, \downarrow, \rightarrow, \nearrow$, counted by length):

$$
\begin{gathered}
\oint \oint \frac{-(1+x)\left(1+x^{2}-x y^{2}\right)}{\left(1+x^{2}\right)(1-y)\left(t-x y+t y+t x^{2}+t x^{2} y+t x y^{2}\right)} d x d y \\
\left(16312320 t^{20}+\cdots\right) f_{t^{5}}+\left(407808000 t^{19}+\cdots\right) f_{t^{4}}+\ldots=\frac{\partial g}{\partial x}+\frac{\partial h}{\partial y} \\
\text { LHS }=2 \mathrm{kB}, \quad g=33 \mathrm{kB}, \quad h=896 \mathrm{kB}
\end{gathered}
$$

Rational Integration: the Classics

Hermite reduction (Ostrogradsky, 1833, 1844/45; Hermite, 1872)

Given P / Q, Hermite reduction finds polynomials A and a such that

$$
\int \frac{P(x)}{Q(x)} d x=\frac{A(x)}{Q^{-}(x)}+\int \frac{a(x)}{Q^{*}(x)} d x
$$

where $Q^{*}(x)$ is the squarefree part of $Q(x), Q(x)=Q^{-}(x) Q^{*}(x)$, and $\operatorname{deg} a<\operatorname{deg} Q^{*}$.

Squarefree factorization

Given Q monic, one can in good complexity compute m and 2-by-2 coprime monic Q_{i} satisfying

$$
Q=Q_{1}^{1} Q_{2}^{2} \ldots Q_{m}^{m}, \quad Q^{-}=Q_{2}^{1} \ldots Q_{m}^{m-1}, \quad Q^{*}=Q_{1} Q_{2} \ldots Q_{m} .
$$

Rational Integration: the Classics

Hermite reduction (Ostrogradsky, 1833, 1844/45; Hermite, 1872)

Given P / Q, Hermite reduction finds polynomials A and a such that

$$
\int \frac{P(x)}{Q(x)} d x=\frac{A(x)}{Q^{-}(x)}+\int \frac{a(x)}{Q^{*}(x)} d x
$$

where $Q^{*}(x)$ is the squarefree part of $Q(x), Q(x)=Q^{-}(x) Q^{*}(x)$, and $\operatorname{deg} a<\operatorname{deg} Q^{*}$.

Logarithmic part $=$ obstruction to existence of rational primitive

For $R(w)=\operatorname{res}_{x}\left(b(x), a(x)-b^{\prime}(x) w\right)$,

$$
\int \frac{a(x)}{b(x)} d x=\sum_{R(c)=0} c \ln \left(\operatorname{gcd}\left(b(x), a(x)-b^{\prime}(x) c\right)\right)
$$

(Trager, 1976).

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Hermite reduction in $K(x)$

Given P / Q, find polynomials A and a with $\operatorname{deg} a<\operatorname{deg} Q^{*}$ such that

$$
\int \frac{P}{Q} d x=\frac{A}{Q^{-}}+\int \frac{a}{Q^{*}} d x
$$

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Hermite reduction in $K(x)$

Given P / Q, find polynomials A and a with $\operatorname{deg} a<\operatorname{deg} Q^{*}$ such that

$$
\frac{P}{Q}=\frac{\partial}{\partial x}\left(\frac{A}{Q^{-}}\right)+\frac{a}{Q^{*}} .
$$

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Bivariate Hermite reduction for creative telescoping in $K(t, x)$

$$
\frac{P}{Q}=\frac{\partial}{\partial x}\left(\frac{A^{(0)}}{Q^{-}}\right)+\frac{a^{(0)}}{Q^{*}} .
$$

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Bivariate Hermite reduction for creative telescoping in $K(t, x)$

$$
\begin{gathered}
\frac{P}{Q}=\frac{\partial}{\partial x}\left(\frac{A^{(0)}}{Q^{-}}\right)+\frac{a^{(0)}}{Q^{*}} . \\
\left(\frac{P}{Q}\right)_{t}=\frac{\partial}{\partial x}\left(\left(\frac{A^{(0)}}{Q^{-}}\right)_{t}\right)+\frac{a_{t}^{(0)}}{Q^{*}}-\frac{a^{(0)} Q_{t}^{*}}{\left(Q^{*}\right)^{2}} .
\end{gathered}
$$

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Bivariate Hermite reduction for creative telescoping in $K(t, x)$

$$
\begin{gathered}
\frac{P}{Q}=\frac{\partial}{\partial x}\left(\frac{A^{(0)}}{Q^{-}}\right)+\frac{a^{(0)}}{Q^{*}} . \\
\left(\frac{P}{Q}\right)_{t}=\frac{\partial}{\partial x}\left(\left(\frac{A^{(0)}}{Q^{-}}\right)_{t}\right)+\frac{a_{t}^{(0)}}{Q^{*}}+\frac{\partial}{\partial x}\left(\frac{B^{(0)}}{Q^{*}}\right)+\frac{b^{(0)}}{Q^{*}} .
\end{gathered}
$$

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Bivariate Hermite reduction for creative telescoping in $K(t, x)$

$$
\begin{gathered}
\frac{P}{Q}=\frac{\partial}{\partial x}\left(\frac{A^{(0)}}{Q^{-}}\right)+\frac{a^{(0)}}{Q^{*}} . \\
\left(\frac{P}{Q}\right)_{t}=\frac{\partial}{\partial x}\left(\left(\frac{A^{(0)}}{Q^{-}}\right)_{t}+\frac{B^{(0)}}{Q^{*}}\right)+\frac{a_{t}^{(0)}+b^{(0)}}{Q^{*}} .
\end{gathered}
$$

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Bivariate Hermite reduction for creative telescoping in $K(t, x)$

$$
\begin{gathered}
\frac{P}{Q}=\frac{\partial}{\partial x}\left(\frac{A^{(0)}}{Q^{-}}\right)+\frac{a^{(0)}}{Q^{*}} . \\
\left(\frac{P}{Q}\right)_{t}=\frac{\partial}{\partial x}\left(E^{(1)}\right)+\frac{a^{(1)}}{Q^{*}}
\end{gathered}
$$

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Bivariate Hermite reduction for creative telescoping in $K(t, x)$

$$
\begin{gathered}
\frac{P}{Q}=\frac{\partial}{\partial x}\left(\frac{A^{(0)}}{Q^{-}}\right)+\frac{a^{(0)}}{Q^{*}} . \\
\left(\frac{P}{Q}\right)_{t^{i}}=\frac{\partial}{\partial x}\left(E^{(i)}\right)+\frac{a^{(i)}}{Q^{*}}
\end{gathered}
$$

Hermite Revisited (Bostan, Chen, Chyzak, Li, 2010)

$$
F(t):=\oint \frac{P(t, x)}{Q(t, x)} d x=? \quad \text { ODE w.r.t. } t ?
$$

Bivariate Hermite reduction for creative telescoping in $K(t, x)$

$$
\begin{aligned}
& \frac{P}{Q}=\frac{\partial}{\partial x}\left(\frac{A^{(0)}}{Q^{-}}\right)+\frac{a^{(0)}}{Q^{*}} . \\
& \left(\frac{P}{Q}\right)_{t^{i}}=\frac{\partial}{\partial x}\left(E^{(i)}\right)+\frac{a^{(i)}}{Q^{*}}
\end{aligned}
$$

- Confinement $\operatorname{deg}_{x} a^{(i)}<d:=\operatorname{deg}_{x} Q^{*} \leq \operatorname{deg}_{x} Q$:

$$
\sum_{i=0}^{d} c_{i}(t) a^{(i)}(t, x)=0 \Longrightarrow \sum_{i=0}^{d} c_{i} F_{t^{i}}=0
$$

- Incremental algorithm that does not compute $(P / Q)_{t^{i}}$.
- Degree bounds in $K(t)+$ eval./interpol. \Longrightarrow good complexity.

Key Idea: Reduce Coordinates, not Functions

D-finite functions can have complicated singularities.
Rational functions have only poles.

Previous algorithms

$$
\begin{aligned}
f & \rightarrow[f] & f & =R_{0} f \rightarrow\left[R_{0}\right] f \\
f_{t} & \rightarrow\left[f_{t}\right] & f_{t} & =R_{1} f \rightarrow\left[R_{1}\right] f \\
f_{t t} & \rightarrow\left[f_{t t}\right] & f_{t t} & =R_{2} f \rightarrow\left[R_{2}\right] f
\end{aligned}
$$

New algorithm

Operator Notation

Algebra of linear differential operators with rational coefficients

$$
\begin{gathered}
\mathbb{A}=K(t, x)\left\langle\partial_{t}, \partial_{x}\right\rangle, \quad M_{f}=\mathbb{A}(f)=\{P(f): P \in \mathbb{A}\} \\
P=\sum p_{i, j}(t, x) \partial_{t}^{i} \partial_{x}^{j} \in \mathbb{A} \Longrightarrow P(f)=\sum p_{i, j}(t, x) f_{t^{i} x} \in M_{f} \\
\mathrm{~S}=K(t, x)\left\langle\partial_{x}\right\rangle \subset \mathbb{A}
\end{gathered}
$$

Operator Notation

Algebra of linear differential operators with rational coefficients

$$
\begin{gathered}
\mathbb{A}=K(t, x)\left\langle\partial_{t}, \partial_{x}\right\rangle, \quad M_{f}=\mathbb{A}(f)=\{P(f): P \in \mathbb{A}\} \\
P=\sum p_{i, j}(t, x) \partial_{t}^{i} \partial_{x} \in \mathbb{A} \Longrightarrow P(f)=\sum p_{i, j}(t, x) f_{t^{i} \times j} \in M_{f} \\
\mathrm{~S}=K(t, x)\left\langle\partial_{x}\right\rangle \subset \mathbb{A}
\end{gathered}
$$

Hypotheses of D-finiteness

- f is D-finite w.r.t. $\mathbb{A} \Longrightarrow d:=\operatorname{dim}_{K(t, x)}\left(M_{f}\right)<\infty$.
- Let $h \in M_{f}$ be cyclic, that is to say, $M_{f}=\bigoplus_{i=0}^{d-1} K(t, x) h_{x^{i}}=\mathrm{S}(h)$.
- For all $g \in M_{f}$, there is $A_{g} \in S$ such that $g=A_{g}(h)$.

Operator Notation

Algebra of linear differential operators with rational coefficients

$$
\begin{gathered}
\mathbb{A}=K(t, x)\left\langle\partial_{t}, \partial_{x}\right\rangle, \quad M_{f}=\mathbb{A}(f)=\{P(f): P \in \mathbb{A}\} \\
P=\sum p_{i, j}(t, x) \partial_{t}^{i} \partial_{x}^{j} \in \mathbb{A} \Longrightarrow P(f)=\sum p_{i, j}(t, x) f_{t^{i} x} \in M_{f} \\
\mathrm{~S}=K(t, x)\left\langle\partial_{x}\right\rangle \subset \mathbb{A}
\end{gathered}
$$

Hypotheses of D-finiteness

- f is D-finite w.r.t. $\mathbb{A} \Longrightarrow d:=\operatorname{dim}_{K(t, x)}\left(M_{f}\right)<\infty$.
- Let $h \in M_{f}$ be cyclic, that is to say, $M_{f}=\bigoplus_{i=0}^{d-1} K(t, x) h_{x^{i}}=\mathrm{S}(h)$.
- For all $g \in M_{f}$, there is $A_{g} \in S$ such that $g=A_{g}(h)$.

Interpretation of creative telescoping

Given f, find a telescoper $T \in K(t)\left\langle\partial_{t}\right\rangle$ and a certificate $g \in M_{f}$ such that $T(f)=\partial_{x}(g)$. This really computes $\left(K(t)\left\langle\partial_{t}\right\rangle\right)(f) \cap \partial_{x}\left(M_{f}\right)$.

Lagrange's Identity

Dual of operators

$$
P=\sum_{i=0}^{r} p_{i}(t, x) \partial_{x}^{i} \in \mathrm{~S} \stackrel{*}{\longleftrightarrow} P^{*}=\sum_{i=0}^{r}\left(-\partial_{x}\right)^{i} p_{i}(t, x) \in \mathrm{S}
$$

Lagrange's Identity

Dual of operators

$$
P=\sum_{i=0}^{r} p_{i}(t, x) \partial_{x}^{i} \in \mathrm{~S} \stackrel{*}{\longleftrightarrow} P^{*}=\sum_{i=0}^{r}\left(-\partial_{x}\right)^{i} p_{i}(t, x) \in \mathbb{S}
$$

Lagrange's identity

There is a map \mathcal{L}_{P}, bilinear w.r.t. $\left(h, \ldots, h_{x^{(r-1)}}\right)$ and $\left(u, \ldots, u_{x^{(r-1)}}\right)$, such that

$$
\forall u \in K(t, x), \forall h \in M_{f}, u P(h)-P^{*}(u) h=\partial_{x}\left(\mathcal{L}_{P}(h, u)\right) .
$$

Lagrange's Identity

Dual of operators

$$
P=\sum_{i=0}^{r} p_{i}(t, x) \partial_{x}^{i} \in \mathrm{~S} \stackrel{*}{\longleftrightarrow} P^{*}=\sum_{i=0}^{r}\left(-\partial_{x}\right)^{i} p_{i}(t, x) \in \mathbb{S}
$$

Lagrange's identity

There is a map \mathcal{L}_{P}, bilinear w.r.t. $\left(h, \ldots, h_{x^{(r-1)}}\right)$ and $\left(u, \ldots, u_{x^{(r-1)}}\right)$, such that

$$
\forall u \in K(t, x), \forall h \in M_{f}, u P(h)-P^{*}(u) h=\partial_{x}\left(\mathcal{L}_{P}(h, u)\right) .
$$

Proof: $\mathcal{L}_{P}(h, u)=\sum_{i=0}^{r} \sum_{j=0}^{i-1}(-1)^{j}\left(p_{i} u\right)_{x^{j}} h_{x^{i-j-1}}$.

Consequences of Lagrange's Identity

Lagrange's identity:

$$
\forall h \in M_{f}, \forall u \in K(t, x), u P(h)-P^{*}(u) h=\partial_{x}\left(\mathcal{L}_{P}(h, u)\right) .
$$

Let h be cyclic and $L \in S$ be such that $L(h)=0$. Then, for all $g \in M_{f}$:
Operator to rational function: $\mathbb{A}(f)=\mathbb{S}(h) \rightarrow K(t, x) h$
$g \in A_{g}^{*}(1) h+\partial_{x}\left(M_{f}\right)$.
[by $u=1, P=A_{g}$]

Consequences of Lagrange's Identity

Lagrange's identity:

$$
\forall h \in M_{f}, \forall u \in K(t, x), u P(h)-P^{*}(u) h=\partial_{x}\left(\mathcal{L}_{P}(h, u)\right) .
$$

Let h be cyclic and $L \in S$ be such that $L(h)=0$. Then, for all $g \in M_{f}$:
Operator to rational function: $\mathbb{A}(f)=S(h) \rightarrow K(t, x) h$
$g \in A_{g}^{*}(1) h+\partial_{\chi}\left(M_{f}\right)$. [by $u=1, P=A_{g}$]

Equivalent rational factors: $K(t, x) h \rightarrow\left(K(t, x) \bmod L^{*}(K(t, x))\right) h$

$$
\forall u \in K(t, x), g \in\left(A_{g}^{*}(1)-L^{*}(u)\right) h+\partial_{x}\left(M_{f}\right) . \quad[\text { by } P=L]
$$

Consequences of Lagrange's Identity

Lagrange's identity:

$$
\forall h \in M_{f}, \forall u \in K(t, x), u P(h)-P^{*}(u) h=\partial_{x}\left(\mathcal{L}_{P}(h, u)\right) .
$$

Let h be cyclic and $L \in S$ be such that $L(h)=0$. Then, for all $g \in M_{f}$:
Operator to rational function: $\mathbb{A}(f)=S(h) \rightarrow K(t, x) h$
$g \in A_{g}^{*}(1) h+\partial_{x}\left(M_{f}\right)$. [by $u=1, P=A_{g}$]

Equivalent rational factors: $K(t, x) h \rightarrow\left(K(t, x) \bmod L^{*}(K(t, x))\right) h$
$\forall u \in K(t, x), g \in\left(A_{g}^{*}(1)-L^{*}(u)\right) h+\partial_{x}\left(M_{f}\right) . \quad[$ by $P=L]$
Testing derivatives (for L of minimal order)
$g \in \partial_{x}\left(M_{f}\right) \Rightarrow \exists q \in K(t, x), A_{g}^{*}(1)=L^{*}(q) . \quad\left[\right.$ by $\left.A_{g}^{*}(1) \in \partial_{x} \mathrm{~S}+\mathrm{S} L\right]$

Consequences of Lagrange's Identity

Lagrange's identity:

$$
\forall h \in M_{f}, \forall u \in K(t, x), u P(h)-P^{*}(u) h=\partial_{x}\left(\mathcal{L}_{P}(h, u)\right) .
$$

Let h be cyclic and $L \in S$ be such that $L(h)=0$. Then, for all $g \in M_{f}$:
Operator to rational function: $\mathbb{A}(f)=\mathbb{S}(h) \rightarrow K(t, x) h$
$g \in A_{g}^{*}(1) h+\partial_{x}\left(M_{f}\right)$.

Equivalent rational factors: $K(t, x) h \rightarrow\left(K(t, x) \bmod L^{*}(K(t, x))\right) h$
$\forall u \in K(t, x), g \in\left(A_{g}^{*}(1)-L^{*}(u)\right) h+\partial_{x}\left(M_{f}\right)$.
Testing derivatives (for L of minimal order)
$g \in \partial_{x}\left(M_{f}\right) \Leftrightarrow \exists q \in K(t, x), A_{g}^{*}(1)=L^{*}(q)$.

Consequences of Lagrange's Identity

Lagrange's identity:

$$
\forall h \in M_{f}, \forall u \in K(t, x), u P(h)-P^{*}(u) h=\partial_{x}\left(\mathcal{L}_{P}(h, u)\right) .
$$

Let h be cyclic and $L \in S$ be such that $L(h)=0$. Then, for all $g \in M_{f}$:
Operator to rational function: $\mathbb{A}(f)=S(h) \rightarrow K(t, x) h$
$g \in A_{g}^{*}(1) h+\partial_{x}\left(M_{f}\right)$.

Equivalent rational factors: $K(t, x) h \rightarrow\left(K(t, x) \bmod L^{*}(K(t, x))\right) h$
$\forall u \in K(t, x), g \in\left(A_{g}^{*}(1)-L^{*}(u)\right) h+\partial_{x}\left(M_{f}\right)$.
[Reduction?]
Testing derivatives (for L of minimal order)
$g \in \partial_{x}\left(M_{f}\right) \Leftrightarrow \exists q \in K(t, x), A_{g}^{*}(1)=L^{*}(q)$.
[Algorithm?]

Running Example (continued)

Problem

Integrate $f(n, p, x)=\frac{\exp (-p x) T_{n}(x)}{\sqrt{1-x^{2}}}$ w.r.t. x and prove the identity

$$
F(n, p):=\int_{-1}^{+1} f(n, p, x) d x=(-1)^{n} \pi I_{n}(p)
$$

In operator notation, f is cancelled by all left-linear combinations of:

$$
\begin{aligned}
& \partial_{p}+x 1, \quad n \partial_{n}+\left(1-x^{2}\right) \partial_{x}+\left(p\left(1-x^{2}\right)-(n+1) x\right) 1 \\
& \left(1-x^{2}\right) \partial_{x}^{2}-\left(2 p x^{2}+3 x-2 p\right) \partial_{x}-\left(p^{2} x^{2}+3 p x-n^{2}-p^{2}+1\right) 1
\end{aligned}
$$

Goal: Find a telescoper such that there is a certificate satisfying

$$
\sum_{u, v} c_{u, v}(n, p) \partial_{n}^{u} \partial_{p}^{v}=\partial_{x}\left(b(n, p, x) \partial_{x}+a(n, p, x) 1\right)
$$

Running Example (continued)

Problem

Integrate $f(n, p, x)=\frac{\exp (-p x) T_{n}(x)}{\sqrt{1-x^{2}}}$ w.r.t. x and prove the identity

$$
F(n, p):=\int_{-1}^{+1} f(n, p, x) d x=(-1)^{n} \pi I_{n}(p)
$$

In operator notation, f is cyclic, so $h:=f$, and it is cancelled by:

$$
\begin{gathered}
\partial_{p}+x 1, \quad n \partial_{n}+\left(1-x^{2}\right) \partial_{x}+\left(p\left(1-x^{2}\right)-(n+1) x\right) 1 \\
L:=\left(1-x^{2}\right) \partial_{x}^{2}-\left(2 p x^{2}+3 x-2 p\right) \partial_{x}-\left(p^{2} x^{2}+3 p x-n^{2}-p^{2}+1\right) 1
\end{gathered}
$$

Goal: Find a telescoper such that there is a certificate satisfying

$$
\sum_{u, v} c_{u, v}(n, p) \partial_{n}^{u} \partial_{p}^{v}=\partial_{x}\left(b(n, p, x) \partial_{x}+a(n, p, x) 1\right)
$$

modulo the operators above.

Reduction-Based CT Algorithm (2018): an Example

$$
\begin{aligned}
& \int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
& L_{1}:=\partial_{p}-(\ldots) \partial_{x}-(\ldots) 1 \\
& L_{2}:=\partial_{n}-(\ldots) \partial_{x}-(\ldots) 1 \\
& L_{3}:=\partial_{x}^{2}-(\ldots) \partial_{x}-(\ldots) 1 \\
& L:=L_{3}, \quad I:=\mathbb{A} L_{1}+\mathbb{A} L_{2}+\mathbb{A} L_{3}
\end{aligned}
$$

Reduction-Based CT Algorithm (2018): an Example

$$
\begin{aligned}
& \int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
& L_{1}:=\partial_{p}-(\ldots) \partial_{x}-(\ldots) 1 \\
& L_{2}:=\partial_{n}-(\ldots) \partial_{x}-(\ldots) 1 \\
& L_{3}:=\partial_{x}^{2}-(\ldots) \partial_{x}-(\ldots) 1 \\
& L:=L_{3}, \quad I:=\mathbb{A} L_{1}+\mathbb{A} L_{2}+\mathbb{A} L_{3}
\end{aligned}
$$

For $P=1, \partial_{n}, \partial_{p}, \partial_{n}^{2}, \partial_{n} \partial_{p}, \partial_{p}^{2}$:

- set $g=P(h)$, so that $A_{g}=\operatorname{rem}(P, I)=v(p, n, x) \partial_{x}+u(p, n, x) 1$,

Reduction-Based CT Algorithm (2018): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
L_{1}:=\partial_{p}-(\ldots) \partial_{x}-(\ldots) 1, \\
L_{2}:=\partial_{n}-(\ldots) \partial_{x}-(\ldots) 1, \\
L_{3}:=\partial_{x}^{2}-(\ldots) \partial_{x}-(\ldots) 1 . \\
L:=L_{3}, \quad I:=\mathbb{A} L_{1}+\mathbb{A} L_{2}+\mathbb{A} L_{3} .
\end{gathered}
$$

For $P=1, \partial_{n}, \partial_{p}, \partial_{n}^{2}, \partial_{n} \partial_{p}, \partial_{p}^{2}$:

- set $g=P(h)$, so that $A_{g}=\operatorname{rem}(P, I)=v(p, n, x) \partial_{x}+u(p, n, x) 1$,
- $A_{g}^{*}=-v \partial_{x}+\left(u-v_{x}\right)$, so that $g=\left(u-v_{x}\right) f+\partial_{x}(\ldots)$.

Reduction-Based CT Algorithm (2018): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
L_{1}:=\partial_{p}-(\ldots) \partial_{x}-(\ldots) 1, \\
L_{2}:=\partial_{n}-(\ldots) \partial_{x}-(\ldots) 1, \\
L_{3}:=\partial_{x}^{2}-(\ldots) \partial_{x}-(\ldots) 1 . \\
L:=L_{3}, \quad I:=\mathbb{A} L_{1}+\mathbb{A} L_{2}+\mathbb{A} L_{3} .
\end{gathered}
$$

For $P=1, \partial_{n}, \partial_{p}, \partial_{n}^{2}, \partial_{n} \partial_{p}, \partial_{p}^{2}$:

- set $g=P(h)$, so that $A_{g}=\operatorname{rem}(P, I)=v(p, n, x) \partial_{x}+u(p, n, x) 1$,
- $A_{g}^{*}=-v \partial_{x}+\left(u-v_{x}\right)$, so that $g=\left(u-v_{x}\right) f+\partial_{x}(\ldots)$.

For those $P, u-v_{x} \in K(p, n)[x]$ with degree ≤ 3, while

$$
\begin{aligned}
& L^{*}\left(p^{2} x^{0}\right)=p^{2} x^{2}-p x-\left(n^{2}+p^{2}\right) \\
& L^{*}\left(p^{2} x^{1}\right)=p^{2} x^{3}-3 p x^{2}-\left(n^{2}+p^{2}-1\right) x+2 p .
\end{aligned}
$$

Reduction-Based CT Algorithm (2018): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
L_{1}:=\partial_{p}-(\ldots) \partial_{x}-(\ldots) 1, \\
L_{2}:=\partial_{n}-(\ldots) \partial_{x}-(\ldots) 1, \\
L_{3}:=\partial_{x}^{2}-(\ldots) \partial_{x}-(\ldots) 1 . \\
L:=L_{3}, \quad I:=\mathbb{A} L_{1}+\mathbb{A} L_{2}+\mathbb{A} L_{3} .
\end{gathered}
$$

For $P=1, \partial_{n}, \partial_{p}, \partial_{n}^{2}, \partial_{n} \partial_{p}, \partial_{p}^{2}:$

$$
P(f)=\left(u-v_{x}\right) f+\partial_{x}(\ldots)=\left(\mu_{P}(p, n) x^{1}+\lambda_{P}(p, n) x^{0}\right) f+\partial_{x}(\ldots) .
$$

Reduction-Based CT Algorithm (2018): an Example

$$
\begin{gathered}
\int_{-1}^{+1} f(n, p, x) d x=F(n, p)=? \\
L_{1}:=\partial_{p}-(\ldots) \partial_{x}-(\ldots) 1 \\
L_{2}:=\partial_{n}-(\ldots) \partial_{x}-(\ldots) 1 \\
L_{3}:=\partial_{x}^{2}-(\ldots) \partial_{x}-(\ldots) 1 \\
L:=L_{3}, \quad I:=\mathbb{A} L_{1}+\mathbb{A} L_{2}+\mathbb{A} L_{3}
\end{gathered}
$$

For $P=1, \partial_{n}, \partial_{p}, \partial_{n}^{2}, \partial_{n} \partial_{p}, \partial_{p}^{2}:$

$$
P(f)=\left(u-v_{x}\right) f+\partial_{x}(\ldots)=\left(\mu_{P}(p, n) x^{1}+\lambda_{P}(p, n) x^{0}\right) f+\partial_{x}(\ldots)
$$

Linear algebra over $K(p, n)$ finds a basis of telescopers

$$
\left(\sum_{P} c_{P} P\right)(f)=\partial_{x}(\ldots)
$$

Reduction Modulo $L^{*}(K(x))$

$$
\begin{aligned}
& \text { Local decomposition of a rational function } R \in K(x) \\
& R=R_{(\infty)}+\sum_{\alpha} R_{(\alpha)} \text { for some } R_{(\alpha)} \in \frac{1}{x-\alpha} K(\alpha)\left[\frac{1}{x-\alpha}\right] \text { and } R_{(\infty)} \in K[x] .
\end{aligned}
$$

Reduction Modulo $L^{*}(K(x))$

Local decomposition of a rational function $R \in K(x)$

$$
R=R_{(\infty)}+\sum_{\alpha} R_{(\alpha)} \text { for some } R_{(\alpha)} \in \frac{1}{x-\alpha} K(\alpha)\left[\frac{1}{x-\alpha}\right] \text { and } R_{(\infty)} \in K[x] .
$$

Local study of the action of L^{*}

\exists polynomials I_{α} and I_{∞}, \exists integers σ_{α} and σ_{∞}, such that $\forall s \in \mathbb{Z}$,

$$
\begin{gathered}
L^{*}\left((x-\alpha)^{-s}\right) \underset{x \rightarrow \alpha}{=} I_{\alpha}(-s)(x-\alpha)^{\sigma_{\alpha}-s}+\mathcal{O}\left((x-\alpha)^{\sigma_{\alpha}-(s-1)}\right), \\
L^{*}\left((1 / x)^{-s}\right) \underset{x \rightarrow \infty}{=} I_{\infty}(-s)(1 / x)^{\sigma_{\infty}-s}+\mathcal{O}\left((1 / x)^{\sigma_{\infty}-(s-1)}\right)
\end{gathered}
$$

Reduction Modulo $L^{*}(K(x))$

Local decomposition of a rational function $R \in K(x)$

$$
R=R_{(\infty)}+\sum_{\alpha} R_{(\alpha)} \text { for some } R_{(\alpha)} \in \frac{1}{x-\alpha} K(\alpha)\left[\frac{1}{x-\alpha}\right] \text { and } R_{(\infty)} \in K[x] .
$$

Local study of the action of L^{*}

\exists polynomials I_{α} and I_{∞}, \exists integers σ_{α} and σ_{∞}, such that $\forall s \in \mathbb{Z}$,

$$
\begin{gathered}
L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}\right) \underset{x \rightarrow \alpha}{=} I_{\alpha}\left(-s-\sigma_{\alpha}\right)(x-\alpha)^{-s}+\mathcal{O}\left((x-\alpha)^{-(s-1)}\right), \\
L^{*}\left((1 / x)^{-s-\sigma_{\infty}}\right) \underset{x \rightarrow \infty}{=} I_{\infty}\left(-s-\sigma_{\infty}\right)(1 / x)^{-s}+\mathcal{O}\left((1 / x)^{-(s-1)}\right) .
\end{gathered}
$$

Reduction Modulo $L^{*}(K(x))$

Local decomposition of a rational function $R \in K(x)$

$$
R=R_{(\infty)}+\sum_{\alpha} R_{(\alpha)} \text { for some } R_{(\alpha)} \in \frac{1}{x-\alpha} K(\alpha)\left[\frac{1}{x-\alpha}\right] \text { and } R_{(\infty)} \in K[x] .
$$

Local study of the action of L^{*}

\exists polynomials I_{α} and I_{∞}, \exists integers σ_{α} and σ_{∞}, such that $\forall s \in \mathbb{Z}$,

$$
\begin{gathered}
(x-\alpha)^{-s} \underset{x \rightarrow \alpha}{=} I_{\alpha}\left(-s-\sigma_{\alpha}\right)^{-1} L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}\right)+\mathcal{O}\left((x-\alpha)^{-(s-1)}\right) \\
(1 / x)^{-s} \underset{x \rightarrow \infty}{=} I_{\infty}\left(-s-\sigma_{\infty}\right)^{-1} L^{*}\left((1 / x)^{-s-\sigma_{\infty}}\right)+\mathcal{O}\left((1 / x)^{-(s-1)}\right)
\end{gathered}
$$

Reduction Modulo $L^{*}(K(x))$

Local decomposition of a rational function $R \in K(x)$

$$
R=R_{(\infty)}+\sum_{\alpha} R_{(\alpha)} \text { for some } R_{(\alpha)} \in \frac{1}{x-\alpha} K(\alpha)\left[\frac{1}{x-\alpha}\right] \text { and } R_{(\infty)} \in K[x] .
$$

Local study of the action of L^{*}

\exists polynomials I_{α} and I_{∞}, \exists integers σ_{α} and σ_{∞}, such that $\forall s \in \mathbb{Z}$,

$$
\begin{gathered}
(x-\alpha)^{-s} \underset{x \rightarrow \alpha}{=} I_{\alpha}\left(-s-\sigma_{\alpha}\right)^{-1} L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}\right)+\mathcal{O}\left((x-\alpha)^{-(s-1)}\right) \\
(1 / x)^{-s} \underset{x \rightarrow \infty}{=} I_{\infty}\left(-s-\sigma_{\infty}\right)^{-1} L^{*}\left((1 / x)^{-s-\sigma_{\infty}}\right)+\mathcal{O}\left((1 / x)^{-(s-1)}\right)
\end{gathered}
$$

Weak reduction strategy

- reduce at finite α (in any order) before at ∞,
- skip monomials for which $I_{\alpha}\left(-s-\sigma_{\alpha}\right)=0$ or $I_{\infty}\left(-s-\sigma_{\infty}\right)=0$.

Canonical Form Modulo $L^{*}(K(x))$

Problem: $L^{*}(K(x))$ does not weakly reduce to $\{0\}$

For $c_{0}=I_{\alpha}\left(-s-\sigma_{\alpha}\right)$ and some c_{1}, write $R:=L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}\right)$ as

$$
R=c_{0}(x-\alpha)^{-s}+c_{1}(x-\alpha)^{-(s-1)}+\mathcal{O}\left((x-\alpha)^{-(s-2)}\right)
$$

- If $c_{0} \neq 0$, this reduces to

$$
L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}-(x-\alpha)^{-s-\sigma_{\alpha}}\right)=0 .
$$

- If $c_{0}=0$ and $c_{1} \neq 0$, this reduces to some

$$
L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}-\frac{c_{1}}{c_{2}}(x-\alpha)^{-(s-1)-\sigma_{\alpha}}\right)
$$

which is unlikely to further reduce to 0 .

Canonical Form Modulo $L^{*}(K(x))$

Problem: $L^{*}(K(x))$ does not weakly reduce to $\{0\}$

For $c_{0}=I_{\alpha}\left(-s-\sigma_{\alpha}\right)$ and some c_{1}, write $R:=L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}\right)$ as

$$
R=c_{0}(x-\alpha)^{-s}+c_{1}(x-\alpha)^{-(s-1)}+\mathcal{O}\left((x-\alpha)^{-(s-2)}\right)
$$

- If $c_{0} \neq 0$, this reduces to

$$
L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}-(x-\alpha)^{-s-\sigma_{\alpha}}\right)=0
$$

- If $c_{0}=0$ and $c_{1} \neq 0$, this reduces to some

$$
L^{*}\left((x-\alpha)^{-s-\sigma_{\alpha}}-\frac{c_{1}}{c_{2}}(x-\alpha)^{-(s-1)-\sigma_{\alpha}}\right)
$$

which is unlikely to further reduce to 0 .

Solution

- finitely-many potential obstructions, described by the integer zeros of the I_{α} and I_{∞},
- this can be computed, leading to a canonical-form computation.

```
[chyzak@slowfox (04:21:54) ~]$ maple -b Mgfun.mla -B
    \\^/| Maple 2018 (X86 64 LINUX)
._|\| |/I_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2018
    MAPLE / All rights reserved. Maple is a trademark of
<_-_- _-__> Waterloo Maple Inc.
    Type ? for help.
> read "redct.mpl";
> f := ChebyshevT(n,x)/sqrt(1-x^2)*exp(-p*x);
                                    ChebyshevT(n, x) exp(-p x)
    f := --------------------------
> redct(Int(f,x=-1..1),[n::shift,p::diff]);
memory used=3.5MB, alloc=8.3MB, time=0.09
                                    2
    [p D[n] + p D[p] - n, p D[n] - 2n D[n] - p - 2 D[n]]
> f := 2*BesselJ(m+n,2*t*x)*ChebyshevT(m-n,x)/sqrt(1-x^2);
            2 BesselJ(m + n, 2 t x) ChebyshevT(m - n, x)
        f :=
            (-x}\mp@subsup{}{}{2}+1\mp@subsup{)}{}{1/2
> redct(Int(f,x),[t::diff, n::shift, m::shift]);
memory used=1189.8MB, alloc=144.8MB, time=9.98
    2
[t D[m] + t D[n] + t D[t] - m - n, t D[m] - 2m D[m] + t - 2 D[m],
    2
    t D[n] - 2 n D[n] + t - 2 D[n]]
```


Timings: More than 140 integrals tested

Algorithm	(1)	(2)	(3)	(4)	(5)	(6)	(7)
new (mpl)	13 s	$>1 \mathrm{~h}$	$>1 \mathrm{~h}$	1.5 s	1.5 s	165 s	53 s
Chyzak's (mma)	19 s	253 s	45 s	232 s	516 s	$>1 \mathrm{~h}$	$>1 \mathrm{~h}$
Koutschan's (mma)	$1.9 \mathrm{~s} \dagger$	2.3 s	5.3 s	$>1 \mathrm{~h}$	$2.3 \mathrm{~s} \dagger$	5.4 s	$2.2 \mathrm{~s} \dagger$

$$
\begin{align*}
& \int \frac{2 J_{m+n}(2 t x) T_{m-n}(x)}{\sqrt{1-x^{2}}} d x \quad \text { [diff. } t, \text { shift } n \text { and } m \text {], } \\
& \int_{0}^{1} C_{n}^{(\lambda)}(x) C_{m}^{(\lambda)}(x) C_{\ell}^{(\lambda)}(x)\left(1-x^{2}\right)^{\lambda-\frac{1}{2}} d x \quad[\text { shift } n, m, \ell] \text {, } \tag{5}\\
& \int_{0}^{\infty} x J_{1}(a x) l_{1}(a x) Y_{0}(x) K_{0}(x) d x \quad \text { [diff. a], } \tag{3}\\
& \int \frac{n^{2}+x+1}{n^{2}+1}\left(\frac{(x+1)^{2}}{(x-4)(x-3)^{2}\left(x^{2}-5\right)^{3}}\right)^{n} \sqrt{x^{2}-5} e^{\frac{x^{3}+1}{x(x-3)(x-4)^{2}}} d x \tag{4}\\
& \text { (1) } \quad \int C_{m}^{(\mu)}(x) C_{n}^{(v)}(x)\left(1-x^{2}\right)^{v-1 / 2} d x \quad[\text { shift } n, m, \mu, v] \text {, } \tag{2}\\
& \int(x+a)^{\gamma+\lambda-1}(a-x)^{\beta-1} C_{m}^{(\gamma)}(x / a) C_{n}^{(\lambda)}(x / a) d x \tag{6}\\
& \text { [diff. a, shift } n, m, \beta, \gamma, \lambda] \text {. } \tag{7}
\end{align*}
$$

[shift n],
\dagger : Heuristic got these faster answers by looking for telescopers of non-minimal orders, yet smaller sizes.

Timings: More than 140 integrals tested

Algorithm	(1)	(2)	(3)	(4)	(5)	(6)	(7)
new (mpl)	13 s	$>1 \mathrm{~h}$	$>1 \mathrm{~h}$	1.5 s	1.5 s	165 s	53 s
Chyzak's (mma)	19 s	253 s	45 s	232 s	516 s	$>1 \mathrm{~h}$	$>1 \mathrm{~h}$
Koutschan's (mma)	$1.9 \mathrm{~s} \dagger$	2.3 s	5.3 s	$>1 \mathrm{~h}$	$2.3 \mathrm{~s} \dagger$	5.4 s	$2.2 \mathrm{~s} \dagger$

$$
\begin{gathered}
\int \frac{2 J_{m+n}(2 t x) T_{m-n}(x)}{\sqrt{1-x^{2}}} d x \quad \text { [diff. } t, \text { shift } n \text { and } m \text {], } \\
\int_{0}^{1} C_{n}^{(\lambda)}(x) C_{m}^{(\lambda)}(x) C_{\ell}^{(\lambda)}(x)\left(1-x^{2}\right)^{\lambda-\frac{1}{2}} d x \quad[\text { shift } n, m, \ell] \\
\int_{0}^{\infty} x J_{1}(a x) I_{1}(a x) Y_{0}(x) K_{0}(x) d x \quad \text { [diff. a], }
\end{gathered}
$$

$$
\int \frac{n^{2}+x+1}{n^{2}+1}\left(\frac{(x+1)^{2}}{(x-4)(x-3)^{2}\left(x^{2}-5\right)^{3}}\right)^{n} \sqrt{x^{2}-5} e^{\frac{x^{3}+1}{x(x-3)(x-4)^{2}}} d x
$$

$$
\begin{equation*}
\int C_{m}^{(\mu)}(x) C_{n}^{(v)}(x)\left(1-x^{2}\right)^{v-1 / 2} d x \quad[\text { shift } n, m, \mu, v] \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\int x^{\ell} C_{m}^{(\mu)}(x) C_{n}^{(v)}(x)\left(1-x^{2}\right)^{v-1 / 2} d x \quad[\text { shift } \ell, m, n, \mu, v] \tag{6}
\end{equation*}
$$

$$
\begin{array}{r}
\int(x+a)^{\gamma+\lambda-1}(a-x)^{\beta-1} C_{m}^{(\gamma)}(x / a) C_{n}^{(\lambda)}(x / a) d x \\
{[\text { diff. a, shift } n, m, \beta, \gamma, \lambda]} \tag{7}
\end{array}
$$

[shift n],
t : Heuristic got these faster answers by looking for telescopers of non-minimal orders, yet smaller sizes.

Need to investigate failures:

- non-mathematical bugs? "not ours"?
- impact of apparent singularities of P^{*} ?

Summary

Approach by solving functional equations (1991+)
see failures to solve as obstructions, recombine obstructions

Primal reduction-based approach (2010+)

work on rational coordinates to simplify singularities, Lagrange's formula

Dual reduction-based approach (2018)

