Strong Frobenius structure, rigidity and hypergeometric equations

VARGAS-MONTOYA DANIEL

INSTITUT CAMILLE JORDAN, LYON

Workshop on differential algebra and related topics New York, Unitated States 10-14 February, 2020

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

This talk has two main aims:

• Show that there exists a family \mathfrak{L} of differential operators such that for all *L* in \mathfrak{L} , *L* has a strong Frobenius structure for almost prime number *p*.

This talk has two main aims:

- Show that there exists a family \mathfrak{L} of differential operators such that for all L in \mathfrak{L} , L has a strong Frobenius structure for almost prime number p.
- Show the connection between the existence of a strong Frobenius structure for a prime number *p* and the algebraicity modulo *p* of the solutions of the corresponding operator.

There is a family \mathfrak{G} of G -functions, $f(t) = \sum_{n \ge 0} a_n t^n \in \mathbb{Q}[[t]]$, such that for all $f \in \mathfrak{G}$ there exists S an infinit set of prime numbers such that for every $p \in S$:

There is a family \mathfrak{G} of G -functions, $f(t) = \sum_{n \ge 0} a_n t^n \in \mathbb{Q}[[t]]$, such that for all $f \in \mathfrak{G}$ there exists S an infinit set of prime numbers such that for every $p \in S$:

 $f \in \mathbb{Z}_{(p)}[[t]]$. We can then reduce *f* modulo *p*.

There is a family \mathfrak{G} of G -functions, $f(t) = \sum_{n \ge 0} a_n t^n \in \mathbb{Q}[[t]]$, such that for all $f \in \mathfrak{G}$ there exists S an infinit set of prime numbers such that for every $p \in S$:

 $f \in \mathbb{Z}_{(p)}[[t]]$. We can then reduce *f* modulo *p*.

There is a family \mathfrak{G} of G -functions, $f(t) = \sum_{n \ge 0} a_n t^n \in \mathbb{Q}[[t]]$, such that for all $f \in \mathfrak{G}$ there exists S an infinit set of prime numbers such that for every $p \in S$:

 $f \in \mathbb{Z}_{(p)}[[t]]$. We can then reduce *f* modulo *p*.

$$f_{|p} := \sum_{n \ge 0} (a_n \mod p) t^n \in \mathbb{F}_p[[t]]$$

is algebraic over $\mathbb{F}_p(t)$.

There is a family \mathfrak{G} of G -functions, $f(t) = \sum_{n \ge 0} a_n t^n \in \mathbb{Q}[[t]]$, such that for all $f \in \mathfrak{G}$ there exists S an infinit set of prime numbers such that for every $p \in S$:

 $f \in \mathbb{Z}_{(p)}[[t]]$. We can then reduce *f* modulo *p*.

$$f_{|p} := \sum_{n \ge 0} (a_n \mod p) t^n \in \mathbb{F}_p[[t]]$$

is algebraic over $\mathbb{F}_p(t)$.

In particular there is $a_0(t), \ldots, a_c(t) \in \mathbb{F}_p(t)$ such that $f_{|p}$ is zero of

 $a_0(t)Y + a_1(t)Y^p + \cdots + a_c(t)Y^{p^c}$ (Frobenius polynomial).

There is a family \mathfrak{G} of G -functions, $f(t) = \sum_{n \ge 0} a_n t^n \in \mathbb{Q}[[t]]$, such that for all $f \in \mathfrak{G}$ there exists S an infinit set of prime numbers such that for every $p \in S$:

 $f \in \mathbb{Z}_{(p)}[[t]]$. We can then reduce f modulo p.

$$f_{|p} := \sum_{n \ge 0} (a_n \mod p) t^n \in \mathbb{F}_p[[t]]$$

is algebraic over $\mathbb{F}_p(t)$.

In particular there is $a_0(t), \ldots, a_c(t) \in \mathbb{F}_p(t)$ such that $f_{|p|}$ is zero of

 $a_0(t)Y + a_1(t)Y^p + \cdots + a_c(t)Y^{p^c}$ (Frobenius polynomial).

Therefore the algibraicity degree of f_{1p} is bounded by p^c

In 1984, Deligne shows that if $f(t) \in \mathfrak{D}$ then the above situation assure,

In 1984, Deligne shows that if $f(t) \in \mathfrak{D}$ then the above situation assure, where $\mathfrak{D} = \bigcup_{d>0} \mathfrak{D}_d$ and \mathfrak{D}_d is the image of $\Delta_d : \mathbb{Q}[[t_1, \dots, t_d]]^{alg} \to \mathbb{Q}[[t]]$, (the diagonalisation operator)

$$\Delta_d(\sum_{(i_1,...,i_d)\in\mathbb{N}^d} c_{(i_1,...,i_d)} t_1^{i_1}\cdots t_d^{i_d}) = \sum_{n\geq 0} c_{(i_n,...,i_n)} t^n.$$

In 1984, Deligne shows that if $f(t) \in \mathfrak{D}$ then the above situation assure, where $\mathfrak{D} = \bigcup_{d>0} \mathfrak{D}_d$ and \mathfrak{D}_d is the image of $\Delta_d : \mathbb{Q}[[t_1, \dots, t_d]]^{alg} \to \mathbb{Q}[[t]]$, (the diagonalisation operator)

$$\Delta_d(\sum_{(i_1,...,i_d)\in\mathbb{N}^d}c_{(i_1,...,i_d)}t_1^{i_1}\cdots t_d^{i_d})=\sum_{n\geq 0}c_{(i_n,...,i_n)}t^n.$$

Deligne's Question: If $f \in \mathfrak{D}$, is there a constant c > 0 such that $\deg(f_{|p}) \leq p^{c}$, for every $p \in S$?

In 1984, Deligne shows that if $f(t) \in \mathfrak{D}$ then the above situation assure, where $\mathfrak{D} = \bigcup_{d>0} \mathfrak{D}_d$ and \mathfrak{D}_d is the image of $\Delta_d : \mathbb{Q}[[t_1, \dots, t_d]]^{alg} \to \mathbb{Q}[[t]]$, (the diagonalisation operator)

$$\Delta_d(\sum_{(i_1,\dots,i_d)\in\mathbb{N}^d} c_{(i_1,\dots,i_d)} t_1^{i_1}\cdots t_d^{i_d}) = \sum_{n\geq 0} c_{(i_n,\dots,i_n)} t^n$$

Deligne's Question: If $f \in \mathfrak{D}$, is there a constant c > 0 such that $\deg(f_{|p}) \leq p^c$, for every $p \in S$? For exemple the *G*-function

$$f_1(t) = \sum_{n \ge 0} \frac{1}{16^n} {\binom{2n}{n}}^2 t^n =_2 F_1(1/2, 1/2; 1, t)$$

is the diagonal of

$$\frac{2}{2-t_1-t_2} \cdot \frac{2}{2-t_3-t_4}$$

In 1984, Deligne shows that if $f(t) \in \mathfrak{D}$ then the above situation assure, where $\mathfrak{D} = \bigcup_{d>0} \mathfrak{D}_d$ and \mathfrak{D}_d is the image of $\Delta_d : \mathbb{Q}[[t_1, \dots, t_d]]^{alg} \to \mathbb{Q}[[t]]$, (the diagonalisation operator) $\Delta_d(\sum_{d \in \mathcal{D}_d} c_{(i, \dots, i)} t^{i_1} \cdots t^{i_d}) = \sum_{d \in \mathcal{D}_d} c_{(i, \dots, i)} t^n$.

$$(i_1,\dots,i_d) \in \mathbb{N}^d \qquad \qquad n \ge 0$$

Deligne's Question: If $f \in \mathfrak{D}$, is there a constant c > 0 such that $\deg(f_{|p}) \leq p^c$, for every $p \in S$? For exemple the *G*-function

$$f_1(t) = \sum_{n \ge 0} \frac{1}{16^n} {\binom{2n}{n}}^2 t^n =_2 F_1(1/2, 1/2; 1, t)$$

is the diagonal of

$$\frac{2}{2-t_1-t_2}\cdot\frac{2}{2-t_3-t_4}$$

The algebracity degree of $f_{1|p}$ is bounded by $p_{1|p}$.

$$f_2(t) =_2 F_1(1/2, 1/2; 2/3, t) = \sum_{k=0}^{\infty} \left(\frac{(1/2)_k^2}{(2/3)_k k!} \right) t^n \in \mathbb{Q}[[t]],$$

where $(x)_0 = 1$ and $(x)_n = x(x+1)\cdots(x+n-1)$.

$$f_2(t) =_2 F_1(1/2, 1/2; 2/3, t) = \sum_{k=0}^{\infty} \left(\frac{(1/2)_k^2}{(2/3)_k k!} \right) t^n \in \mathbb{Q}[[t]],$$

where $(x)_0 = 1$ and $(x)_n = x(x+1)\cdots(x+n-1)$.

If $p \equiv 1 \mod 3$, $f_2(t) \in \mathbb{Z}_{(p)}[[t]]$.

$$f_2(t) =_2 F_1(1/2, 1/2; 2/3, t) = \sum_{k=0}^{\infty} \left(\frac{(1/2)_k^2}{(2/3)_k k!} \right) t^n \in \mathbb{Q}[[t]],$$

where $(x)_0 = 1$ and $(x)_n = x(x+1)\cdots(x+n-1)$.

If $p \equiv 1 \mod 3$, $f_2(t) \in \mathbb{Z}_{(p)}[[t]]$. Is $f_{2|p}$ algebraic over $\mathbb{F}_p(t)$?

$$f_2(t) =_2 F_1(1/2, 1/2; 2/3, t) = \sum_{k=0}^{\infty} \left(\frac{(1/2)_k^2}{(2/3)_k k!} \right) t^n \in \mathbb{Q}[[t]],$$

where $(x)_0 = 1$ and $(x)_n = x(x+1)\cdots(x+n-1)$.

If $p \equiv 1 \mod 3$, $f_2(t) \in \mathbb{Z}_{(p)}[[t]]$. Is $f_{2|p}$ algebraic over $\mathbb{F}_p(t)$?

The notion of **strong Frobenius structure** give us a general point of view about the following question:

$$f_2(t) =_2 F_1(1/2, 1/2; 2/3, t) = \sum_{k=0}^{\infty} \left(\frac{(1/2)_k^2}{(2/3)_k k!} \right) t^n \in \mathbb{Q}[[t]],$$

where $(x)_0 = 1$ and $(x)_n = x(x+1)\cdots(x+n-1)$.

If $p \equiv 1 \mod 3$, $f_2(t) \in \mathbb{Z}_{(p)}[[t]]$. Is $f_{2|p}$ algebraic over $\mathbb{F}_p(t)$?

The notion of **strong Frobenius structure** give us a general point of view about the following question:

If *f* is a *G*-function such that $f \in \mathbb{Z}_{(p)}[[t]]$, is its reduction $f_{|p}$ algebraic over $\mathbb{F}_p(t)$? If this is the case, what could we say about its algebraicity degree?

Let $A, B \in M_n(\mathbb{Q}(t))$

Let $A, B \in M_n(\mathbb{Q}(t))$

Classic situation

Let $A, B \in M_n(\mathbb{Q}(t))$

Classic situation

We say that *A* and *B* are **globally equivalents** in $\mathbb{C}(t)$, if there exists $H \in Gl_n(\mathbb{C}(t))$ such that

 $\frac{d}{dt}H = AH - HB$

We say that *A* and *B* are $\mathbb{C}(t)$ -equivalents.

Let $A, B \in M_n(\mathbb{Q}(t))$

Classic situation

We say that *A* and *B* are **globally equivalents** in $\mathbb{C}(t)$, if there exists $H \in Gl_n(\mathbb{C}(t))$ such that

 $\frac{d}{dt}H = AH - HB$

We say that *A* and *B* are $\mathbb{C}(t)$ -equivalents.

p-adic situation.

Let $A, B \in M_n(\mathbb{Q}(t))$

Classic situation

We say that *A* and *B* are **globally equivalents** in $\mathbb{C}(t)$, if there exists $H \in Gl_n(\mathbb{C}(t))$ such that

 $\frac{d}{dt}H = AH - HB$

We say that *A* and *B* are $\mathbb{C}(t)$ -equivalents.

p-adic situation.

We say that *A* and *B* are **globally equivalents**, if there is $H \in Gl_n(E_p)$ such that

$$\frac{d}{dt}H = AH - HB$$

We say *A* and *B* are E_p -equivalents.

Let $A, B \in M_n(\mathbb{Q}(t))$

Classic situation

We say that *A* and *B* are **globally equivalents** in $\mathbb{C}(t)$, if there exists $H \in Gl_n(\mathbb{C}(t))$ such that

 $\frac{d}{dt}H = AH - HB$

We say that *A* and *B* are $\mathbb{C}(t)$ -equivalents.

p-adic situation.

We say that *A* and *B* are **globally equivalents**, if there is $H \in Gl_n(E_p)$ such that

 $\frac{d}{dt}H = AH - HB$

We say *A* and *B* are E_p -equivalents.

Where E_p is the field of analytic elements, that is, the completion of $\mathbb{C}_p(t)$ for the Gauss norm.

Let's set the differential operator $L := \frac{d}{dt^n} + a_1(t) \frac{d}{dt^{n-1}} + \dots + a_{n-1}(t) \frac{d}{dt} + a_n(t) \in \mathbb{Q}(t)[d/dt].$

Let's set the differential operator $L := \frac{d}{dt^n} + a_1(t) \frac{d}{dt^{n-1}} + \dots + a_{n-1}(t) \frac{d}{dt} + a_n(t) \in \mathbb{Q}(t)[d/dt].$

Companion matrix.

Let's set the differential operator $L := \frac{d}{dt^n} + a_1(t) \frac{d}{dt^{n-1}} + \dots + a_{n-1}(t) \frac{d}{dt} + a_n(t) \in \mathbb{Q}(t)[d/dt].$

Companion matrix.

We consider the matrix *A* wich is called the companion matrix of *L*.

Let's set the differential operator $L := \frac{d}{dt^n} + a_1(t) \frac{d}{dt^{n-1}} + \dots + a_{n-1}(t) \frac{d}{dt} + a_n(t) \in \mathbb{Q}(t)[d/dt].$

Companion matrix.

We consider the matrix *A* wich is called the companion matrix of *L*.

$$A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ -a_n(t) & -a_{n-1}(t) & -a_{n-2}(t) & \dots & -a_2(t) & -a_1(t) \end{pmatrix}.$$

Let's set the differential operator $L := \frac{d}{dt^n} + a_1(t) \frac{d}{dt^{n-1}} + \dots + a_{n-1}(t) \frac{d}{dt} + a_n(t) \in \mathbb{Q}(t)[d/dt].$

Companion matrix.

We consider the matrix *A* wich is called the companion matrix of *L*.

Strong Frobenius structure.

Let's set the differential operator $L := \frac{d}{dt^n} + a_1(t) \frac{d}{dt^{n-1}} + \dots + a_{n-1}(t) \frac{d}{dt} + a_n(t) \in \mathbb{Q}(t)[d/dt].$

Companion matrix.

We consider the matrix *A* wich is called the companion matrix of *L*.

Strong Frobenius structure.

L has a strong Frobenius structure for *p*, of period *h*, if there is an integer $h \ge 1$, such that *A* and $p^h t^{p^h - 1} A(t^{p^h})$ are *E*_{*p*}-equivalents.

In other words, $\exists H \in Gl_n(E_p)$ such that

$$\frac{d}{dt}H = AH - H(p^h t^{p^h - 1} A(t^{p^h})).$$

Frobenius action: If *L* has a strong Frobenius structure for *p* of period h

Frobenius action: If *L* has a strong Frobenius structure for *p* of period h, and $h_{11}, \ldots, h_{1n} \in E_p$ is the firt row of *H*, then for every solution *f* of *L*, *f* belongs to a ring containing E_p , we have

 $h_{11}f(t^{p^h}) + \dots + h_{1n}f^{(n-1)}(t^{p^h})$

is a solution of *L*.

Frobenius action: If *L* has a strong Frobenius structure for *p* of period h, and $h_{11}, \ldots, h_{1n} \in E_p$ is the firt row of *H*, then for every solution *f* of *L*, *f* belongs to a ring containing E_p , we have

 $h_{11}f(t^{p^h}) + \dots + h_{1n}f^{(n-1)}(t^{p^h})$

is a solution of *L*. This application is \mathbb{C}_p -linear.

Frobenius action: If *L* has a strong Frobenius structure for *p* of period h, and $h_{11}, \ldots, h_{1n} \in E_p$ is the firt row of *H*, then for every solution *f* of *L*, *f* belongs to a ring containing E_p , we have

 $h_{11}f(t^{p^h}) + \dots + h_{1n}f^{(n-1)}(t^{p^h})$

is a solution of *L*. This application is \mathbb{C}_p -linear.

Applying the Cayley-Hamilton theorem, we obtain the following

Theorem (I)

Let $f(t) = \sum_{n\geq 0} a(n)t^n \in \mathbb{Z}_{(p)}[[t]]$ be a solution of L endowed of a strong Frobenius structure for p of period h. Then $f_{|p}$ is algebraic over $\mathbb{F}_p(t)$ and

 $\deg(f_{|p}) \le p^{n^2h}$

Where n is the order of L.

GAUSS HYPERGEOMETRIC EQUATIONS

Dwork and Salinier proved the following theorem using different methods.

GAUSS HYPERGEOMETRIC EQUATIONS

Dwork and Salinier proved the following theorem using different methods.

Theorem

Let $a, b, c \in \mathbb{Q}$. If $a, b, c - a, c - b \notin \mathbb{Z}$, the operator associated to the Gauss hypergoemetric equation,

$$\frac{d^2}{dt^2} + \frac{c - (a+b+1)t}{t(1-t)}\frac{d}{dt} - \frac{ab}{t(1-t)},\tag{2}$$

has a strong Frobenius structure for almost all p of period

 $h \leq \varphi(d(a))\varphi(d(b))\varphi(d(c)),$

where φ is the Euler phi function and *d* is the denominator function

Rigidity

Salinier's proof is based on the classic theory of differential equations and p-adic differential equations.

Rigidity

Salinier's proof is based on the classic theory of differential equations and p-adic differential equations.

Theorem (VM.)

Let $L \in \mathbb{Q}(t)[d/dt]$. We suppose that the following conditions are verified.

- The singular points of L are regular .
- **2** The exponents at singular points are rational numbers.
- The monodromy group of L is rigid.

Then, the differential operator L has a strong Frobenius structure for almost all prime number p.

MONDROMY GROUP

Let $\gamma_1 = 0, \ldots, \gamma_r = \infty$ be the singularities of *L*.

MONDROMY GROUP

Let $\gamma_1 = 0, ..., \gamma_r = \infty$ be the singularities of *L*. Let $M_i \in Gl_n(\mathbb{C})$ be the monodromy local matrix of *L* at γ_i . Such that the monodromy group of *L* is the group generated by the matrices $M_1, ..., M_r$ with the relation $M_1 \cdots M_r = Id_n$.

Let $\gamma_1 = 0, ..., \gamma_r = \infty$ be the singularities of *L*. Let $M_i \in Gl_n(\mathbb{C})$ be the monodromy local matrix of *L* at γ_i . Such that the monodromy group of *L* is the group generated by the matrices $M_1, ..., M_r$ with the relation $M_1 \cdots M_r = Id_n$.

We say that monodromy group of *L* is rigid if for every $N_1, \ldots, N_r \in Gl_n(\mathbb{C})$ such that $N_1 \cdots N_r = Id_n$ and N_i cojugated to M_i , then there is $U \in Gl_n(\mathbb{C})$ such that

 $UN_iU^{-1} = M_i \quad \forall 1 \le i \le r.$

・ロト・日本・モート ヨー うへで

The differential operator associated to the generalized hypergeometric equation is

 $\mathcal{H}(\underline{\alpha},\underline{\beta}):-t(\delta+\alpha_1)\cdots(\delta+\alpha_n)+(\delta+\beta_1-1)\cdots(\delta+\beta_n-1),$

The differential operator associated to the generalized hypergeometric equation is

 $\mathcal{H}(\underline{\alpha},\beta):-t(\delta+\alpha_1)\cdots(\delta+\alpha_n)+(\delta+\beta_1-1)\cdots(\delta+\beta_n-1),$

where $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in \mathbb{Q}$ and $\alpha_i - \beta_j \notin \mathbb{Z}$.

The differential operator associated to the generalized hypergeometric equation is

 $\mathcal{H}(\underline{\alpha},\underline{\beta}):-t(\delta+\alpha_1)\cdots(\delta+\alpha_n)+(\delta+\beta_1-1)\cdots(\delta+\beta_n-1),$

where $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in \mathbb{Q}$ and $\alpha_i - \beta_j \notin \mathbb{Z}$.

- The singularities of $\mathcal{H}(\underline{\alpha},\beta)$ are regular , wich are $0,1,\infty$.
- The exponents at infinity are $\alpha_1, \ldots, \alpha_n$, the exponents at 0 are $1 \beta_1, \ldots, 1 \beta_n$, and the exponents at 1 are $0, 1, \ldots, n 2, -1 + \sum (\beta_i \alpha_i)$.
- The monodromy group of $\mathcal{H}(\underline{\alpha}, \underline{\beta})$ is rigid. (Levelt).

The differential operator associated to the generalized hypergeometric equation is

 $\mathcal{H}(\underline{\alpha},\beta):-t(\delta+\alpha_1)\cdots(\delta+\alpha_n)+(\delta+\beta_1-1)\cdots(\delta+\beta_n-1),$

where $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in \mathbb{Q}$ and $\alpha_i - \beta_j \notin \mathbb{Z}$.

Let $S := \{p \in \mathcal{P} \setminus \{2\} \text{ such that } |\alpha_i|_p, |\beta_j|_p = 1\}.$

Theorem (II)

 $\mathcal{H}(\underline{\alpha},\beta)$ has a strong Frobenius structure for $p \in S$ of period

$$h \leq \prod_{i=1}^{n} \varphi(d(\alpha_i)) \prod_{j=1}^{n} \varphi(d(\beta_j)).$$

ALGEBRAICITY MODULO p

We come back to the serie

$$f_2(t) :=_2 F_1(1/2, 1/2; 2/3, t) = \sum_{k=0}^{\infty} \left(\frac{(1/2)_k^2}{(2/3)_k k!} \right) t^n \in \mathbb{Q}[[t].$$

ALGEBRAICITY MODULO p

We come back to the serie

$$f_2(t) :=_2 F_1(1/2, 1/2; 2/3, t) = \sum_{k=0}^{\infty} \left(\frac{(1/2)_k^2}{(2/3)_k k!} \right) t^n \in \mathbb{Q}[[t]].$$

 $f_2(t)$ is solution of $\mathcal{H}_{(1/2,1/2),(2/3,1)}$.

Algebraicity modulo *p*

We come back to the serie

$$f_2(t) :=_2 F_1(1/2, 1/2; 2/3, t) = \sum_{k=0}^{\infty} \left(\frac{(1/2)_k^2}{(2/3)_k k!} \right) t^n \in \mathbb{Q}[[t]].$$

$f_2(t)$ is solution of $\mathcal{H}_{(1/2,1/2),(2/3,1)}$.

The **theorem II** ensures us that $\mathcal{H}_{(1/2,1/2),(2/3,1)}$ has a strong Frobenius structure for $p \ge 5$.

Algebraicity modulo p

We come back to the serie

$$f_2(t) :=_2 F_1(1/2, 1/2; 2/3, t) = \sum_{k=0}^{\infty} \left(\frac{(1/2)_k^2}{(2/3)_k k!} \right) t^n \in \mathbb{Q}[[t]].$$

$f_2(t)$ is solution of $\mathcal{H}_{(1/2,1/2),(2/3,1)}$.

The **theorem II** ensures us that $\mathcal{H}_{(1/2,1/2),(2/3,1)}$ has a strong Frobenius structure for $p \ge 5$.

For $p \equiv 1 \mod 3$, $f_2(t) \in \mathbb{Z}_{(p)}[[t]]$ and for these primer numbers the period h = 1

ALGEBRAICITY MODULO p

We come back to the serie

$$f_2(t) :=_2 F_1(1/2, 1/2; 2/3, t) = \sum_{k=0}^{\infty} \left(\frac{(1/2)_k^2}{(2/3)_k k!} \right) t^n \in \mathbb{Q}[[t]].$$

$f_2(t)$ is solution of $\mathcal{H}_{(1/2,1/2),(2/3,1)}$.

The **theorem II** ensures us that $\mathcal{H}_{(1/2,1/2),(2/3,1)}$ has a strong Frobenius structure for $p \ge 5$.

For $p \equiv 1 \mod 3$, $f_2(t) \in \mathbb{Z}_{(p)}[[t]]$ and for these primer numbers the period h = 1, the **theorem I** implies that $f_{2|p}$ is algebraic and

$$\deg(f_{2|p}) \le p^{2^2}.$$

$$f_3(t) :=_3 F_2(1/9, 4/9, 5/9; 1/3, 1, t) = \sum_{k=0}^{\infty} \left(\frac{(1/9)_k (4/9)_k (5/9)_k}{(1/3)_k k!^2} \right) t^n.$$

$$f_3(t) :=_3 F_2(1/9, 4/9, 5/9; 1/3, 1, t) = \sum_{k=0}^{\infty} \left(\frac{(1/9)_k (4/9)_k (5/9)_k}{(1/3)_k k!^2} \right) t^n.$$

At this stage we do not know if it belongs to \mathfrak{D} .

$$f_3(t) :=_3 F_2(1/9, 4/9, 5/9; 1/3, 1, t) = \sum_{k=0}^{\infty} \left(\frac{(1/9)_k (4/9)_k (5/9)_k}{(1/3)_k k!^2} \right) t^n.$$

At this stage we do not know if it belongs to \mathfrak{D} . We have $f_3(t)$ is solution of $\mathcal{H}_{(1/9,4/9,5/9),(1/3,1,1)}$.

$$f_3(t) :=_3 F_2(1/9, 4/9, 5/9; 1/3, 1, t) = \sum_{k=0}^{\infty} \left(\frac{(1/9)_k (4/9)_k (5/9)_k}{(1/3)_k k!^2} \right) t^n.$$

At this stage we do not know if it belongs to \mathfrak{D} . We have $f_3(t)$ is solution of $\mathcal{H}_{(1/9,4/9,5/9),(1/3,1,1)}$.

After theorem II, $\mathcal{H}_{(1/9,4/9,5/9),(1/3,1,1)}$ has a strong Frobenius structure for $p \ge 7$.

$$f_3(t) :=_3 F_2(1/9, 4/9, 5/9; 1/3, 1, t) = \sum_{k=0}^{\infty} \left(\frac{(1/9)_k (4/9)_k (5/9)_k}{(1/3)_k k!^2} \right) t^n.$$

At this stage we do not know if it belongs to \mathfrak{D} . We have $f_3(t)$ is solution of $\mathcal{H}_{(1/9,4/9,5/9),(1/3,1,1)}$.

After theorem II, $\mathcal{H}_{(1/9,4/9,5/9),(1/3,1,1)}$ has a strong Frobenius structure for $p \ge 7$.

For $p \neq 3$, $f_3(t) \in \mathbb{Z}_{(p)}[[t]]$.

$$f_3(t) :=_3 F_2(1/9, 4/9, 5/9; 1/3, 1, t) = \sum_{k=0}^{\infty} \left(\frac{(1/9)_k (4/9)_k (5/9)_k}{(1/3)_k k!^2} \right) t^n.$$

At this stage we do not know if it belongs to \mathfrak{D} . We have $f_3(t)$ is solution of $\mathcal{H}_{(1/9,4/9,5/9),(1/3,1,1)}$.

After theorem II, $\mathcal{H}_{(1/9,4/9,5/9),(1/3,1,1)}$ has a strong Frobenius structure for $p \ge 7$.

For $p \neq 3$, $f_3(t) \in \mathbb{Z}_{(p)}[[t]]$. Applying **theorem I** we have that for $p \geq 7$, $f_{3|p}$ is algebraic and

 $\deg(f_{3|p}) \le p^{3^2 \times 6}.$

Theorem (VM.)

Let $L \in \mathbb{Q}(t)[d/dt]$. We suppose that the following conditions are verified.

- The singular points of L are regular .
- ² The exponents at singular points are rational numbers.
- The monodromy group of L is rigid.

Then, the differential operator L has a strong Frobenius structure for almost all prime numbers p.

We will construct a set S of prime numbers wich provide L of a strong Frobenius structure .

We will construct a set S of prime numbers wich provide L of a strong Frobenius structure .

Let \mathfrak{A} be the set of the following elements :

• The denominators of the exponents of $\gamma_1 = 0, \ldots, \gamma_r = \infty$.

We will construct a set S of prime numbers wich provide L of a strong Frobenius structure .

Let \mathfrak{A} be the set of the following elements :

- The denominators of the exponents of $\gamma_1 = 0, \ldots, \gamma_r = \infty$.
- The coefficients of $a_0(t)$.

We will construct a set S of prime numbers wich provide L of a strong Frobenius structure .

Let \mathfrak{A} be the set of the following elements :

- The denominators of the exponents of $\gamma_1 = 0, \ldots, \gamma_r = \infty$.
- The coefficients of $a_0(t)$.
- The algebraic numbers $\gamma_2, \ldots, \gamma_{r-1}, \gamma_1 + 1, \ldots, \gamma_{r-1} + 1$, and the differences $\gamma_i \gamma_j$ for $i \neq j$.

We will construct a set S of prime numbers wich provide L of a strong Frobenius structure .

Let \mathfrak{A} be the set of the following elements :

- The denominators of the exponents of $\gamma_1 = 0, \ldots, \gamma_r = \infty$.
- The coefficients of $a_0(t)$.
- The algebraic numbers $\gamma_2, \ldots, \gamma_{r-1}, \gamma_1 + 1, \ldots, \gamma_{r-1} + 1$, and the differences $\gamma_i \gamma_i$ for $i \neq j$.

 $S = \{p \in \mathcal{P} \text{ such that } |u|_p = 1 \ \forall u \in \mathfrak{A}\}, \text{ then } \mathcal{P} \setminus S \text{ is finite.}$

We will construct a set S of prime numbers wich provide L of a strong Frobenius structure .

Let \mathfrak{A} be the set of the following elements :

- The denominators of the exponents of $\gamma_1 = 0, \ldots, \gamma_r = \infty$.
- The coefficients of $a_0(t)$.
- The algebraic numbers $\gamma_2, \ldots, \gamma_{r-1}, \gamma_1 + 1, \ldots, \gamma_{r-1} + 1$, and the differences $\gamma_i \gamma_j$ for $i \neq j$.

 $S = \{p \in \mathcal{P} \text{ such that } |u|_p = 1 \ \forall u \in \mathfrak{A}\}, \text{ then } \mathcal{P} \setminus S \text{ is finite.}$

Since the exponents are rational numbers, there is $h \ge 1$ such that $\forall p \in S$, $p^h \alpha \equiv \alpha \mod \mathbb{Z}$, for every exponent α and $|\gamma_i^{p^h} - \gamma_i|_p < 1$. $\forall 1 \le i \le r - 1$.

The matrix $B := p^{h}t^{p^{h}-1}A(t^{p^{h}})$ does not have the same singularities than *A*. It is then impossible to compare locally *A* and *B* over $\mathbb{C}(t)$.

The matrix $B := p^{h}t^{p^{h}-1}A(t^{p^{h}})$ does not have the same singularities than *A*. It is then impossible to compare locally *A* and *B* over $\mathbb{C}(t)$.

However, the singularities of *B* modulo p are the same as the singularities of *A* modulo p.

The matrix $B := p^{l_l} t^{p^l_l} - 1A(t^{p^l_l})$ does not have the same singularities than *A*. It is then impossible to compare locally *A* and *B* over $\mathbb{C}(t)$.

However, the singularities of *B* modulo *p* are the same as the singularities of *A* modulo *p*. So that, the theory of **p**-adic equations ensures us that *B* is E_p -equivalent to

$$G = -\frac{1}{t+1} \left(\sum_{j=1}^r N_j \right) + \sum_{j=1}^{r-1} \frac{1}{t-\gamma_j} N_j \in M_n(\mathbb{C}_p(t)),$$

The matrix $B := p^{l_l} t^{p^{l_l} - 1} A(t^{p^{l_l}})$ does not have the same singularities than *A*. It is then impossible to compare locally *A* and *B* over $\mathbb{C}(t)$.

However, the singularities of *B* modulo *p* are the same as the singularities of *A* modulo *p*. So that, the theory of **p**-adic equations ensures us that *B* is E_p -equivalent to

$$G = -\frac{1}{t+1} \left(\sum_{j=1}^{r} N_j \right) + \sum_{j=1}^{r-1} \frac{1}{t-\gamma_j} N_j \in M_n(\mathbb{C}_p(t)),$$

where $N_j \in M_n(\mathbb{C}_p)$ and the eigenvalues of N_j are the exponents of *L* at γ_j multplied by p^h and $\sum_{j=1}^r N_j \in M_n(\mathbb{Z})$ is a diagonal matrix.

The matrix $B := p^{h}t^{p^{h}-1}A(t^{p^{h}})$ does not have the same singularities than *A*. It is then impossible to compare locally *A* and *B* over $\mathbb{C}(t)$.

However, the singularities of *B* modulo *p* are the same as the singularities of *A* modulo *p*. So that, the theory of **p**-adic equations ensures us that *B* is E_p -equivalent to

$$G = -\frac{1}{t+1} \left(\sum_{j=1}^{r} N_j \right) + \sum_{j=1}^{r-1} \frac{1}{t-\gamma_j} N_j \in M_n(\mathbb{C}_p(t)),$$

where $N_j \in M_n(\mathbb{C}_p)$ and the eigenvalues of N_j are the exponents of *L* at γ_j multplied by p^h and $\sum_{j=1}^r N_j \in M_n(\mathbb{Z})$ is a diagonal matrix.

In particular the eigenvalues of $N'_j s$ are $p^{l_i} \alpha_{i,j} \in \mathbb{Q}$. Where $\alpha_{i,j}$ is an exponent of L at γ_j .

The main points in the proof are the following: • Let $\kappa : \mathbb{C}_p \to \mathbb{C}$ be a isomorphisme of fields.

$$G^{\kappa} = -\frac{1}{t+1} \left(\sum_{j=1}^{r} N_{j}^{\kappa} \right) + \sum_{j=1}^{r-1} \frac{1}{t-\kappa(\gamma_{j})} N_{j}^{\kappa} \in M_{n}(\mathbb{C}(t)) \,.$$

The main points in the proof are the following: • Let $\kappa : \mathbb{C}_p \to \mathbb{C}$ be a isomorphisme of fields.

$$G^{\kappa} = -\frac{1}{t+1} \left(\sum_{j=1}^{r} N_j^{\kappa} \right) + \sum_{j=1}^{r-1} \frac{1}{t-\kappa(\gamma_j)} N_j^{\kappa} \in M_n(\mathbb{C}(t)) \,.$$

From the construction of S and h, we will have that the local monodromy matrix of G^{κ} at $\kappa(\gamma_j)$ and the local monodromy matrix of A at γ_j are conjugated.

The main points in the proof are the following:

• Let $\kappa : \mathbb{C}_p \to \mathbb{C}$ be a isomorphisme of fields.

$$G^{\kappa} = -\frac{1}{t+1} \left(\sum_{j=1}^{r} N_j^{\kappa} \right) + \sum_{j=1}^{r-1} \frac{1}{t-\kappa(\gamma_j)} N_j^{\kappa} \in M_n(\mathbb{C}(t)) \,.$$

From the construction of S and h, we will have that the local monodromy matrix of G^{κ} at $\kappa(\gamma_j)$ and the local monodromy matrix of A at γ_j are conjugated.

• Finally the rigidity hypothesis implies that *A* and G^{κ} are $\mathbb{C}(t)$ -equivalents. So that, *A* and *G* are E_p -equivalents, which implies that *A* and *B* are E_p -equivalents.

MONDOROMY OF L

Let M_i be the local monodromy matrix of *L* at γ_i .

Let M_j be the local monodromy matrix of L at γ_j . Since γ_j is a regular singular point, M_j is conjugated to the matrix $exp(2\pi iC_j)$, where $C_j \in M_n(\overline{\mathbb{Q}})$ satisfying the following conditions:

Let M_j be the local monodromy matrix of L at γ_j . Since γ_j is a regular singular point, M_j is conjugated to the matrix $exp(2\pi iC_j)$, where $C_j \in M_n(\overline{\mathbb{Q}})$ satisfying the following conditions:

a) If λ , β are two different eigenvalues of C_i , then $\lambda - \beta \notin \mathbb{Z}$.

Let M_j be the local monodromy matrix of L at γ_j . Since γ_j is a regular singular point, M_j is conjugated to the matrix $exp(2\pi iC_j)$, where $C_j \in M_n(\overline{\mathbb{Q}})$ satisfying the following conditions:

a) If λ , β are two different eigenvalues of C_j , then $\lambda - \beta \notin \mathbb{Z}$.

b) Let $\alpha_{i,j}$ be an exponent of *L* at γ_j , there is $m \in \mathbb{Z}$ such that $\alpha_{i,j} + m$ is an eingenvalue of C_j .

Let M_j be the local monodromy matrix of L at γ_j . Since γ_j is a regular singular point, M_j is conjugated to the matrix $exp(2\pi iC_j)$, where $C_j \in M_n(\overline{\mathbb{Q}})$ satisfying the following conditions:

a) If λ , β are two different eigenvalues of C_j , then $\lambda - \beta \notin \mathbb{Z}$.

b) Let $\alpha_{i,j}$ be an exponent of *L* at γ_j , there is $m \in \mathbb{Z}$ such that $\alpha_{i,j} + m$ is an eingenvalue of C_j .

Since $p^h \alpha_{i,j} \equiv \alpha_{i,j} \mod \mathbb{Z}$ for $p \in S$, the matrices $exp(2\pi iC_j)$ and $exp(2\pi ip^hC_j)$ are conjugated.

$$G^{\kappa} = -rac{1}{t+1} \left(\sum_{j=1}^{r} N_j^{\kappa}
ight) + \sum_{j=1}^{r-1} rac{1}{t-\kappa(\gamma_j)} N_j^{\kappa} \in M_n(\mathbb{C}(t))$$

$$G^{\kappa} = -rac{1}{t+1}\left(\sum_{j=1}^r N_j^{\kappa}
ight) + \sum_{j=1}^{r-1}rac{1}{t-\kappa(\gamma_j)}N_j^{\kappa} \in M_n(\mathbb{C}(t))\,.$$

Let T_j be the locale monodromy matrix of G^{κ} at $\kappa(\gamma_j)$. Since $\kappa(\gamma_j)$ is a regular singular point of G^{κ} , T_j is conjugated to $exp(2\pi i L_j)$, where L_j verfies :

$$G^{\kappa} = -rac{1}{t+1} \left(\sum_{j=1}^r N_j^{\kappa}
ight) + \sum_{j=1}^{r-1} rac{1}{t-\kappa(\gamma_j)} N_j^{\kappa} \in M_n(\mathbb{C}(t)) \, .$$

Let T_j be the locale monodromy matrix of G^{κ} at $\kappa(\gamma_j)$. Since $\kappa(\gamma_j)$ is a regular singular point of G^{κ} , T_j is conjugated to $exp(2\pi i L_j)$, where L_j verfies :

• Let λ , β be two different eigenvalues L_i , then $\lambda - \beta \notin \mathbb{Z}$.

$$G^{\kappa} = -rac{1}{t+1} \left(\sum_{j=1}^r N_j^{\kappa}
ight) + \sum_{j=1}^{r-1} rac{1}{t-\kappa(\gamma_j)} N_j^{\kappa} \in M_n(\mathbb{C}(t)) \, .$$

Let T_j be the locale monodromy matrix of G^{κ} at $\kappa(\gamma_j)$. Since $\kappa(\gamma_j)$ is a regular singular point of G^{κ} , T_j is conjugated to $exp(2\pi i L_j)$, where L_j verfies :

- Let λ , β be two different eigenvalues L_j , then $\lambda \beta \notin \mathbb{Z}$.
- If α is an eigenvalue of N_j^{κ} , there is $m \in \mathbb{Z}$ such that $\alpha + m$ is an eigenvalue of L_j .

$$G^{\kappa} = -rac{1}{t+1} \left(\sum_{j=1}^{r} N_j^{\kappa}
ight) + \sum_{j=1}^{r-1} rac{1}{t-\kappa(\gamma_j)} N_j^{\kappa} \in M_n(\mathbb{C}(t))$$

Let T_j be the locale monodromy matrix of G^{κ} at $\kappa(\gamma_j)$. Since $\kappa(\gamma_j)$ is a regular singular point of G^{κ} , T_j is conjugated to $exp(2\pi i L_j)$, where L_j verfies :

- Let λ , β be two different eigenvalues L_j , then $\lambda \beta \notin \mathbb{Z}$.
- If α is an eigenvalue of N_j^{κ} , there is $m \in \mathbb{Z}$ such that $\alpha + m$ is an eigenvalue of L_j .

So that, the eigenvalues of L_j are $p^h \alpha_{i,j} + m$, where $p^h \alpha_{i,j}$ is an eigenvalue of N_j^{κ}

$$G^{\kappa} = -rac{1}{t+1} \left(\sum_{j=1}^r N_j^{\kappa}
ight) + \sum_{j=1}^{r-1} rac{1}{t-\kappa(\gamma_j)} N_j^{\kappa} \in M_n(\mathbb{C}(t))$$

Let T_i be the locale monodromy matrix of G^{κ} at $\kappa(\gamma_i)$. Since $\kappa(\gamma_i)$ is a regular singular point of G^{κ} , T_i is conjugated to $exp(2\pi i L_i)$, where L_i verfies :

- Let λ , β be two different eigenvalues L_i , then $\lambda \beta \notin \mathbb{Z}$.
- If α is an eigenvalue of N_i^{κ} , there is $m \in \mathbb{Z}$ such that $\alpha + m$ is an eigenvalue of L_i .

So that, the eigenvalues of L_i are $p^h \alpha_{i,i} + m$, where $p^h \alpha_{i,i}$ is an eigenvalue of N_i^{κ} . We conclude that, $exp(2\pi i L_i)$ and $\exp(2\pi i p^h C_i)$ are conjugated.

 M_i and T_i are conjugated

RIGIDITY

 M_j and T_j are conjugated and since the monodromy group of *L* is rigid then the monodromy groups of *L* and G^{κ} are isomorphe

 M_j and T_j are conjugated and since the monodromy group of L is rigid then the monodromy groups of L and G^{κ} are isomorphe and, after the Riemann-Hilbert correspondance, there is $H_1 \in Gl_n(\mathbb{C}(t))$ such that

$$\frac{d}{dt}H_1 = AH_1 - H_1G^{\kappa}$$

RIGIDITY

 M_j and T_j are conjugated and since the monodromy group of L is rigid then the monodromy groups of L and G^{κ} are isomorphe and, after the Riemann-Hilbert correspondance, there is $H_1 \in Gl_n(\mathbb{C}(t))$ such that

$$rac{d}{dt}H_1 = AH_1 - H_1G^\kappa$$
 .

We set $H = H_1^{\kappa^{-1}}$, so , $H \in Gl_n(\mathbb{C}_p(t)) \subset Gl_n(E_p)$ and since $\frac{d}{dt} \circ \kappa^{-1} = \kappa^{-1} \circ \frac{d}{dt}$, then

$$\frac{d}{dt}H = A^{\kappa^{-1}}H - HG$$

 M_j and T_j are conjugated and since the monodromy group of L is rigid then the monodromy groups of L and G^{κ} are isomorphe and, after the Riemann-Hilbert correspondance, there is $H_1 \in Gl_n(\mathbb{C}(t))$ such that

$$\frac{d}{dt}H_1 = AH_1 - H_1G^{\kappa}.$$

We set $H = H_1^{\kappa^{-1}}$, so , $H \in Gl_n(\mathbb{C}_p(t)) \subset Gl_n(E_p)$ and since $\frac{d}{dt} \circ \kappa^{-1} = \kappa^{-1} \circ \frac{d}{dt}$, then

$$\frac{d}{dt}H = A^{\kappa^{-1}}H - HG$$

Consequently, A and G are E_p -equivalents,

 M_j and T_j are conjugated and since the monodromy group of L is rigid then the monodromy groups of L and G^{κ} are isomorphe and, after the Riemann-Hilbert correspondance, there is $H_1 \in Gl_n(\mathbb{C}(t))$ such that

$$rac{d}{dt}H_1 = AH_1 - H_1G^\kappa$$
 .

We set $H = H_1^{\kappa^{-1}}$, so , $H \in Gl_n(\mathbb{C}_p(t)) \subset Gl_n(E_p)$ and since $\frac{d}{dt} \circ \kappa^{-1} = \kappa^{-1} \circ \frac{d}{dt}$, then

$$\frac{d}{dt}H = A^{\kappa^{-1}}H - HG.$$

Consequently, *A* and *G* are E_p -equivalents, but *G* is E_p -equivalent to *B*, then by transitivity we have that *A* and *B* are E_p -aquivalents.