Strong Frobenius structure, rigidity and hypergeometric equations

Vargas-Montoya Daniel

Institut Camille Jordan, Lyon

Workshop on differential algebra and related topics
New York, Unitated States
10-14 February, 2020

AIMS

This talk has two main aims:

- Show that there exists a family \mathfrak{L} of differential operators such that for all L in \mathfrak{L}, L has a strong Frobenius structure for almost prime number p.

AIMS

This talk has two main aims:

- Show that there exists a family \mathfrak{L} of differential operators such that for all L in \mathfrak{L}, L has a strong Frobenius structure for almost prime number p.
- Show the connection between the existence of a strong Frobenius structure for a prime number p and the algebraicity modulo p of the solutions of the corresponding operator.

MOTIVATION

There is a family \mathfrak{G} of G -functions, $f(t)=\sum_{n \geq 0} a_{n} t^{n} \in \mathbb{Q}[[t]]$, such that for all $f \in \mathscr{G}$ there exists \mathcal{S} an infinit set of prime numbers such that for every $p \in \mathcal{S}$:

Motivation

There is a family \mathfrak{G} of G-functions, $f(t)=\sum_{n \geq 0} a_{n} t^{n} \in \mathbb{Q}[[t]]$, such that for all $f \in \mathscr{G}$ there exists \mathcal{S} an infinit set of prime numbers such that for every $p \in \mathcal{S}$:
$f \in \mathbb{Z}_{(p)}[[t]]$. We can then
reduce f modulo p.

Motivation

There is a family \mathfrak{G} of G-functions, $f(t)=\sum_{n \geq 0} a_{n} t^{n} \in \mathbb{Q}[[t]]$, such that for all $f \in \mathscr{G}$ there exists \mathcal{S} an infinit set of prime numbers such that for every $p \in \mathcal{S}$:
$f \in \mathbb{Z}_{(p)}[[t]]$. We can then
reduce f modulo p.

Motivation

There is a family \mathfrak{G} of G-functions, $f(t)=\sum_{n \geq 0} a_{n} t^{n} \in \mathbb{Q}[[t]]$, such that for all $f \in \mathscr{G}$ there exists \mathcal{S} an infinit set of prime numbers such that for every $p \in \mathcal{S}$:
$f \in \mathbb{Z}_{(p)}[[t]]$. We can then reduce f modulo p.

$$
f_{\mid p}:=\sum_{n \geq 0}\left(a_{n} \quad \bmod p\right) t^{n} \in \mathbb{F}_{p}[[t]]
$$

is algebraic over $\mathbb{F}_{p}(t)$.

Motivation

There is a family \mathfrak{G} of G-functions, $f(t)=\sum_{n \geq 0} a_{n} t^{n} \in \mathbb{Q}[[t]]$, such that for all $f \in \mathscr{G}$ there exists \mathcal{S} an infinit set of prime numbers such that for every $p \in \mathcal{S}$:
$f \in \mathbb{Z}_{(p)}[[t]]$. We can then reduce f modulo p.

$$
\left.f_{\mid p}:=\sum_{n \geq 0}\left(a_{n} \quad \bmod p\right) t^{n} \in \mathbb{F}_{p}[t t]\right]
$$

is algebraic over $\mathbb{F}_{p}(t)$.
In particular there is $a_{0}(t), \ldots, a_{c}(t) \in \mathbb{F}_{p}(t)$ such that $f_{\mid p}$ is zero of

$$
a_{0}(t) Y+a_{1}(t) Y^{p}+\cdots+a_{c}(t) Y^{p^{c}} \text { (Frobenius polynomial) } .
$$

Motivation

There is a family \mathfrak{G} of G-functions, $f(t)=\sum_{n \geq 0} a_{n} t^{n} \in \mathbb{Q}[[t]]$, such that for all $f \in \mathscr{G}$ there exists \mathcal{S} an infinit set of prime numbers such that for every $p \in \mathcal{S}$:
$f \in \mathbb{Z}_{(p)}[[t]]$. We can then reduce f modulo p.

$$
\left.f_{\mid p}:=\sum_{n \geq 0}\left(a_{n} \quad \bmod p\right) t^{n} \in \mathbb{F}_{p}[t t]\right]
$$

is algebraic over $\mathbb{F}_{p}(t)$.
In particular there is $a_{0}(t), \ldots, a_{c}(t) \in \mathbb{F}_{p}(t)$ such that $f_{\mid p}$ is zero of

$$
a_{0}(t) Y+a_{1}(t) Y^{p}+\cdots+a_{c}(t) Y^{p^{c}} \text { (Frobenius polynomial) } .
$$

Therefore the algibraicity degree of $f_{\mid p}$ is bounded by p^{c}

In 1984, Deligne shows that if $f(t) \in \mathfrak{D}$ then the above situation assure,

In 1984, Deligne shows that if $f(t) \in \mathfrak{D}$ then the above situation assure, where $\mathfrak{D}=\bigcup_{d>0} \mathfrak{D}_{d}$ and \mathfrak{D}_{d} is the image of $\Delta_{d}: \mathbb{Q}\left[\left[t_{1}, \ldots, t_{d}\right]\right]^{\text {alg }} \rightarrow \mathbb{Q}[[t]]$, (the diagonalisation operator)

$$
\Delta_{d}\left(\sum_{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{N}^{d}} c_{\left(i_{1}, \ldots, i_{d}\right)} t_{1}^{i_{1}} \cdots t_{d}^{i_{d}}\right)=\sum_{n \geq 0} c_{\left(i_{n}, \ldots, i_{n}\right)} t^{n}
$$

In 1984, Deligne shows that if $f(t) \in \mathfrak{D}$ then the above situation assure, where $\mathfrak{D}=\bigcup_{d>0} \mathfrak{D}_{d}$ and \mathfrak{D}_{d} is the image of $\Delta_{d}: \mathbb{Q}\left[\left[t_{1}, \ldots, t_{d}\right]\right]^{\text {alg }} \rightarrow \mathbb{Q}[[t]]$, (the diagonalisation operator)

$$
\Delta_{d}\left(\sum_{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{N}^{d}} c_{\left(i_{1}, \ldots, i_{d}\right)} t_{1}^{i_{1}} \cdots t_{d}^{i_{d}}\right)=\sum_{n \geq 0} c_{\left(i_{n}, \ldots, i_{n}\right)} t^{n}
$$

Deligne's Question: If $f \in \mathfrak{D}$, is there a constant $c>0$ such that $\operatorname{deg}\left(f_{\mid p}\right) \leq p^{c}$, for every $p \in \mathcal{S}$?

In 1984, Deligne shows that if $f(t) \in \mathfrak{D}$ then the above situation assure, where $\mathfrak{D}=\bigcup_{d>0} \mathfrak{D}_{d}$ and \mathfrak{D}_{d} is the image of $\Delta_{d}: \mathbb{Q}\left[\left[t_{1}, \ldots, t_{d}\right]\right]^{\text {alg }} \rightarrow \mathbb{Q}[[t]]$, (the diagonalisation operator)

$$
\Delta_{d}\left(\sum_{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{N}^{d}} c_{\left(i_{1}, \ldots, i_{d}\right)} t_{1}^{i_{1}} \cdots t_{d}^{i_{d}}\right)=\sum_{n \geq 0} c_{\left(i_{n}, \ldots, i_{n}\right)} t^{n}
$$

Deligne's Question: If $f \in \mathfrak{D}$, is there a constant $c>0$ such that $\operatorname{deg}\left(f_{\mid p}\right) \leq p^{c}$, for every $p \in \mathcal{S}$?
For exemple the G-function

$$
f_{1}(t)=\sum_{n \geq 0} \frac{1}{16^{n}}\binom{2 n}{n}^{2} t^{n}={ }_{2} F_{1}(1 / 2,1 / 2 ; 1, t)
$$

is the diagonal of

$$
\frac{2}{2-t_{1}-t_{2}} \cdot \frac{2}{2-t_{3}-t_{4}}
$$

In 1984, Deligne shows that if $f(t) \in \mathfrak{D}$ then the above situation assure, where $\mathfrak{D}=\bigcup_{d>0} \mathfrak{D}_{d}$ and \mathfrak{D}_{d} is the image of $\Delta_{d}: \mathbb{Q}\left[\left[t_{1}, \ldots, t_{d}\right]\right]^{\text {alg }} \rightarrow \mathbb{Q}[[t]]$, (the diagonalisation operator)

$$
\Delta_{d}\left(\sum_{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{N}^{d}} c_{\left(i_{1}, \ldots, i_{d}\right)} t_{1}^{i_{1}} \cdots t_{d}^{i_{d}}\right)=\sum_{n \geq 0} c_{\left(i_{n}, \ldots, i_{n}\right)} t^{n}
$$

Deligne's Question: If $f \in \mathfrak{D}$, is there a constant $c>0$ such that $\operatorname{deg}\left(f_{\mid p}\right) \leq p^{c}$, for every $p \in \mathcal{S}$?
For exemple the G-function

$$
f_{1}(t)=\sum_{n \geq 0} \frac{1}{16^{n}}\binom{2 n}{n}^{2} t^{n}={ }_{2} F_{1}(1 / 2,1 / 2 ; 1, t)
$$

is the diagonal of

$$
\frac{2}{2-t_{1}-t_{2}} \cdot \frac{2}{2-t_{3}-t_{4}}
$$

The algebracity degree of $f_{1 \mid p}$ is bounded by p_{A}.

There are G-functions which do not belong to \mathfrak{D},

There are G-functions which do not belong to \mathfrak{D}, for exemple

$$
f_{2}(t)={ }_{2} F_{1}(1 / 2,1 / 2 ; 2 / 3, t)=\sum_{k=0}^{\infty}\left(\frac{(1 / 2)_{k}^{2}}{(2 / 3)_{k} k!}\right) t^{n} \in \mathbb{Q}[[t] \text {, }
$$

where $(x)_{0}=1$ and $(x)_{n}=x(x+1) \cdots(x+n-1)$.

There are G-functions which do not belong to \mathfrak{D}, for exemple

$$
f_{2}(t)={ }_{2} F_{1}(1 / 2,1 / 2 ; 2 / 3, t)=\sum_{k=0}^{\infty}\left(\frac{(1 / 2)_{k}^{2}}{(2 / 3)_{k} k!}\right) t^{n} \in \mathbb{Q}[[t],
$$

where $(x)_{0}=1$ and $(x)_{n}=x(x+1) \cdots(x+n-1)$.
If $p \equiv 1 \bmod 3, f_{2}(t) \in \mathbb{Z}_{(p)}[[t]]$.

There are G-functions which do not belong to \mathfrak{D}, for exemple

$$
f_{2}(t)={ }_{2} F_{1}(1 / 2,1 / 2 ; 2 / 3, t)=\sum_{k=0}^{\infty}\left(\frac{(1 / 2)_{k}^{2}}{(2 / 3)_{k} k!}\right) t^{n} \in \mathbb{Q}[[t],
$$

where $(x)_{0}=1$ and $(x)_{n}=x(x+1) \cdots(x+n-1)$.
If $p \equiv 1 \bmod 3, f_{2}(t) \in \mathbb{Z}_{(p)}[[t]]$. Is $f_{2 \mid p}$ algebraic over $\mathbb{F}_{p}(t)$?

There are G-functions which do not belong to \mathfrak{D}, for exemple

$$
f_{2}(t)={ }_{2} F_{1}(1 / 2,1 / 2 ; 2 / 3, t)=\sum_{k=0}^{\infty}\left(\frac{(1 / 2)_{k}^{2}}{(2 / 3)_{k} k!}\right) t^{n} \in \mathbb{Q}[[t] \text {, }
$$

where $(x)_{0}=1$ and $(x)_{n}=x(x+1) \cdots(x+n-1)$.
If $p \equiv 1 \bmod 3, f_{2}(t) \in \mathbb{Z}_{(p)}[[t]]$. Is $f_{2 \mid p}$ algebraic over $\mathbb{F}_{p}(t)$?

The notion of strong Frobenius structure give us a general point of view about the following question:

There are G-functions which do not belong to \mathfrak{D}, for exemple

$$
f_{2}(t)={ }_{2} F_{1}(1 / 2,1 / 2 ; 2 / 3, t)=\sum_{k=0}^{\infty}\left(\frac{(1 / 2)_{k}^{2}}{(2 / 3)_{k} k!}\right) t^{n} \in \mathbb{Q}[[t] \text {, }
$$

where $(x)_{0}=1$ and $(x)_{n}=x(x+1) \cdots(x+n-1)$.
If $p \equiv 1 \bmod 3, f_{2}(t) \in \mathbb{Z}_{(p)}[[t]]$. Is $f_{2 \mid p}$ algebraic over $\mathbb{F}_{p}(t)$?

The notion of strong Frobenius structure give us a general point of view about the following question:
If f is a G-function such that $f \in \mathbb{Z}_{(p)}[[t]]$, is its reduction $f_{\mid p}$ algebraic over $\mathbb{F}_{p}(t)$? If this is the case, what could we say about its algebraicity degree?

FIELD OF ANALYTIC ELEMENTS

Let $A, B \in M_{n}(\mathbb{Q}(t))$

FIELD OF ANALYTIC ELEMENTS

Let $A, B \in M_{n}(\mathbb{Q}(t))$
Classic situation

FIELD OF ANALYTIC ELEMENTS

Let $A, B \in M_{n}(\mathbb{Q}(t))$

Classic situation

We say that A and B are globally equivalents in $\mathbb{C}(t)$, if there exists $H \in G l_{n}(\mathbb{C}(t))$ such that

$$
\frac{d}{d t} H=A H-H B
$$

We say that A and B are $\mathbb{C}(t)$-equivalents.

FIELD OF ANALYTIC ELEMENTS

Let $A, B \in M_{n}(\mathbb{Q}(t))$

Classic situation

We say that A and B are globally equivalents in $\mathbb{C}(t)$, if there exists $H \in G l_{n}(\mathbb{C}(t))$ such that

$$
\frac{d}{d t} H=A H-H B
$$

We say that A and B are $\mathbb{C}(t)$-equivalents.
p-adic situation.

FIELD OF ANALYTIC ELEMENTS

Let $A, B \in M_{n}(\mathbb{Q}(t))$

Classic situation

We say that A and B are globally equivalents in $\mathbb{C}(t)$, if there exists $H \in G l_{n}(\mathbb{C}(t))$ such that

$$
\frac{d}{d t} H=A H-H B
$$

We say that A and B are $\mathbb{C}(t)$-equivalents.
p -adic situation.
We say that A and B are globally equivalents, if there is $H \in G l_{n}\left(E_{p}\right)$ such that

$$
\frac{d}{d t} H=A H-H B
$$

We say A and B are E_{p}-equivalents.

FIELD OF ANALYTIC ELEMENTS

Let $A, B \in M_{n}(\mathbb{Q}(t))$

Classic situation

We say that A and B are globally equivalents in $\mathbb{C}(t)$, if there exists $H \in G l_{n}(\mathbb{C}(t))$ such that

$$
\frac{d}{d t} H=A H-H B
$$

We say that A and B are $\mathbb{C}(t)$-equivalents.
p-adic situation.
We say that A and B are globally equivalents, if there is $H \in G l_{n}\left(E_{p}\right)$ such that

$$
\frac{d}{d t} H=A H-H B
$$

We say A and B are E_{p}-equivalents.

Where E_{p} is the field of analytic elements, that is, the completion of $\mathbb{C}_{p}(t)$ for the Gauss norm.

Strong Frobenius structure

Let's set the differential operator
$L:=\frac{d}{d t^{n}}+a_{1}(t) \frac{d}{d t^{n-1}}+\cdots+a_{n-1}(t) \frac{d}{d t}+a_{n}(t) \in \mathbb{Q}(t)[d / d t]$.

STRONG FROBENIUS STRUCTURE

Let's set the differential operator
$L:=\frac{d}{d t^{n}}+a_{1}(t) \frac{d}{d t^{n-1}}+\cdots+a_{n-1}(t) \frac{d}{d t}+a_{n}(t) \in \mathbb{Q}(t)[d / d t]$.

Companion matrix.

Strong Frobenius structure

Let's set the differential operator
$L:=\frac{d}{d t^{n}}+a_{1}(t) \frac{d}{d t^{n-1}}+\cdots+a_{n-1}(t) \frac{d}{d t}+a_{n}(t) \in \mathbb{Q}(t)[d / d t]$.

Companion matrix.
We consider the matrix A wich is called the companion matrix of L.

Strong Frobenius structure

Let's set the differential operator

$$
L:=\frac{d}{d t^{n}}+a_{1}(t) \frac{d}{d t^{n-1}}+\cdots+a_{n-1}(t) \frac{d}{d t}+a_{n}(t) \in \mathbb{Q}(t)[d / d t] .
$$

Companion matrix.
We consider the matrix A wich is called the companion matrix of L.
$A=\left(\begin{array}{ccccccc}0 & 1 & 0 & \ldots & 0 & 0 & \\ 0 & 0 & 1 & \ldots & 0 & 0 & \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & 0 & 1 & \\ -a_{n}(t) & -a_{n-1}(t) & -a_{n-2}(t) & \ldots & -a_{2}(t) & -a_{1}(t) & \end{array}\right)$.

Strong Frobenius structure

Let's set the differential operator $L:=\frac{d}{d t^{n}}+a_{1}(t) \frac{d}{d t^{n-1}}+\cdots+a_{n-1}(t) \frac{d}{d t}+a_{n}(t) \in \mathbb{Q}(t)[d / d t]$.

Companion matrix.
We consider the matrix A wich is called the companion matrix of L.

Strong Frobenius structure.

Strong Frobenius structure

Let's set the differential operator

$$
L:=\frac{d}{d t^{n}}+a_{1}(t) \frac{d}{d t^{n-1}}+\cdots+a_{n-1}(t) \frac{d}{d t}+a_{n}(t) \in \mathbb{Q}(t)[d / d t] .
$$

Companion matrix.
We consider the matrix A wich is called the companion matrix of L.

Strong Frobenius structure.
L has a strong Frobenius structure for p, of period h, if there is an integer $h \geq 1$, such that A and $p^{h} t^{p^{h}-1} A\left(t p^{h}\right)$ are E_{p}-equivalents.
In other words, $\exists H \in G l_{n}\left(E_{p}\right)$ such that

$$
\frac{d}{d t} H=A H-H\left(p^{h} t^{p^{h}-1} A\left(t^{p^{h}}\right)\right) .
$$

FROBENIUS ACTION AND ALGEBRAICITY MODULO p

Frobenius action: If L has a strong Frobenius structure for p of period h

FROBENIUS ACTION AND ALGEBRAICITY MODULO p

Frobenius action: If L has a strong Frobenius structure for p of period h , and $h_{11}, \ldots, h_{1 n} \in E_{p}$ is the firt row of H, then for every solution f of L, f belongs to a ring containing E_{p}, we have

$$
h_{11} f\left(t^{p^{h}}\right)+\cdots+h_{1 n} f^{(n-1)}\left(t^{p^{h}}\right)
$$

is a solution of L.

Frobenius action and algebraicity modulo p

Frobenius action: If L has a strong Frobenius structure for p of period h , and $h_{11}, \ldots, h_{1 n} \in E_{p}$ is the firt row of H, then for every solution f of L, f belongs to a ring containing E_{p}, we have

$$
h_{11} f\left(t^{p^{h}}\right)+\cdots+h_{1 n} f^{(n-1)}\left(t^{p^{h}}\right)
$$

is a solution of L.This application is \mathbb{C}_{p}-linear.

Frobenius action and algebraicity modulo p

Frobenius action: If L has a strong Frobenius structure for p of period h , and $h_{11}, \ldots, h_{1 n} \in E_{p}$ is the firt row of H, then for every solution f of L, f belongs to a ring containing E_{p}, we have

$$
h_{11} f\left(t^{p^{h}}\right)+\cdots+h_{1 n} f^{(n-1)}\left(t^{p^{h}}\right)
$$

is a solution of L. This application is \mathbb{C}_{p}-linear.
Applying the Cayley-Hamilton theorem, we obtain the following

Theorem (I)

Let $f(t)=\sum_{n \geq 0} a(n) t^{n} \in \mathbb{Z}_{(p)}[[t]]$ be a solution of L endowed of a strong Frobenius structure for p of period h. Then $f_{p p}$ is algebraic over $\mathbb{F}_{p}(t)$ and

$$
\operatorname{deg}\left(f_{\mid p}\right) \leq p^{n^{2} h}
$$

Where n is the order of L.

GAUSS HYPERGEOMETRIC EQUATIONS

Dwork and Salinier proved the following theorem using different methods.

GAUSS HYPERGEOMETRIC EQUATIONS

Dwork and Salinier proved the following theorem using different methods.

Theorem

Let $a, b, c \in \mathbb{Q}$. If $a, b, c-a, c-b \notin \mathbb{Z}$, the operator associated to the Gauss hypergoemetric equation,

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}+\frac{c-(a+b+1) t}{t(1-t)} \frac{d}{d t}-\frac{a b}{t(1-t)} \tag{1}
\end{equation*}
$$

has a strong Frobenius structure for almost all p of period

$$
h \leq \varphi(d(a)) \varphi(d(b)) \varphi(d(c)),
$$

where φ is the Euler phi function and d is the denominator function

Salinier's proof is based on the classic theory of differential equations and p-adic differential equations.

RIGIDITY

Salinier's proof is based on the classic theory of differential equations and p-adic differential equations.

Theorem (VM.)

Let $L \in \mathbb{Q}(t)[d / d t]$. We suppose that the following conditions are verified.
(1) The singular points of L are regular.
(2) The exponents at singular points are rational numbers.
(3) The monodromy group of L is rigid.

Then, the differential operator L has a strong Frobenius structure for almost all prime number p.

MONDROMY GROUP

Let $\gamma_{1}=0, \ldots, \gamma_{r}=\infty$ be the singularities of L.

MONDROMY GROUP

Let $\gamma_{1}=0, \ldots, \gamma_{r}=\infty$ be the singularities of L. Let $M_{i} \in G l_{n}(\mathbb{C})$ be the monodromy local matrix of L at γ_{i}. Such that the monodromy group of L is the group generated by the matrices M_{1}, \ldots, M_{r} with the relation $M_{1} \cdots M_{r}=I d_{n}$.

MONDROMY GROUP

Let $\gamma_{1}=0, \ldots, \gamma_{r}=\infty$ be the singularities of L. Let $M_{i} \in G l_{n}(\mathbb{C})$ be the monodromy local matrix of L at γ_{i}. Such that the monodromy group of L is the group generated by the matrices M_{1}, \ldots, M_{r} with the relation $M_{1} \cdots M_{r}=I d_{n}$.

We say that monodromy group of L is rigid if for every $N_{1}, \ldots, N_{r} \in G l_{n}(\mathbb{C})$ such that $N_{1} \cdots N_{r}=I d_{n}$ and N_{i} cojugated to M_{i}, then there is $U \in G l_{n}(\mathbb{C})$ such that

$$
U_{i} U^{-1}=M_{i} \quad \forall 1 \leq i \leq r .
$$

GENERALIZED HYPERGOEMETRIC EQUATION

The differential operator associated to the generalized hypergeometric equation is

$$
\mathcal{H}(\underline{\alpha}, \underline{\beta}):-t\left(\delta+\alpha_{1}\right) \cdots\left(\delta+\alpha_{n}\right)+\left(\delta+\beta_{1}-1\right) \cdots\left(\delta+\beta_{n}-1\right),
$$

GENERALIZED HYPERGOEMETRIC EQUATION

The differential operator associated to the generalized hypergeometric equation is
$\mathcal{H}(\underline{\alpha}, \underline{\beta}):-t\left(\delta+\alpha_{1}\right) \cdots\left(\delta+\alpha_{n}\right)+\left(\delta+\beta_{1}-1\right) \cdots\left(\delta+\beta_{n}-1\right)$,
where $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in \mathbb{Q}$ and $\alpha_{i}-\beta_{j} \notin \mathbb{Z}$.

GENERALIZED HYPERGOEMETRIC EQUATION

The differential operator associated to the generalized hypergeometric equation is

$$
\begin{aligned}
& \mathcal{H}(\underline{\alpha}, \underline{\beta}):-t\left(\delta+\alpha_{1}\right) \cdots\left(\delta+\alpha_{n}\right)+\left(\delta+\beta_{1}-1\right) \cdots\left(\delta+\beta_{n}-1\right) \text {, } \\
& \text { where } \alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in \mathbb{Q} \text { and } \alpha_{i}-\beta_{j} \notin \mathbb{Z} .
\end{aligned}
$$

- The singularities of $\mathcal{H}(\underline{\alpha}, \underline{\beta})$ are regular , wich are $0,1, \infty$.
- The exponents at infinity are $\alpha_{1}, \ldots, \alpha_{n}$, the exponents at 0 are $1-\beta_{1}, \ldots, 1-\beta_{n}$, and the exponents at 1 are $0,1, \ldots, n-2,-1+\sum\left(\beta_{i}-\alpha_{i}\right)$.
- The monodromy group of $\mathcal{H}(\underline{\alpha}, \underline{\beta})$ is rigid. (Levelt).

GENERALIZED HYPERGOEMETRIC EQUATION

The differential operator associated to the generalized hypergeometric equation is
$\mathcal{H}(\underline{\alpha}, \underline{\beta}):-t\left(\delta+\alpha_{1}\right) \cdots\left(\delta+\alpha_{n}\right)+\left(\delta+\beta_{1}-1\right) \cdots\left(\delta+\beta_{n}-1\right)$,
where $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in \mathbb{Q}$ and $\alpha_{i}-\beta_{j} \notin \mathbb{Z}$.

Let $\mathcal{S}:=\left\{p \in \mathcal{P} \backslash\{2\}\right.$ such that $\left.\left|\alpha_{i}\right|_{p},\left|\beta_{j}\right|_{p}=1\right\}$.

Theorem (II)

$\mathcal{H}(\underline{\alpha}, \underline{\beta})$ has a strong Frobenius structure for $p \in \mathcal{S}$ of period

$$
h \leq \prod_{i=1}^{n} \varphi\left(d\left(\alpha_{i}\right)\right) \prod_{j=1}^{n} \varphi\left(d\left(\beta_{j}\right)\right)
$$

ALGEBRAICITY MODULO p

We come back to the serie

$$
f_{2}(t):={ }_{2} F_{1}(1 / 2,1 / 2 ; 2 / 3, t)=\sum_{k=0}^{\infty}\left(\frac{(1 / 2)_{k}^{2}}{(2 / 3)_{k} k!}\right) t^{n} \in \mathbb{Q}[[t] .
$$

ALGEBRAICITY MODULO p

We come back to the serie

$$
f_{2}(t):={ }_{2} F_{1}(1 / 2,1 / 2 ; 2 / 3, t)=\sum_{k=0}^{\infty}\left(\frac{(1 / 2)_{k}^{2}}{(2 / 3)_{k} k!}\right) t^{n} \in \mathbb{Q}[[t] .
$$

$f_{2}(t)$ is solution of $\mathcal{H}_{(1 / 2,1 / 2),(2 / 3,1)}$.

ALGEBRAICITY MODULO p

We come back to the serie

$$
f_{2}(t):={ }_{2} F_{1}(1 / 2,1 / 2 ; 2 / 3, t)=\sum_{k=0}^{\infty}\left(\frac{(1 / 2)_{k}^{2}}{(2 / 3)_{k} k!}\right) t^{n} \in \mathbb{Q}[[t] .
$$

$f_{2}(t)$ is solution of $\mathcal{H}_{(1 / 2,1 / 2),(2 / 3,1)}$.
The theorem II ensures us that $\mathcal{H}_{(1 / 2,1 / 2),(2 / 3,1)}$ has a strong Frobenius structure for $p \geq 5$.

ALGEBRAICITY MODULO p

We come back to the serie

$$
f_{2}(t):={ }_{2} F_{1}(1 / 2,1 / 2 ; 2 / 3, t)=\sum_{k=0}^{\infty}\left(\frac{(1 / 2)_{k}^{2}}{(2 / 3)_{k} k!}\right) t^{n} \in \mathbb{Q}[[t] .
$$

$f_{2}(t)$ is solution of $\mathcal{H}_{(1 / 2,1 / 2),(2 / 3,1)}$.
The theorem II ensures us that $\mathcal{H}_{(1 / 2,1 / 2),(2 / 3,1)}$ has a strong Frobenius structure for $p \geq 5$.

For $p \equiv 1 \bmod 3, f_{2}(t) \in \mathbb{Z}_{(p)}[[t]]$ and for these primer numbers the period $h=1$

ALGEBRAICITY MODULO p

We come back to the serie

$$
f_{2}(t):={ }_{2} F_{1}(1 / 2,1 / 2 ; 2 / 3, t)=\sum_{k=0}^{\infty}\left(\frac{(1 / 2)_{k}^{2}}{(2 / 3)_{k} k!}\right) t^{n} \in \mathbb{Q}[[t] .
$$

$f_{2}(t)$ is solution of $\mathcal{H}_{(1 / 2,1 / 2),(2 / 3,1)}$.
The theorem II ensures us that $\mathcal{H}_{(1 / 2,1 / 2),(2 / 3,1)}$ has a strong Frobenius structure for $p \geq 5$.

For $p \equiv 1 \bmod 3, f_{2}(t) \in \mathbb{Z}_{(p)}[[t]]$ and for these primer numbers the period $h=1$, the theorem I implies that $f_{2 \mid p}$ is algebraic and

$$
\operatorname{deg}\left(f_{2 \mid p}\right) \leq p^{2^{2}}
$$

Let us consider

$$
f_{3}(t):={ }_{3} F_{2}(1 / 9,4 / 9,5 / 9 ; 1 / 3,1, t)=\sum_{k=0}^{\infty}\left(\frac{(1 / 9)_{k}(4 / 9)_{k}(5 / 9)_{k}}{(1 / 3)_{k} k!^{2}}\right) t^{n} .
$$

Let us consider

$f_{3}(t):={ }_{3} F_{2}(1 / 9,4 / 9,5 / 9 ; 1 / 3,1, t)=\sum_{k=0}^{\infty}\left(\frac{(1 / 9)_{k}(4 / 9)_{k}(5 / 9)_{k}}{(1 / 3)_{k} k!^{2}}\right) t^{n}$.

At this stage we do not know if it belongs to \mathfrak{D}.

Let us consider

$f_{3}(t):={ }_{3} F_{2}(1 / 9,4 / 9,5 / 9 ; 1 / 3,1, t)=\sum_{k=0}^{\infty}\left(\frac{(1 / 9)_{k}(4 / 9)_{k}(5 / 9)_{k}}{(1 / 3)_{k} k!^{2}}\right) t^{n}$.

At this stage we do not know if it belongs to \mathfrak{D}. We have $f_{3}(t)$ is solution of $\mathcal{H}_{(1 / 9,4 / 9,5 / 9),(1 / 3,1,1)}$.

Let us consider

$f_{3}(t):={ }_{3} F_{2}(1 / 9,4 / 9,5 / 9 ; 1 / 3,1, t)=\sum_{k=0}^{\infty}\left(\frac{(1 / 9)_{k}(4 / 9)_{k}(5 / 9)_{k}}{(1 / 3)_{k} k!^{2}}\right) t^{n}$.

At this stage we do not know if it belongs to \mathfrak{D}. We have $f_{3}(t)$ is solution of $\mathcal{H}_{(1 / 9,4 / 9,5 / 9),(1 / 3,1,1)}$.
After theorem II, $\mathcal{H}_{(1 / 9,4 / 9,5 / 9),(1 / 3,1,1)}$ has a strong Frobenius structure for $p \geq 7$.

Let us consider

$f_{3}(t):={ }_{3} F_{2}(1 / 9,4 / 9,5 / 9 ; 1 / 3,1, t)=\sum_{k=0}^{\infty}\left(\frac{(1 / 9)_{k}(4 / 9)_{k}(5 / 9)_{k}}{(1 / 3)_{k} k!^{2}}\right) t^{n}$.

At this stage we do not know if it belongs to \mathfrak{D}. We have $f_{3}(t)$ is solution of $\mathcal{H}_{(1 / 9,4 / 9,5 / 9),(1 / 3,1,1)}$.
After theorem II, $\mathcal{H}_{(1 / 9,4 / 9,5 / 9),(1 / 3,1,1)}$ has a strong Frobenius structure for $p \geq 7$.

For $p \neq 3, f_{3}(t) \in \mathbb{Z}_{(p)}[[t]]$.

Let us consider

$f_{3}(t):={ }_{3} F_{2}(1 / 9,4 / 9,5 / 9 ; 1 / 3,1, t)=\sum_{k=0}^{\infty}\left(\frac{(1 / 9)_{k}(4 / 9)_{k}(5 / 9)_{k}}{(1 / 3)_{k} k!^{2}}\right) t^{n}$.

At this stage we do not know if it belongs to \mathfrak{D}. We have $f_{3}(t)$ is solution of $\mathcal{H}_{(1 / 9,4 / 9,5 / 9),(1 / 3,1,1)}$.
After theorem II, $\mathcal{H}_{(1 / 9,4 / 9,5 / 9),(1 / 3,1,1)}$ has a strong Frobenius structure for $p \geq 7$.

For $p \neq 3, f_{3}(t) \in \mathbb{Z}_{(p)}[[t]$. Applying theorem I we have that for $p \geq 7, f_{3 \mid p}$ is algebraic and

$$
\operatorname{deg}\left(f_{3 \mid p}\right) \leq p^{3^{2} \times 6}
$$

Theorem (VM.)

Let $L \in \mathbb{Q}(t)[d / d t]$. We suppose that the following conditions are verified.
(1) The singular points of L are regular.
(2) The exponents at singular points are rational numbers.
(3) The monodromy group of L is rigid.

Then, the differential operator L has a strong Frobenius structure for almost all prime numbers p.

IDEA OF THE PROOF THEOREM (VM.)

We will construct a set \mathcal{S} of prime numbers wich provide L of a strong Frobenius structure .

IDEA OF THE PROOF THEOREM (VM.)

We will construct a set \mathcal{S} of prime numbers wich provide L of a strong Frobenius structure .

Let \mathfrak{A} be the set of the following elements :

- The denominators of the exponents of $\gamma_{1}=0, \ldots, \gamma_{r}=\infty$.

IDEA OF THE PROOF THEOREM (VM.)

We will construct a set \mathcal{S} of prime numbers wich provide L of a strong Frobenius structure .

Let \mathfrak{A} be the set of the following elements :

- The denominators of the exponents of $\gamma_{1}=0, \ldots, \gamma_{r}=\infty$.
- The coefficients of $a_{0}(t)$.

IDEA OF THE PROOF THEOREM (VM.)

We will construct a set \mathcal{S} of prime numbers wich provide L of a strong Frobenius structure .

Let \mathfrak{A} be the set of the following elements :

- The denominators of the exponents of $\gamma_{1}=0, \ldots, \gamma_{r}=\infty$.
- The coefficients of $a_{0}(t)$.
- The algebraic numbers $\gamma_{2}, \ldots, \gamma_{r-1}, \gamma_{1}+1, \ldots, \gamma_{r-1}+1$, and the differences $\gamma_{i}-\gamma_{j}$ for $i \neq j$.

IDEA OF THE PROOF THEOREM (VM.)

We will construct a set \mathcal{S} of prime numbers wich provide L of a strong Frobenius structure .

Let \mathfrak{A} be the set of the following elements :

- The denominators of the exponents of $\gamma_{1}=0, \ldots, \gamma_{r}=\infty$.
- The coefficients of $a_{0}(t)$.
- The algebraic numbers $\gamma_{2}, \ldots, \gamma_{r-1}, \gamma_{1}+1, \ldots, \gamma_{r-1}+1$, and the differences $\gamma_{i}-\gamma_{j}$ for $i \neq j$.
$\mathcal{S}=\left\{p \in \mathcal{P}\right.$ such that $\left.|u|_{p}=1 \forall u \in \mathfrak{A}\right\}$, then $\mathcal{P} \backslash \mathcal{S}$ is finite.

IDEA OF THE PROOF THEOREM (VM.)

We will construct a set \mathcal{S} of prime numbers wich provide L of a strong Frobenius structure .

Let \mathfrak{A} be the set of the following elements :

- The denominators of the exponents of $\gamma_{1}=0, \ldots, \gamma_{r}=\infty$.
- The coefficients of $a_{0}(t)$.
- The algebraic numbers $\gamma_{2}, \ldots, \gamma_{r-1}, \gamma_{1}+1, \ldots, \gamma_{r-1}+1$, and the differences $\gamma_{i}-\gamma_{j}$ for $i \neq j$.
$\mathcal{S}=\left\{p \in \mathcal{P}\right.$ such that $\left.|u|_{p}=1 \forall u \in \mathfrak{A}\right\}$, then $\mathcal{P} \backslash \mathcal{S}$ is finite.
Since the exponents are rational numbers, there is $h \geq 1$ such that $\forall p \in \mathcal{S}, p^{h} \alpha \equiv \alpha \bmod \mathbb{Z}$, for every exponent α and $\left|\gamma_{i}^{p^{h}}-\gamma_{i}\right|_{p}<1 . \forall 1 \leq i \leq r-1$.

The matrix $B:=p^{h} t p^{h}-1 A\left(t p^{h}\right)$ does not have the same singularities than A. It is then impossible to compare locally A and B over $\mathbb{C}(t)$.

The matrix $B:=p^{h} t p^{h}-1 A\left(t p^{h}\right)$ does not have the same singularities than A. It is then impossible to compare locally A and B over $\mathbb{C}(t)$.

However, the singularities of B modulo p are the same as the singularities of A modulo p.

The matrix $B:=p^{h} t p^{h}-1 A\left(t p^{h}\right)$ does not have the same singularities than A. It is then impossible to compare locally A and B over $\mathbb{C}(t)$.

However, the singularities of B modulo p are the same as the singularities of A modulo p. So that, the theory of p-adic equations ensures us that B is E_{p}-equivalent to

$$
G=-\frac{1}{t+1}\left(\sum_{j=1}^{r} N_{j}\right)+\sum_{j=1}^{r-1} \frac{1}{t-\gamma_{j}} N_{j} \in M_{n}\left(\mathbb{C}_{p}(t)\right)
$$

The matrix $B:=p^{h} t p^{h}-1 A\left(t p^{h}\right)$ does not have the same singularities than A. It is then impossible to compare locally A and B over $\mathbb{C}(t)$.

However, the singularities of B modulo p are the same as the singularities of A modulo p. So that, the theory of p-adic equations ensures us that B is E_{p}-equivalent to

$$
G=-\frac{1}{t+1}\left(\sum_{j=1}^{r} N_{j}\right)+\sum_{j=1}^{r-1} \frac{1}{t-\gamma_{j}} N_{j} \in M_{n}\left(\mathbb{C}_{p}(t)\right),
$$

where $N_{j} \in M_{n}\left(\mathbb{C}_{p}\right)$ and the eigenvalues of N_{j} are the exponents of L at γ_{j} multplied by p^{h} and $\sum_{j=1}^{r} N_{j} \in M_{n}(\mathbb{Z})$ is a diagonal matrix.

The matrix $B:=p^{h} t p^{h}-1 A\left(t p^{h}\right)$ does not have the same singularities than A. It is then impossible to compare locally A and B over $\mathbb{C}(t)$.

However, the singularities of B modulo p are the same as the singularities of A modulo p. So that, the theory of p-adic equations ensures us that B is E_{p}-equivalent to

$$
G=-\frac{1}{t+1}\left(\sum_{j=1}^{r} N_{j}\right)+\sum_{j=1}^{r-1} \frac{1}{t-\gamma_{j}} N_{j} \in M_{n}\left(\mathbb{C}_{p}(t)\right)
$$

where $N_{j} \in M_{n}\left(\mathbb{C}_{p}\right)$ and the eigenvalues of N_{j} are the exponents of L at γ_{j} multplied by p^{h} and $\sum_{j=1}^{r} N_{j} \in M_{n}(\mathbb{Z})$ is a diagonal matrix.

In particular the eigenvalues of $N_{j}^{\prime} s$ are $p^{h} \alpha_{i, j} \in \mathbb{Q}$. Where $\alpha_{i, j}$ is an exponent of L at γ_{j}.

The main points in the proof are the following:
(1) Let $\kappa: \mathbb{C}_{p} \rightarrow \mathbb{C}$ be a isomorphisme of fields.

$$
G^{\kappa}=-\frac{1}{t+1}\left(\sum_{j=1}^{r} N_{j}^{\kappa}\right)+\sum_{j=1}^{r-1} \frac{1}{t-\kappa\left(\gamma_{j}\right)} N_{j}^{\kappa} \in M_{n}(\mathbb{C}(t)) .
$$

The main points in the proof are the following:
(1) Let $\kappa: \mathbb{C}_{p} \rightarrow \mathbb{C}$ be a isomorphisme of fields.

$$
G^{\kappa}=-\frac{1}{t+1}\left(\sum_{j=1}^{r} N_{j}^{\kappa}\right)+\sum_{j=1}^{r-1} \frac{1}{t-\kappa\left(\gamma_{j}\right)} N_{j}^{\kappa} \in M_{n}(\mathbb{C}(t)) .
$$

From the construction of \mathcal{S} and h, we will have that the local monodromy matrix of G^{κ} at $\kappa\left(\gamma_{j}\right)$ and the local monodromy matrix of A at γ_{j} are conjugated.

The main points in the proof are the following:
(1) Let $\kappa: \mathbb{C}_{p} \rightarrow \mathbb{C}$ be a isomorphisme of fields.

$$
G^{\kappa}=-\frac{1}{t+1}\left(\sum_{j=1}^{r} N_{j}^{\kappa}\right)+\sum_{j=1}^{r-1} \frac{1}{t-\kappa\left(\gamma_{j}\right)} N_{j}^{\kappa} \in M_{n}(\mathbb{C}(t)) .
$$

From the construction of \mathcal{S} and h, we will have that the local monodromy matrix of G^{κ} at $\kappa\left(\gamma_{j}\right)$ and the local monodromy matrix of A at γ_{j} are conjugated.
(2) Finally the rigidity hypothesis implies that A and G^{κ} are $\mathbb{C}(t)$-equivalents. So that, A and G are E_{p}-equivalents, which implies that A and B are E_{p}-equivalents.

MONDOROMY OF L

Let M_{j} be the local monodromy matrix of L at γ_{j}.

MONDOROMY OF L

Let M_{j} be the local monodromy matrix of L at γ_{j}. Since γ_{j} is a regular singular point, M_{j} is conjugated to the matrix $\exp \left(2 \pi i C_{j}\right)$, where $C_{j} \in M_{n}(\overline{\mathbb{Q}})$ satisfying the following conditions:

MONDOROMY OF L

Let M_{j} be the local monodromy matrix of L at γ_{j}. Since γ_{j} is a regular singular point, M_{j} is conjugated to the matrix $\exp \left(2 \pi i C_{j}\right)$, where $C_{j} \in M_{n}(\overline{\mathbb{Q}})$ satisfying the following conditions:
a) If λ, β are two different eigenvalues of C_{j}, then $\lambda-\beta \notin \mathbb{Z}$.

MONDOROMY OF L

Let M_{j} be the local monodromy matrix of L at γ_{j}. Since γ_{j} is a regular singular point, M_{j} is conjugated to the matrix $\exp \left(2 \pi i C_{j}\right)$, where $C_{j} \in M_{n}(\overline{\mathbb{Q}})$ satisfying the following conditions:
a) If λ, β are two different eigenvalues of C_{j}, then $\lambda-\beta \notin \mathbb{Z}$.
b) Let $\alpha_{i, j}$ be an exponent of L at γ_{j}, there is $m \in \mathbb{Z}$ such that $\alpha_{i, j}+m$ is an eingenvalue of C_{j}.

MONDOROMY OF L

Let M_{j} be the local monodromy matrix of L at γ_{j}. Since γ_{j} is a regular singular point, M_{j} is conjugated to the matrix $\exp \left(2 \pi i C_{j}\right)$, where $C_{j} \in M_{n}(\overline{\mathbb{Q}})$ satisfying the following conditions:
a) If λ, β are two different eigenvalues of C_{j}, then $\lambda-\beta \notin \mathbb{Z}$.
b) Let $\alpha_{i, j}$ be an exponent of L at γ_{j}, there is $m \in \mathbb{Z}$ such that $\alpha_{i, j}+m$ is an eingenvalue of C_{j}.

Since $p^{h} \alpha_{i, j} \equiv \alpha_{i, j} \bmod \mathbb{Z}$ for $p \in \mathcal{S}$, the matrices $\exp \left(2 \pi i C_{j}\right)$ and $\exp \left(2 \pi i p^{h} C_{j}\right)$ are conjugated.

MONODROMY OF G^{κ}

$$
G^{\kappa}=-\frac{1}{t+1}\left(\sum_{j=1}^{r} N_{j}^{\kappa}\right)+\sum_{j=1}^{r-1} \frac{1}{t-\kappa\left(\gamma_{j}\right)} N_{j}^{\kappa} \in M_{n}(\mathbb{C}(t))
$$

MONODROMY OF G^{κ}

$$
G^{\kappa}=-\frac{1}{t+1}\left(\sum_{j=1}^{r} N_{j}^{\kappa}\right)+\sum_{j=1}^{r-1} \frac{1}{t-\kappa\left(\gamma_{j}\right)} N_{j}^{\kappa} \in M_{n}(\mathbb{C}(t))
$$

Let T_{j} be the locale monodromy matrix of G^{κ} at $\kappa\left(\gamma_{j}\right)$. Since $\kappa\left(\gamma_{j}\right)$ is a regular singular point of G^{κ}, T_{j} is conjugated to $\exp \left(2 \pi i L_{j}\right)$, where L_{j} verfies :

MONODROMY OF G^{κ}

$$
G^{\kappa}=-\frac{1}{t+1}\left(\sum_{j=1}^{r} N_{j}^{\kappa}\right)+\sum_{j=1}^{r-1} \frac{1}{t-\kappa\left(\gamma_{j}\right)} N_{j}^{\kappa} \in M_{n}(\mathbb{C}(t))
$$

Let T_{j} be the locale monodromy matrix of G^{κ} at $\kappa\left(\gamma_{j}\right)$. Since $\kappa\left(\gamma_{j}\right)$ is a regular singular point of G^{κ}, T_{j} is conjugated to $\exp \left(2 \pi i L_{j}\right)$, where L_{j} verfies :

- Let λ, β be two different eigenvalues L_{j}, then $\lambda-\beta \notin \mathbb{Z}$.

MONODROMY OF G^{κ}

$$
G^{\kappa}=-\frac{1}{t+1}\left(\sum_{j=1}^{r} N_{j}^{\kappa}\right)+\sum_{j=1}^{r-1} \frac{1}{t-\kappa\left(\gamma_{j}\right)} N_{j}^{\kappa} \in M_{n}(\mathbb{C}(t))
$$

Let T_{j} be the locale monodromy matrix of G^{κ} at $\kappa\left(\gamma_{j}\right)$. Since $\kappa\left(\gamma_{j}\right)$ is a regular singular point of G^{κ}, T_{j} is conjugated to $\exp \left(2 \pi i L_{j}\right)$, where L_{j} verfies :

- Let λ, β be two different eigenvalues L_{j}, then $\lambda-\beta \notin \mathbb{Z}$.
- If α is an eigenvalue of N_{j}^{κ}, there is $m \in \mathbb{Z}$ such that $\alpha+m$ is an eigenvalue of L_{j}.

MONODROMY OF G^{κ}

$$
G^{\kappa}=-\frac{1}{t+1}\left(\sum_{j=1}^{r} N_{j}^{\kappa}\right)+\sum_{j=1}^{r-1} \frac{1}{t-\kappa\left(\gamma_{j}\right)} N_{j}^{\kappa} \in M_{n}(\mathbb{C}(t))
$$

Let T_{j} be the locale monodromy matrix of G^{κ} at $\kappa\left(\gamma_{j}\right)$. Since $\kappa\left(\gamma_{j}\right)$ is a regular singular point of G^{κ}, T_{j} is conjugated to $\exp \left(2 \pi i L_{j}\right)$, where L_{j} verfies:

- Let λ, β be two different eigenvalues L_{j}, then $\lambda-\beta \notin \mathbb{Z}$.
- If α is an eigenvalue of N_{j}^{κ}, there is $m \in \mathbb{Z}$ such that $\alpha+m$ is an eigenvalue of L_{j}.
So that, the eigenvalues of L_{j} are $p^{h} \alpha_{i, j}+m$, where $p^{h} \alpha_{i, j}$ is an eigenvalue of N_{j}^{κ}

MONODROMY OF G^{κ}

$$
G^{\kappa}=-\frac{1}{t+1}\left(\sum_{j=1}^{r} N_{j}^{\kappa}\right)+\sum_{j=1}^{r-1} \frac{1}{t-\kappa\left(\gamma_{j}\right)} N_{j}^{\kappa} \in M_{n}(\mathbb{C}(t))
$$

Let T_{j} be the locale monodromy matrix of G^{κ} at $\kappa\left(\gamma_{j}\right)$. Since $\kappa\left(\gamma_{j}\right)$ is a regular singular point of G^{κ}, T_{j} is conjugated to $\exp \left(2 \pi i L_{j}\right)$, where L_{j} verfies:

- Let λ, β be two different eigenvalues L_{j}, then $\lambda-\beta \notin \mathbb{Z}$.
- If α is an eigenvalue of N_{j}^{κ}, there is $m \in \mathbb{Z}$ such that $\alpha+m$ is an eigenvalue of L_{j}.
So that, the eigenvalues of L_{j} are $p^{h} \alpha_{i, j}+m$, where $p^{h} \alpha_{i, j}$ is an eigenvalue of N_{j}^{κ}. We conclude that, $\exp \left(2 \pi i L_{j}\right)$ and $\exp \left(2 \pi i p^{h} C_{j}\right)$ are conjugated.

RIGIDITY

M_{j} and T_{j} are conjugated

RIGIDITY

M_{j} and T_{j} are conjugated and since the monodromy group of L is rigid then the monodromy groups of L and G^{κ} are isomorphe

RIGIDITY

M_{j} and T_{j} are conjugated and since the monodromy group of L is rigid then the monodromy groups of L and G^{κ} are isomorphe and, after the Riemann-Hilbert correspondance, there is $H_{1} \in G l_{n}(\mathbb{C}(t))$ such that

$$
\frac{d}{d t} H_{1}=A H_{1}-H_{1} G^{\kappa}
$$

RIGIDITY

M_{j} and T_{j} are conjugated and since the monodromy group of L is rigid then the monodromy groups of L and G^{κ} are isomorphe and, after the Riemann-Hilbert correspondance, there is $H_{1} \in G l_{n}(\mathbb{C}(t))$ such that

$$
\frac{d}{d t} H_{1}=A H_{1}-H_{1} G^{\kappa}
$$

We set $H=H_{1}^{\kappa^{-1}}$, so , $H \in G l_{n}\left(\mathbb{C}_{p}(t)\right) \subset G l_{n}\left(E_{p}\right)$ and since $\frac{d}{d t} \circ \kappa^{-1}=\kappa^{-1} \circ \frac{d}{d t}$, then

$$
\frac{d}{d t} H=A^{\kappa^{-1}} H-H G .
$$

RIGIDITY

M_{j} and T_{j} are conjugated and since the monodromy group of L is rigid then the monodromy groups of L and G^{κ} are isomorphe and, after the Riemann-Hilbert correspondance, there is $H_{1} \in G l_{n}(\mathbb{C}(t))$ such that

$$
\frac{d}{d t} H_{1}=A H_{1}-H_{1} G^{\kappa}
$$

We set $H=H_{1}^{\kappa^{-1}}$, so , $H \in G l_{n}\left(\mathbb{C}_{p}(t)\right) \subset G l_{n}\left(E_{p}\right)$ and since $\frac{d}{d t} \circ \kappa^{-1}=\kappa^{-1} \circ \frac{d}{d t}$, then

$$
\frac{d}{d t} H=A^{\kappa^{-1}} H-H G .
$$

Consenquently, A and G are E_{p}-equivalents,

RIGIDITY

M_{j} and T_{j} are conjugated and since the monodromy group of L is rigid then the monodromy groups of L and G^{κ} are isomorphe and, after the Riemann-Hilbert correspondance, there is $H_{1} \in G l_{n}(\mathbb{C}(t))$ such that

$$
\frac{d}{d t} H_{1}=A H_{1}-H_{1} G^{\kappa}
$$

We set $H=H_{1}^{\kappa^{-1}}$, so , $H \in G l_{n}\left(\mathbb{C}_{p}(t)\right) \subset G l_{n}\left(E_{p}\right)$ and since $\frac{d}{d t} \circ \kappa^{-1}=\kappa^{-1} \circ \frac{d}{d t}$, then

$$
\frac{d}{d t} H=A^{\kappa^{-1}} H-H G .
$$

Consenquently, A and G are E_{p}-equivalents, but G is E_{p}-equivalent to B, then by transitivity we have that A and B are E_{p}-aquivalents.

