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Introduction

Elliptic hypergeometric functions were introduced by Spiridonov in
early 2000s; they are analogues/generalizations of classical
Euler-Gauss hypergeometric functions, related to elliptic curves.

They find applications in:

I representation theory (connected to math. physics, and
conjecturally to reps. of “elliptic quantum groups”);

I four-dimensional sypersymmetric quantum field theories;

I exactly solvable models in statistical mechanics;

I entropy of black holes;

I · · ·

We have shown that “most” of these special functions do not
satisfy any algebraic differential equations with elliptic coefficients.

This is an application of new algorithmic results obtained from
differential Galois theory of difference equations (over elliptic curves).
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Theta functions

Let p ∈ C∗ such that |p| < 1, and denote (z ; p)∞ =
∏
j≥0

(1− zpj).

The (modified Jacobi) theta function is the holomorphic function
on C∗ defined by

θ(z ; p) = (z ; p)∞(pz−1; p)∞.

Note that

θ(z0; p) = 0 if and only if z0 ∈ pZ = {pn | n ∈ Z},

and we have the functional equation

θ(pz ; p) = θ(z−1; p) = −z−1θ(z ; p).



Elliptic functions and theta functions

Elliptic functions: meromorphic on C∗ such that f (pz) = f (z).

Same as meromorphic functions on elliptic curve E = C∗/pZ.

I Given τ ∈ C with Im(τ) > 0 and Λ = Z + τZ, the map

C→ C∗ : w 7→ exp(2πiw) = z

induces an isomorphism C/Λ ' C∗/pZ, where p = exp(2πiτ).

Given a1, . . . , am, b1, . . . , bm, c ∈ C∗ with balancing condition

m∏
j=1

aj =
m∏
j=1

bj , the function f (z) = c

∏m
j=1 θ(ajz ; p)∏m
j=1 θ(bjz ; p)

is elliptic. Any non-zero elliptic function has this form.

Explicit divisor: div
(
f (z)

)
=
∑m

j=1

[
a−1j

]
E
−
[
b−1j

]
E

.



Elliptic Gamma functions

Now p, q ∈ C∗ such that |p|, |q| < 1 and pZ ∩ qZ = {1}.

Denote (z ; p, q)∞ =
∏

j ,k≥0(1− zpjqk).

Ruijsenaars’s elliptic Gamma function is:

Γ(z ; p, q) =
(pq/z ; p, q)∞

(z ; p, q)∞
.

It satisfies the functional equations:

Γ(pz ; p, q) = θ(z ; q)Γ(z ; p, q) & Γ(qz ; p, q) = θ(z ; p)Γ(z ; p, q).

I Elliptic analogues of classical Euler Gamma function:
Γ(z + 1) = zΓ(z).

I Classical Gauss hypergeometric functions can be defined in
terms of the Euler Gamma function (Barnes integral formula).



Elliptic hypergeometric functions

For ε = (ε1, . . . , ε8) ∈ (C∗)8 satisfying the balancing condition

8∏
j=1

εj = p2q2, (1)

the elliptic hypergeometric function fε(z) is defined in terms of
elliptic Gamma functions, by

V (t ; p, q) =
(p; p)∞(q; q)∞

4πi

∫
T

∏8
j=1 Γ(tjs

±1; p, q)

Γ(s±2; p, q)

ds

s
,

and the reparametrization (t1, . . . , t8) 7→ (ε1, . . . , ε8, z) :

[you do not want to see this].

Theorem (Spiridonov)

The elliptic hypergeometric function fε(z) satisfies a second-order
linear difference equation over C(E ), where E = C∗/pZ.



Galois theory (philosophy)

Group Theory

⇓ Galois Theory

Relations among Solutions

Computing Galois groups leads directly to computation of relations
among the solutions to the corresponding equations.

I “Large” Galois group ⇐⇒ “few” relations among solutions.



Base σδ-field of elliptic functions

As before, take p, q ∈ C∗ such that:

|p| < 1, |q| < 1, and pZ ∩ qZ = {1}.

In particular q (mod pZ) is of infinite order in E = C∗/pZ.

Base field: C(E ), meromorphic functions on E .

Difference operator: Automorphism σ : f (z) 7→ f (qz).

Differential operator: Derivation δ = z d
dz .

C(E ) is a σδ-field: σ ◦ δ = δ ◦ σ.



Differential Galois theory for difference equations
(Hardouin-Singer)

K is a σδ-field and C = Kσ = {c ∈ K | σ(c) = c} is δ-closed.

Consider a linear difference equation:

anσ
n(y) + an−1σ

n−1(y) + · · ·+ a1σ(y) + a0y = 0, (2)

where an, . . . , a0 ∈ K and ana0 6= 0.

There is a σδ-ring R, (essentially) generated as K -algebra by

{σiδj(y1), . . . , σiδj(yn) | i , j ∈ Z≥0}

where y1, . . . , yn ∈ R is a C -basis of solutions of (2).

The σδ-Galois group is

Galσδ(R/K ) := {γ ∈ AutK -alg(R) | γ ◦ σ = σ ◦ γ, γ ◦ δ = δ ◦ γ}.

It is a linear differential algebraic group in GLn(C ).
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Linear differential algebraic groups

Definition
A linear differential algebraic group is a subgroup of GLn(C )
defined by polynomial differential equations in the matrix entries.

Examples:

I algebraic groups over C ;

I algebraic groups over C δ = {c ∈ C | δ(c) = 0};

Let L =
∑n

i=0 ciδ
i with cn, . . . , c0 ∈ C .

I {α ∈ Ga(C ) | L(α) = 0};
I {α ∈ Gm(C ) | L( δ(α)α ) = 0}.

Theorem (Cassidy)

Every δ-algebraic subgroup of Ga(C ) or Gm(C ) is as above.



Main Result: differential transcendence criteria

[Under mild conditions on the otherwise arbitrary σδ-field K .]

Theorem (A.-Dreyfus-Roques)

Let f 6= 0 be a solution of

σ2(f ) + aσ(f ) + bf = 0,

where a, b ∈ K and b 6= 0. Assume that:

I There is no u ∈ K such that σ(u)u + au + b = 0.

I There are no c0, . . . , cn ∈ C with cn 6= 0 and h ∈ K, such that

cnδ
n

(
δb

b

)
+ · · ·+ c0

δb

b
= σ(h)− h.

Then f is differentially transcendental over K.



The elliptic hypergeometric equation

Theorem (Spiridonov)

The function fε(z) satisfies

A(z)(σ(y)− y) + A(z−1)(σ−1(y)− y) + νy = 0, (3)

where

A(z) =
1

θ(z2; p)θ(qz2; p)

8∏
j=1

θ(εjz ; p), ν =
6∏

j=1

θ(εjε8/q; p).

I It follows from the balancing condition
∏8

j=1 εj = p2q2 that

the coefficients A(z),A(z−1) ∈ C(E ).

I Hence, (3) is equivalent to a second-order linear difference
equation over the base C(E ) (after applying σ once).

I Because A(z) and A(z−1) are given in terms of theta
functions, we have complete knowledge of their divisors.



Proving differential transcendence of fε(z)

Theorem (A.-Dreyfus-Roques)

If every multiplicative relation among ε1, . . . , ε8 ∈ C∗ is induced
from the balancing condition

∏8
j=1 εj = p2q2, then fε(z) is

differentially transcendental over C(E ).

I Earlier work of Dreyfus-Roques gives criteria to decide
(non-)existence of solutions u ∈ C(E ) of Riccati equation

σ(u)u + au + b = 0,

depending on the divisors of a, b ∈ C(E ).

I We prove non-existence of telescoper 0 6= L ∈ C [δ] and
certificate h ∈ C(E ) such that

L
(
δ(b)

b

)
= σ(h)− h

also by analyzing the divisor of b ∈ C(E ).



Sketch of proof: Main Result (1/2)

We know a priori that one of the following three cases occurs for
the σδ-Galois group G .

1. G is conjugate to a group of upper-triangular matrices. This
happens if and only if there exists a solution u ∈ K to the
Riccati equation σ(u)u + au + b = 0.

2. G is conjugate to a subgroup of{(
α 0
0 β

) ∣∣∣∣ α, β ∈ C×
}⋃{(

0 γ
µ 0

) ∣∣∣∣ γ, µ ∈ C×
}
.

3. G contains SL2(C δ).

No solutions to Riccati equation implies that G is irreducible (i.e.,
we are not in case 1).



Sketch of proof: Main Result (2/2)

No telescoper/certificate for L
( δ(b)

b

)
= σ(h)− h implies that

det(G ) = Gm(C ), which in turn implies that G is one of the
following groups

I

{(
α 0
0 β

) ∣∣∣∣ α, β ∈ C×
}⋃{(0 γ

µ 0

) ∣∣∣∣ γ, µ ∈ C×
}

;

I C× · SL2(C δ);

I GL2(C ).

In any of these cases, G is sufficiently large to guarantee that any
one solution f 6= 0 of the difference equation must be differentially
transcendental over K .



Final remarks

I Differential transcendence criteria in Main Result apply
uniformly in other cases of interest:

I Shift: σ(x) = x + 1;
I q-dilation: σ(x) = qx , where q ∈ C∗ is not a root of unity;
I Mahler: σ(x) = xp, where p ∈ Z≥2.

Applications include: q-series, deterministic finite automata,
walks in the quarter plane, [insert your problem here].

I There exist algorithms to verify first condition (Riccati) in all
cases, but require knowledge of divisors in elliptic case.

I For second condition: telescopers hardly ever exist in all cases
but elliptic, where fewer general results are known.

I General algorithm to compute the σδ-Galois group only
available in shift case (but q-dilation and Mahler will appear
soon in joint work with Yi Zhang).


