DART X 2020

Discrete harmonic functions in the three-quarter plane

Amélie Trotignon
- Institut for Algebra -
Johannes Kepler University

Content

1. Introduction
2. Previous results in the quarter plane
3. Results in the three-quarter plane
4. Further objectives and perspectives

Content

1. Introduction
2. Previous results in the quarter plane
3. Results in the three-quarter plane
4. Further objectives and perspectives

Continuous harmonic functions

A continuous harmonic function annihilates the standard Laplacian Δf
if f is a harmonic function on an open set $\mathcal{U} \subset \mathbb{R}^{2}$, then f is twice differentiable and

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

Example
$f(x, y)=\ln \left(x^{2}+y^{2}\right)$ is harmonic in $\mathbb{R}^{2} \backslash(0,0)$.
Applications and properties

- analysis - resolution of partial differential equations
- infinitely differentiable in open sets
- maximum principle; mean value properties; Harnack's inequalities (in the case of non-negative harmonic functions)

Discrete harmonic functions

Simplest discrete Laplacian in dimension 2

$$
\Delta f(x, y)=f(x-1, y)+f(x+1, y)+f(x, y-1)+f(x, y+1)-4 f(x, y) .
$$

Example
$f(x, y)=\frac{x y}{360}\left(3 x^{4}-10 x^{2} y^{2}+3 y^{4}-5 x^{2}-5 y^{2}+14\right)$ is harmonic in \mathbb{Z}^{2}.

Applications and properties

- discrete complex analysis
- probability of absorption at absorbing states of Markov chains or the Ising model
- satisfy multivariate linear recurrence relations (ubiquitous in combinatorics)

Gambler Ruin Problem and Harmonic Functions

S_{n} denotes the fortune at time n, with initial fortune of i gold coins.
At every step, the gambler bets 1 gold coin, and
\rightarrow wins with probability $p ; \quad \rightarrow$ loses with probability $q=1-p$

$\left(S_{n}\right)_{n \in \mathbb{N}}$ can be seen as a random walk starting at $i>0$ absorbed at 0 .

Markov property

$$
\begin{gathered}
h_{i}=\mathbb{P}_{i}\left[\exists n \geq 0: S_{n}=0\right] \\
\left\{\begin{array}{l}
h_{0}=1 \\
h_{i}=
\end{array} h_{i+1}+q h_{i-1}\right.
\end{gathered}
$$

Transition matrix and harmonicity

$$
P=\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & \cdots & \cdots \\
q & 0 & p & 0 & \cdots & \cdots \\
0 & q & 0 & p & 0 & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

$$
h=\left(h_{i}\right)_{i \geq 0} \text { satisfies } P h=h .
$$

Application to random walks

Doob transform

Standard procedure in probability. From a Markov process and an associated harmonic function it defines a new random process.

Example

Let $\left(S_{n}\right)_{n \in \mathbb{N}}$ be a simple random walk over \mathbb{Z}.
The function $V(i)=i(i \in \mathbb{N})$ is discrete harmonic for $\left(S_{n}\right)_{n \in \mathbb{N}}$.
Let $\left(T_{n}\right)_{n \in \mathbb{N}}$ be defined form $\left(S_{n}\right)_{n \in \mathbb{N}}$ by

$$
\left\{\begin{array}{l}
\mathbb{P}\left[T_{n+1}=i+1 \mid T_{n}=i\right]=\frac{V(i+1)}{2 V(i)}=\frac{i+1}{2 i}, \\
\mathbb{P}\left[T_{n+1}=i-1 \mid T_{n}=i\right]=\frac{V(i-1)}{2 V(i)}=\frac{i-1}{2 i} .
\end{array}\right.
$$

The process $\left(T_{n}\right)_{n \in \mathbb{N}}$ is a random walk over \mathbb{N}^{*}.

Applications to random walks

Asymptotic behavior of the number of excursions

Let $e_{(0,0) \rightarrow(i, j)}(n)$ be the number of n-excursions from the origin to (i, j).

$$
e_{(0,0) \rightarrow(i, j)}(n) \sim \kappa \cdot V(i, j) \cdot \rho^{n} \cdot n^{-\alpha}, \quad n \longrightarrow \infty
$$

- V is a harmonic function
- ρ is the exponential growth
- α is the critical exponent

Furthermore, the growth of the harmonic function V is directly related to the critical exponent α

Content

1. Introduction

2. Previous results in the quarter plane
3. Results in the three-quarter plane
4. Further objectives and perspectives

Definition and properties

We are interested in

discrete harmonic function

$$
\widetilde{f}=(\widetilde{f}(i, j))_{(i, j) \in \mathcal{Q}}
$$

associated to random walks which satisfy the following properties:

Properties of the harmonic functions

Properties of the random walks

- homogeneous walk inside \mathcal{Q}
- zero drift

$$
\sum_{-1 \leq i, j \leq 1} i p_{i, j}=\sum_{-1 \leq i, j \leq 1} j p_{i, j}=0
$$

- For all $i \geq 1$ and $j \geq 1$,

$$
\widetilde{f}(i, j)=\sum_{-1 \leq i_{0}, j_{0} \leq 1} p_{i_{0}, j_{0}} \widetilde{f}\left(i+i_{0}, j+j_{0}\right)
$$

- If $i \geq 0, \widetilde{f}(i, 0)=0$ and if $j \geq 0$, then $\widetilde{f}(0, j)=0$
- If $i>0$ and $j>0$ then $\widetilde{f}(i, j)>0$

Strategy

$$
\widetilde{H}_{0-}(y)
$$

Generating function

$$
\widetilde{H}(x, y)=\sum_{(i, j) \in \mathcal{Q}} \widetilde{f}(i, j) x^{i-1} y^{j-1} .
$$

Functional equation

$$
K(x, y) \widetilde{H}(x, y)=K(x, 0) \widetilde{H}_{-0}(x)+K(0, y) \widetilde{H}_{0-}(y)-K(0,0) \widetilde{f}(1,1)
$$

where

$$
\begin{aligned}
\widetilde{H}_{-0}(x) & =\sum_{i \geq 1} \widetilde{f}(i, 1) x^{i-1}, \\
\widetilde{H}_{0-}(y) & =\sum_{j \geq 1} \widetilde{f}(1, j) y^{j-1},
\end{aligned}
$$

$$
K(x, y)=x y\left[\sum_{-1 \leq i, j \leq 1} p_{i, j} x^{-i} y^{-j}-1\right] .
$$

Kernel of the random walks

$$
K(x, y)=x y\left[\sum_{-1 \leq i, j \leq 1} p_{i, j} x^{-i} y^{-j}-1\right] .
$$

The Kernel: a polynomial of degree 2 in x and in y

$$
K(x, y)=\widetilde{\alpha}(y) x^{2}+\widetilde{\beta}(y) x+\widetilde{\gamma}(y)=\alpha(x) y^{2}+\beta(x) y+\gamma(x) .
$$

Discriminant: $\widetilde{\delta}(y)=\widetilde{\beta}(y)^{2}-4 \widetilde{\alpha}(y) \widetilde{\gamma}(y) \quad$ and $\quad \delta(x)=\beta(x)^{2}-4 \alpha(x) \gamma(x)$.
Zeros of the Kernel, $i=0,1$:

$$
\begin{array}{cc}
K\left(X_{i}(y), y\right)=0 & K\left(x, Y_{i}(x)\right)=0 \\
X_{i}(y)=\frac{-\widetilde{\beta}(y) \pm \sqrt{\widetilde{\delta}(y)}}{2 \widetilde{\alpha}(y)} & Y_{i}(x)=\frac{-\beta(x) \pm \sqrt{\delta(x)}}{2 \alpha(x)} .
\end{array}
$$

The roots of the kernel define analytic curves.

Branches of the Kernel

$$
\text { Curves } Y\left(\left[x_{1}, 1\right]\right)=\left\{y \in \mathbb{C}: K(x, y)=0 \text { and } x \in\left[x_{1}, 1\right]\right\}
$$

Gouyou-Beauchamps model
$\left(p_{1,0}=p_{-1,1}=p_{-1,0}=p_{1,-1}=1 / 4\right)$
$\theta=\pi / 4$

Simple model
$\left(p_{1,0}=p_{0,1}=p_{-1,0}=p_{0,-1}=\frac{1}{4}\right)$
$\theta=\pi / 2$

Generating function $H_{-0}(x)$ stated as a BVP

Functional Equation

$$
K(x, y) \widetilde{H}(x, y)=K(x, 0) \widetilde{H}_{-0}(x)+K(0, y) \widetilde{H}_{0-}(y)-K(0,0) \widetilde{f}(1,1) .
$$

Boundary value problem
By evaluating the functional equation on the branch curves, we can transform the functional equation into the following boundary value problem:

For $x \in X\left(\left[y_{1}, 1\right]\right) \backslash\{1\}$,

$$
K(x, 0) \widetilde{H}_{-0}(x)-K(\bar{x}, 0) \widetilde{H}_{-0}(\bar{x})=0 .
$$

Explicit expression for the generating function

Theorem [Raschel, 2014]
The function $\widetilde{H}_{-0}(x)$ has the following explicit expression

$$
\widetilde{H}_{-0}(x)=\mu \frac{w(x)+\nu}{K(x, 0)},
$$

where w is a conformal mapping vanishing at 0 , and the constants ν and μ are defined by

$$
\nu=-w\left(X_{0}(0)\right), \quad \mu=\widetilde{f}(1,1) \times\left\{\begin{array}{lll}
\frac{2 p_{p-1,1}}{w^{\prime \prime}(0)} & \text { if } p_{1,1}=0 \text { and } p_{0,1}=0, \\
\frac{p_{0}, 1}{w^{\prime}(0)} & \text { if } p_{1,1}=0 \text { and } p_{0,1} \neq 0, \\
-\frac{p_{1,1}}{w\left(X_{0}(0)\right)} & \text { if } & p_{1,1} \neq 0 .
\end{array}\right.
$$

Example of the simple random walk

$$
\begin{aligned}
K(x, 0) & =\frac{x}{4} \\
w(x) & =-\frac{2 x}{(1-x)^{2}} \\
\nu & =0 \\
\mu & =-\frac{\widetilde{f}(1,1)}{8}
\end{aligned}
$$

Expression for $H_{-0}(x)$

$$
\widetilde{H}_{-0}(x)=\frac{\widetilde{f}(1,1)}{(1-x)^{2}}=\widetilde{f}(1,1) \sum_{i \geq 1} i x^{i-1}
$$

The function $f(i, j)=i j$ is discrete harmonic for the simple random walk

Content

1. Introduction

2. Previous results in the quarter plane
3. Results in the three-quarter plane

4. Further objectives and perspectives

Definitions and properties

Properties of the random walks

- homogeneous walk inside \mathcal{C}
- symmetric transition probabilities
- zero drift

$$
\sum_{-1 \leq i, j \leq 1} i p_{i, j}=\sum_{-1 \leq i, j \leq 1} j p_{i, j}=0
$$

We are interested in

discrete harmonic function

$$
f=(f(i, j))_{(i, j) \in \mathcal{C}}
$$

associated to random walks which satisfy the following properties:

Properties of the harmonic functions

- For all $i \geq 1$ or $j \geq 1$,

$$
f(i, j)=\sum_{-1 \leq i_{0}, j_{0} \leq 1} p_{i_{0}, j_{0}} f\left(i+i_{0}, j+j_{0}\right)
$$

- If $i \leq 0, f(i, 0)=0$ and
if $j \leq 0$, then $f(0, j)=0$
- If $i>0$ or $j>0$ then $f(i, j)>0$
- For all $(i, j) \in \mathcal{C}, f(i, j)=f(j, i)$

A first functional equation

Generating function

$$
H(x, y)=\sum_{(i, j) \in \mathcal{C}} f(i, j) x^{i-1} y^{j-1}
$$

A first functional equation

$$
K(x, y) H(x, y)=K(x, 0) H_{-0}\left(x^{-1}\right)+K(0, y) H_{0-}\left(y^{-1}\right)-K(0,0) f(1,1)
$$

where

$$
\begin{aligned}
& H_{-0}\left(x^{-1}\right)=\sum_{i \leq 0} f(i, 1) x^{i-1}, \\
& H_{0-}\left(y^{-1}\right)=\sum_{j \leq 0} f(1, j) y^{j-1},
\end{aligned}
$$

$$
K(x, y)=x y\left[\sum_{-1 \leq i, j \leq 1} p_{i, j} x^{-i} y^{-j}-1\right] .
$$

Strategy

Generating function

$$
H(x, y)=\sum_{(i, j) \in \mathcal{C}} f(i, j) x^{i-1} y^{j-1} .
$$

Decomposition of the generating function

$$
H(x, y)=L(x, y)+D(x, y)+U(x, y)
$$

where

$$
L(x, y)=\sum_{\substack{i \geq 1 \\ j \leq i-1}} f(i, j) x^{i-1} y^{j-1}, D(x, y)=\sum_{i \geq 1} f(i, i) x^{i-1} y^{i-1}, U(x, y)=\sum_{\substack{j \geq 1 \\ i \leq j-1}} f(i, j) x^{i-1} y^{j-1}
$$

Functional equations

Non-symmetric probability transitions \& $p_{-1,1}=p_{1,-1}=0$

$$
\left\{\begin{aligned}
K(x, y) U(x, y)= & -\left(p_{1,0} y+p_{0,-1} x y^{2}+p_{1,1}+p_{-1,-1} x^{2} y^{2}-x y\right) D(x, y) \\
& +\left(p_{0,1} x+p_{1,1}\right) U_{-0}\left(x^{-1}\right)-\left(p_{1,0} y+p_{0,-1} x y^{2}\right) D^{\ell}(x, y) \\
& +p_{1,1} f(1,1)+p_{1,0} f(1,0), \\
K(x, y) L(x, y)= & -\left(p_{0,1} x+p_{\left.-1,0 x^{2} y+p_{1,1}+p_{-1,-1} x^{2} y^{2}-x y\right) D(x, y)}+\left(p_{\left.1,0 y+p_{1,1}\right) L_{0-}\left(y^{-1}\right)-\left(p_{0,1} x+p_{-1,0} x^{2} y\right) D^{u}(x, y)}+p_{1,1} f(1,1)+p_{0,1} f(0,1) .\right.\right.
\end{aligned}\right.
$$

Functional equations

Symmetric probability transitions \& $p_{-1,1} \neq 0 ; p_{1,-1} \neq 0$

$$
\begin{aligned}
K(x, y) L(x, y)= & -\left(p_{0,1} x+p_{-1,1} x^{2}+p_{-1,0} x^{2} y+\frac{1}{2}\left(p_{1,1}+p_{-1,-1} x^{2} y^{2}-x y\right)\right) D(x, y) \\
& +p_{1,-1}\left(y^{2}-x y\right) D^{\ell}(x, y)+\left(p_{1,0} y+p_{1,-1} y^{2}+p_{1,1}\right) L_{0-}\left(y^{-1}\right) \\
& +p_{1,-1} y f(1,0)+\frac{1}{2} p_{1,1} f(1,1)
\end{aligned}
$$

Functional equations

Symmetric probability transitions \& $p_{-1,1}=p_{1,-1}=0$

$$
\begin{aligned}
K(x, y) L(x, y)=-\left(p_{0,1} x+p_{-1,0} x^{2} y\right. & \left.+\frac{1}{2}\left(p_{1,1}+p_{-1,-1} x^{2} y^{2}-x y\right)\right) D(x, y) \\
& +\left(p_{1,0} y+p_{1,1}\right) L_{0-}\left(y^{-1}\right)+\frac{1}{2} p_{1,1} f(1,1)
\end{aligned}
$$

Transforming the cones

Change of variables $\varphi(x, y)=\left(x y, x^{-1}\right)$

$$
\begin{aligned}
& L(\varphi(x, y))=x L_{\varphi}(x, y) \\
&=x \sum_{i, j \geq 1} f(j, j-i) x^{i-1} y^{j-1} \\
& D(\varphi(x, y))=D_{\varphi}(y) \\
&=\sum_{i \geq 1} f(i, i) y^{i-1} \\
& \begin{aligned}
D^{\ell}(\varphi(x, y)) & =x D_{\varphi}^{\ell}(y) \\
& =x \sum_{i \geq 1} f(i, i-1) y^{i-1}
\end{aligned}
\end{aligned}
$$

Transforming the probability transitions

$$
K(\varphi(x, y))=\frac{1}{x} K_{\varphi}(x, y)
$$

$$
\text { Curves } X\left(\left[y_{1}, 1\right]\right)=\left\{x \in \mathbb{C}: K(x, y)=0 \text { and } y \in\left[y_{1}, 1\right]\right\}
$$

Simple model

$\theta=\pi / 2$
$1 / 4$

Gessel model

New functional equation

Functional Equation

$$
K_{\varphi}(x, y) L_{\varphi}(x, y)=-\left[x \widetilde{\alpha}_{\varphi}(y)+\frac{1}{2} \widetilde{\beta}_{\varphi}(y)\right] D_{\varphi}(y)+K_{\varphi}(x, 0) L_{\varphi}(x, 0)+\frac{1}{2} p_{1,1} f(1,1) .
$$

Generating function $D_{\varphi}(y)$ stated as a BVP

Functional Equation

$$
K_{\varphi}(x, y) L_{\varphi}(x, y)=-\left[x \widetilde{\alpha}_{\varphi}(y)+\frac{1}{2} \widetilde{\beta}_{\varphi}(y)\right] D_{\varphi}(y)+K_{\varphi}(x, 0) L_{\varphi}(x, 0)+\frac{1}{2} p_{1,1} f(1,1) .
$$

Boundary value problem
By evaluating the functional equation on the branch curves, we can transform the functional equation into the following boundary value problem:

For $y \in Y_{\varphi}\left(\left[x_{1}, 1\right]\right) \backslash\{1\}$,

$$
\sqrt{\widetilde{\delta}_{\varphi}(y)} D_{\varphi}(y)-\sqrt{\widetilde{\delta}_{\varphi}(\bar{y})} D_{\varphi}(\bar{y})=0 .
$$

Anti-Tutte's invariant

Idea: write $\sqrt{\frac{\delta_{\varphi}(\bar{y})}{\delta_{\varphi}(y)}}=\frac{G_{\varphi}(\bar{y})}{G_{\varphi}(y)}$, such that: $G_{\varphi}(\bar{y})=\overline{G_{\varphi}(y)}$;
\Leftrightarrow
$G_{\varphi}=\frac{g_{\varphi}}{g_{\varphi}^{\prime}}$ with g_{φ} such that $g_{\varphi}\left(\widetilde{Y}_{\varphi,+}(x)\right) g\left(\widetilde{Y}_{\varphi,-}(x)\right)=1$ for $x \in\left[x_{1}, 1\right)$; \Leftrightarrow
$G_{\varphi}=\frac{g_{\varphi}}{g_{\varphi}^{\prime}}$ with g_{φ} such that $g_{\varphi}(y) g_{\varphi}(\bar{y})=\left|g_{\varphi}(y)\right|=1$ for $y \in Y\left(\left[x_{1}, 1\right]\right)$.

Anti-Tutte's invariant

Conformal maps which transforms $Y\left(\left[x_{1}, 1\right]\right)$ into the unit circle with $\overline{g_{\varphi}(y)}=g_{\varphi}(\bar{y})$

$$
g_{\varphi}=h\left(\frac{2 \widetilde{w}_{\varphi}\left(Y_{\varphi}\left(x_{\varphi, 1}\right)\right)}{\widetilde{w}_{\varphi}(y)}-1\right),
$$

with: w_{φ} an explicit conformal map and $h(y)=\sqrt{y^{2}-1}-y$.

Generating function $D_{\varphi}(y)$ stated as a BVP

Functional Equation

$$
K_{\varphi}(x, y) L_{\varphi}(x, y)=-\left[x \widetilde{\alpha}_{\varphi}(y)+\frac{1}{2} \widetilde{\beta}_{\varphi}(y)\right] D_{\varphi}(y)+K_{\varphi}(x, 0) L_{\varphi}(x, 0)+\frac{1}{2} p_{1,1} f(1,1) .
$$

Boundary value problem
By evaluating the functional equation on the branch curves, we can transform the functional equation into the following boundary value problem:

For $y \in Y_{\varphi}\left(\left[x_{1}, 1\right]\right) \backslash\{1\}$,

$$
G_{\varphi}(y) D_{\varphi}(y)-G_{\varphi}(\bar{y}) D_{\varphi}(\bar{y})=0 .
$$

Expression for the Diagonal Section

The diagonal section is defined by:

$$
D(x, y)=D_{\varphi}(x y)=\sum_{i \geq 1} f(i, i) x^{i-1} y^{i-1}
$$

Theorem [T., 2019]

The diagonal section of discrete harmonic functions not necessarily positive can be expressed as

$$
D(x, y)=\frac{P\left(\widetilde{w}_{\varphi}(x y)\right)}{G_{\varphi}(x y)}, \quad P \in \mathbb{R}[y] .
$$

In particular, taking P of degree 1 , we get the unique positive discrete harmonic function.

Expression for the Diagonal Section

Expression for the Diagonal Section

$$
D_{\varphi}(y)=-\frac{f(1,1)}{\widetilde{w}_{\varphi}^{\prime}(0)} \frac{\pi}{\theta_{\varphi}} \sqrt{-\frac{\widetilde{\delta}_{\varphi}^{\prime \prime}(1)}{2 \widetilde{\delta}_{\varphi}(y)}} \sqrt{1-\widetilde{W}_{\varphi}(0)} \sqrt{\widetilde{W}_{\varphi}(y)}
$$

with θ_{φ} an explicit angle, $\widetilde{w}_{\varphi}(y)$ and \widetilde{W}_{φ} are a conformal mappings, all depending on the step set.

Simple Walks
$D_{\varphi}(y)=f(1,1) \frac{3}{8} \frac{\sqrt{\widetilde{W}_{\varphi}(y)}}{\sqrt{\widetilde{\delta}_{\varphi}(y)}}=f(1,1)\left(1+\frac{44}{27} y+\frac{523}{243} y^{2}+\frac{17168}{6561} y^{3}+O\left(y^{4}\right)\right)$.

Expression for the generating functions

Remember - Functional Equation

$$
K_{\varphi}(x, y) L_{\varphi}(x, y)=-\left[x \widetilde{\alpha}_{\varphi}(y)+\frac{1}{2} \widetilde{\beta}_{\varphi}(y)\right] D_{\varphi}(y)+K_{\varphi}(x, 0) L_{\varphi}(x, 0)+\frac{1}{2} p_{1,1} f(1,1) .
$$

Remember - Domain in three parts

$$
H(x, y)=L(x, y)+D(x, y)+U(x, y) .
$$

Symmetry of the cut and the walk

$$
\Rightarrow U(x, y)=L(y, x) .
$$

Expression for the generating functions

Remember - Functional Equation

$$
K_{\varphi}(x, y) L_{\varphi}(x, y)=-\left[x \widetilde{\alpha}_{\varphi}(y)+\frac{1}{2} \widetilde{\beta}_{\varphi}(y)\right] D_{\varphi}(y)+K_{\varphi}(x, 0) L_{\varphi}(x, 0)+\frac{1}{2} p_{1,1} f(1,1) .
$$

Remember - Domain in three parts

$$
H(x, y)=L(x, y)+D(x, y)+L(y, x) .
$$

- We have an expression of $D_{\varphi_{L}}(y)$;

Expression for the generating functions

Remember - Functional Equation

$$
K_{\varphi}(x, y) L_{\varphi}(x, y)=-\left[x \widetilde{\alpha}_{\varphi}(y)+\frac{1}{2} \widetilde{\beta}_{\varphi}(y)\right] D_{\varphi}(y)+K_{\varphi}(x, 0) L_{\varphi}(x, 0)+\frac{1}{2} p_{1,1} f(1,1) .
$$

Remember - Domain in three parts

$$
H(x, y)=L(x, y)+D(x, y)+L(y, x) .
$$

\square

- We have an expression of $D_{\varphi_{L}}(y)$;
- With the functional equation we get an expression of $L_{\varphi_{L}}(x, y)$;

Expression for the generating functions

Remember - Functional Equation

$$
K_{\varphi}(x, y) L_{\varphi}(x, y)=-\left[x \widetilde{\alpha}_{\varphi}(y)+\frac{1}{2} \widetilde{\beta}_{\varphi}(y)\right] D_{\varphi}(y)+K_{\varphi}(x, 0) L_{\varphi}(x, 0)+\frac{1}{2} p_{1,1} f(1,1) .
$$

Remember - Domain in three parts

$$
H(x, y)=L(x, y)+D(x, y)+L(y, x) .
$$

\square

- We have an expression of $D_{\varphi_{L}}(y)$;
- With the functional equation we get an expression of $L_{\varphi_{L}}(x, y)$;
- With a change of variable we get an expression of $D(x, y)$ and $L(x, y)$;

Expression for the generating functions

Remember - Functional Equation

$$
K_{\varphi}(x, y) L_{\varphi}(x, y)=-\left[x \widetilde{\alpha}_{\varphi}(y)+\frac{1}{2} \widetilde{\beta}_{\varphi}(y)\right] D_{\varphi}(y)+K_{\varphi}(x, 0) L_{\varphi}(x, 0)+\frac{1}{2} p_{1,1} f(1,1) .
$$

Remember - Domain in three parts

$$
H(x, y)=L(x, y)+D(x, y)+L(y, x) .
$$

\square

- We have an expression of $D_{\varphi_{L}}(y)$;
- With the functional equation we get an expression of $L_{\varphi_{L}}(x, y)$;
- With a change of variable we get an expression of $D(x, y)$ and $L(x, y)$;
- Then we have an expression of $H(x, y)$.

Asymptotics

Expression for the Diagonal Section

$$
D_{\varphi}(y)=-\frac{f(1,1)}{\widetilde{w}_{\varphi}^{\prime}(0)} \frac{\pi}{\theta_{\varphi}} \sqrt{-\frac{\widetilde{\delta}_{\varphi}^{\prime \prime}(1)}{2 \widetilde{\delta}_{\varphi}(y)}} \sqrt{1-\widetilde{W}_{\varphi}(0)} \sqrt{\widetilde{W}_{\varphi}(y)}
$$

with θ_{φ} an explicit angle, \widetilde{w}_{φ} and \widetilde{W}_{φ} conformal mappings, all depending on the step set.

$$
D_{\varphi}(y)=C \cdot \frac{\sqrt{\widetilde{W}_{\varphi}(y)}}{\sqrt{\widetilde{\delta}_{\varphi}(y)}}
$$

Asymptotics

Angle of the step set

$$
\theta=\arccos \left(-\frac{\sum_{-1 \leq i, j \leq 1} i j p_{i, j}}{\sqrt{\left(\sum_{-1 \leq i, j \leq 1} i^{2} p_{i, j}\right) \cdot\left(\sum_{-1 \leq i, j \leq 1} j^{2} p_{i, j}\right)}}\right) ; \quad \theta \varphi=\pi-\frac{\theta}{2}
$$

Example of the simple walks

$$
\theta=\frac{\pi}{2} ; \quad \theta_{\varphi}=\pi-\frac{\pi / 2}{2}=\frac{3 \pi}{4}(\text { Gessel })
$$

$$
\begin{aligned}
W_{\varphi}(y)=\frac{c+o(1)}{(1-y)^{\pi / \theta_{\varphi}}} \Rightarrow D_{\varphi}(y) & =-\frac{f(1,1)}{\widetilde{w}_{\varphi}^{\prime}(0)} \frac{\pi}{\theta \varphi} \sqrt{-\frac{\widetilde{\delta}_{\varphi}^{\prime \prime}(1)}{2 \widetilde{\delta}_{\varphi}(y)}} \sqrt{1-\widetilde{W}_{\varphi}(0)} \sqrt{\widetilde{W}_{\varphi}(y)} \\
& =\frac{c_{D}+o(1)}{(1-y)^{\pi /(2 \pi-\theta)+1}} \text { for } y \text { close to } 1
\end{aligned}
$$

Asymptotics

For y close to 1
In the three-quadrant

$$
D_{\varphi}(y)=\frac{c_{D}+o(1)}{(1-y)^{\pi /(2 \pi-\theta)+1}}
$$

In the quadrant

$$
\widetilde{D}_{\varphi}(y)=\frac{\widetilde{c}_{D}+o(1)}{(1-y)^{\pi / \theta+1}}
$$

Theorem [Mustapha, 2019]
Let $\alpha_{\mathcal{Q}}=\frac{\pi}{\theta}$ be the critical exponent of walks in the quadrant. Then the critical exponent $\alpha_{\mathcal{C}}$ of walks in the three-quadrant can be expressed as

$$
\alpha_{\mathcal{C}}=\frac{\alpha_{\mathcal{Q}}}{2 \alpha_{\mathcal{Q}}-1}=\frac{\pi}{2 \pi-\theta}
$$

Content

1. Introduction

2. Previous results in the quarter plane
3. Results in the three-quarter plane
4. Further objectives and perspectives

Non-positive harmonic functions

Expression for the generating function

$$
D(x, y)=\frac{P\left(\widetilde{w}_{\varphi}(x y)\right)}{G_{\varphi}(x y)}, \quad P \in \mathbb{R}[y] .
$$

More generally, for any polynomial P of degree n we get discrete harmonic functions (but not necessarily positive).

Simple walks

$$
\begin{gathered}
P(y)=\frac{3}{4} y^{2}-\frac{9}{16} \\
D_{\varphi}(y)=1+4 y+9 y^{2}+16 y^{3}+25 y^{4}+O\left(y^{5}\right)
\end{gathered}
$$

We find back the harmonic function $f(i, j)=i j$ (non-positive in the three-quadrant)

Non-positive harmonic functions

\rightarrow Is every harmonic function completely determined by the polynomial P ?
\rightarrow What is the structure of non-positive harmonic functions?
\rightarrow How does the cone of restriction affect this structure?
\rightarrow What are the properties of non-positive harmonic functions?
© É. Fusy, K. Raschel, P. Tarrago and A. T.

Non-symmetric case

$$
\left\{\begin{aligned}
K_{\varphi_{U}}(x, y) U_{\varphi_{U}}(x, y)= & -\left(p_{1,0} x^{-1} y+p_{0,-1} x^{-1} y^{2}+p_{1,1}+p_{-1,-1} y^{2}-y\right) D_{\varphi U}(y) \\
& +\left(p_{0,1} x^{2}+p_{1,1} x\right) U_{\varphi U}(x, 0)-\left(p_{1,0}+p_{0,-1} y\right) D_{\varphi_{L}}^{\ell}(y) \\
& +p_{1,1} f(1,1)+p_{1,0} f(1,0), \\
K_{\varphi_{L}}(x, y) L_{\varphi_{L}}(x, y)= & -\left(p_{0,1} x y+p_{\left.-1,0 x y^{2}+p_{1,1}+p_{-1,-1} y^{2}-y\right) D_{\varphi_{\varphi}}(y)}\right. \\
& +\left(p_{1,0}+p_{1,1 x) L_{\varphi_{L}}(x, 0)-\left(p_{0,1}+p_{-1,0} y\right) D_{\varphi_{U}}^{u}(y)}\right. \\
& +p_{1,1} f(1,1)+p_{0,1} f(0,1) .
\end{aligned}\right.
$$

Non-symmetric case

Change of variables $\varphi_{L}(x, y)=\left(x y, x^{-1}\right) \& \varphi_{U}(x, y)=\left(x, x^{-1} y\right)$

Random walks avoiding a quadrant can be seen as inhomogeneous walks in the half plane with probability transitions $\varphi_{U}\left(\left(p_{i, j}\right)_{-1 \leq i, j \leq 1}\right)$ in the left quadrant and $\varphi_{L}\left(\left(p_{i, j}\right)_{-1 \leq i, j \leq 1}\right)$ on the right quadrant.

Aside: Join-the-Shortest-Queue model (JSQ)

We consider a model with two queues in which the customers choose the shortest queue (if the two queues have same length, then the customers choose a queue according to a fixed probability law).

References

References

國 S. Mustapha, Non-D-Finite Walks in a Three-Quadrant Cone, Ann. Comb. 23 (2019), no. 1, 143-158. MR 3921340
K. Raschel, Random walks in the quarter plane, discrete harmonic functions and conformal mappings, Stochastic Process. Appl. 124 (2014), no. 10, 3147-3178, With an appendix by S. Franceschi. MR 3231615
A. Trotignon, Discrete harmonic functions in the three-quarter plane, arXiv 1906.08082 (2019), 1-26.

