A (truly) universal differential equation

Amaury Pouly

Joint work with Olivier Bournez and Daniel Graça

Travel supported by NSF DMS-1952694

14 february 2020

What is a computer?

What is a computer?

What is a computer?

VS

Church Thesis

Computability

Church Thesis

All reasonable models of computation are equivalent.

Church Thesis

Complexity

Effective Church Thesis

All reasonable models of computation are equivalent for complexity.

Polynomial Differential Equations

Differential Analyzer

Polynomial Differential Equations

Polynomial Differential Equations

- Rich class
- Stable (+, $\times, \circ, /$,ED)
- No closed-form solution

Polynomial Differential Equations

$$
\begin{aligned}
& \qquad \sqrt{k}-k \quad{ }_{v}^{u}=\sqrt{x}-u v \\
& \begin{array}{l}
u \\
v \\
= \\
\text { General Purpose Analog } \\
\text { Computer, Shannon } 1936
\end{array} \quad u-\sqrt{\int-\int u} \\
& \text { Com }
\end{aligned}
$$

Differential Analyzer

Newton mechanics

Reaction networks :

Polynomial differential equations : $\left\{\begin{array}{l}y(0)=y_{0} \\ y^{\prime}(t)=p(y(t))\end{array}\right.$

- chemical
- enzymatic
- Rich class
- Stable (+, $\times, \mathrm{o}, /$,ED)
- No closed-form solution

Example of dynamical system

Historical remark : the word "analog"

The pendulum and the circuit have the same equation. One can study one using the other by analogy.

Computing with differential equations

Generable functions

$$
\left\{\begin{aligned}
y(0) & =y_{0} \\
y^{\prime}(x) & =p(y(x))
\end{aligned} \quad x \in \mathbb{R}\right.
$$

$$
f(x)=y_{1}(x)
$$

Shannon's notion

Computing with differential equations

Generable functions

$$
\left\{\begin{aligned}
y(0) & =y_{0} \\
y^{\prime}(x) & =p(y(x))
\end{aligned} \quad x \in \mathbb{R}\right.
$$

$$
f(x)=y_{1}(x)
$$

Shannon's notion
sin, cos, exp, log, ...
Considered "weak" : not Γ and ζ Only analytic functions

Does a balance scale compute a function?

Inputs : $x, y \in[0,+\infty)$

Does a balance scale compute a function?

Inputs : $x, y \in[0,+\infty)$

Does a balance scale compute a function?

Inputs : $x, y \in[0,+\infty)$

Does a balance scale compute a function?

Inputs : $x, y \in[0,+\infty)$

Does a balance scale compute a function?

Inputs : $x, y \in[0,+\infty)$

Output : $\operatorname{sign}(x-y) ?$

More formally

More formally

Theorem (Bournez et al, 2010)
This is equivalent to a Turing machine.

More formally

Theorem (Bournez et al, 2010)

This is equivalent to a Turing machine.

- analog computability theory
- purely continuous characterization of classical computability

Computing with differential equations (cont.)

Generable functions

$$
\left\{\begin{aligned}
y(0) & =y_{0} \\
y^{\prime}(x) & =p(y(x))
\end{aligned} \quad x \in \mathbb{R}\right.
$$

$$
f(x)=y_{1}(x)
$$

Shannon's notion
$\sin , \cos , \exp , \log , \ldots$
Considered "weak" : not Γ and ζ Only analytic functions

Computable

$$
\begin{cases}y(0)=q(x) & x \in \mathbb{R} \\ y^{\prime}(t)=p(y(t)) & t \in \mathbb{R}_{+} \\ f(x)=\lim _{t \rightarrow \infty} & y_{1}(t)\end{cases}
$$

Modern notion sin, cos, exp, log, $Г, \zeta, \ldots$

Turing powerful
[Bournez et al., 2007]

Universal differential equations

Generable functions

subclass of analytic functions

Computable functions

any computable function

Universal differential equations

Generable functions

subclass of analytic functions

Computable functions

any computable function

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

For any continuous functions f and ε, there exists $y: \mathbb{R} \rightarrow \mathbb{R}$ solution to

$$
\begin{aligned}
3 y^{\prime 4} y^{\prime \prime} y^{\prime \prime \prime \prime} 2 & -4 y^{\prime 4} y^{\prime \prime \prime 2} y^{\prime \prime \prime \prime}+6 y^{\prime 3} y^{\prime \prime 2} y^{\prime \prime \prime} y^{\prime \prime \prime \prime}+24 y^{\prime 2} y^{\prime \prime 4} y^{\prime \prime \prime \prime} \\
& -12 y^{\prime 3} y^{\prime \prime} y^{\prime \prime \prime} 3-29 y^{\prime 2} y^{\prime \prime 3} y^{\prime \prime \prime 2}+12 y^{\prime \prime 7}
\end{aligned}
$$

such that $\forall t \in \mathbb{R}$,

$$
|y(t)-f(t)| \leqslant \varepsilon(t)
$$

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

There exists a fixed polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε, there exists a solution $y: \mathbb{R} \rightarrow \mathbb{R}$ to

$$
p\left(y, y^{\prime}, \ldots, y^{(4)}\right)=0
$$

such that $\forall t \in \mathbb{R}$,

$$
|y(t)-f(t)| \leqslant \varepsilon(t)
$$

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

There exists a fixed polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε, there exists a solution $y: \mathbb{R} \rightarrow \mathbb{R}$ to

$$
p\left(y, y^{\prime}, \ldots, y^{(4)}\right)=0
$$

such that $\forall t \in \mathbb{R}$,

$$
|y(t)-f(t)| \leqslant \varepsilon(t)
$$

Problem : this is «weak» result.

The problem with Rubel's DAE

The solution y is not unique, even with added initial conditions :

$$
p\left(y, y^{\prime}, \ldots, y^{(k)}\right)=0, \quad y(0)=\alpha_{0}, y^{\prime}(0)=\alpha_{1}, \ldots, y^{(k)}(0)=\alpha_{k}
$$

In fact, this is fundamental for Rubel's proof to work!

The problem with Rubel's DAE

The solution y is not unique, even with added initial conditions :

$$
p\left(y, y^{\prime}, \ldots, y^{(k)}\right)=0, \quad y(0)=\alpha_{0}, y^{\prime}(0)=\alpha_{1}, \ldots, y^{(k)}(0)=\alpha_{k}
$$

In fact, this is fundamental for Rubel's proof to work!

- Rubel's statement : this DAE is universal
- More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE $y^{\prime}=p(y) ?$
Note : explicit polynomial $\mathrm{ODE} \Rightarrow$ unique solution

Rubel's proof in one slide

- Take $f(t)=e^{\frac{-1}{1-t^{2}}}$ for $-1<t<1$ and $f(t)=0$ otherwise.

It satisfies $\left(1-t^{2}\right)^{2} f^{\prime \prime}(t)+2 t f^{\prime}(t)=0$.

Rubel's proof in one slide

- Take $f(t)=e^{\frac{-1}{1-t^{2}}}$ for $-1<t<1$ and $f(t)=0$ otherwise.

$$
\text { It satisfies }\left(1-t^{2}\right)^{2} f^{\prime \prime}(t)+2 t f^{\prime}(t)=0
$$

- For any $a, b, c \in \mathbb{R}, y(t)=c f(a t+b)$ satisfies

$$
\begin{aligned}
3 y^{\prime 4} y^{\prime \prime} y^{\prime \prime \prime \prime} 2 & -4 y^{\prime 4} y^{\prime \prime 2} y^{\prime \prime \prime \prime}+6 y^{3} y^{\prime \prime 2} y^{\prime \prime \prime} y^{\prime \prime \prime \prime}+24 y^{\prime 2} y^{\prime \prime 4} y^{\prime \prime \prime \prime} \\
& -12 y^{\prime 3} y^{\prime \prime} y^{\prime \prime \prime}-29 y^{\prime 2} y^{\prime \prime 3} y^{\prime \prime \prime} 2+12 y^{\prime \prime} 7=0
\end{aligned}
$$

Translation and rescaling:

Rubel's proof in one slide

- Take $f(t)=e^{\frac{-1}{1-t^{2}}}$ for $-1<t<1$ and $f(t)=0$ otherwise.

$$
\text { It satisfies }\left(1-t^{2}\right)^{2} f^{\prime \prime}(t)+2 t f^{\prime}(t)=0
$$

- For any $a, b, c \in \mathbb{R}, y(t)=c f(a t+b)$ satisfies

$$
3 y^{\prime 4} y^{\prime \prime} y^{\prime \prime \prime \prime} 2-4 y^{\prime 4} y^{\prime \prime 2} y^{\prime \prime \prime \prime}+6 y^{\prime 3} y^{\prime \prime 2} y^{\prime \prime \prime} y^{\prime \prime \prime \prime}+24 y^{\prime 2} y^{\prime \prime 4} y^{\prime \prime \prime \prime}-12 y^{\prime 3} y^{\prime \prime} y^{\prime \prime \prime} 3-29 y^{\prime 2} y^{\prime \prime 3} y^{\prime \prime \prime}{ }^{2}+12 y^{\prime \prime 7}=0
$$

- Can glue together arbitrary many such pieces

Rubel's proof in one slide

- Take $f(t)=e^{\frac{-1}{1-t^{2}}}$ for $-1<t<1$ and $f(t)=0$ otherwise.

$$
\text { It satisfies }\left(1-t^{2}\right)^{2} f^{\prime \prime}(t)+2 t f^{\prime}(t)=0
$$

- For any $a, b, c \in \mathbb{R}, y(t)=c f(a t+b)$ satisfies

$$
3 y^{\prime 4} y^{\prime \prime} y^{\prime \prime \prime \prime} 2-4 y^{\prime 4} y^{\prime \prime 2} y^{\prime \prime \prime \prime}+6 y^{\prime 3} y^{\prime \prime 2} y^{\prime \prime \prime} y^{\prime \prime \prime \prime}+24 y^{\prime 2} y^{\prime \prime 4} y^{\prime \prime \prime \prime}-12 y^{3} y^{\prime \prime} y^{\prime \prime \prime} 3-29 y^{\prime 2} y^{\prime \prime 3} y^{\prime \prime \prime}+12 y^{\prime \prime 7}=0
$$

- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear

Rubel's proof in one slide

- Take $f(t)=e^{\frac{-1}{1-t^{2}}}$ for $-1<t<1$ and $f(t)=0$ otherwise.

$$
\text { It satisfies } \quad\left(1-t^{2}\right)^{2} f^{\prime \prime}(t)+2 t f^{\prime}(t)=0
$$

- For any $a, b, c \in \mathbb{R}, y(t)=c f(a t+b)$ satisfies

$$
3 y^{\prime 4} y^{\prime \prime} y^{\prime \prime \prime \prime} 2-4 y^{\prime 4} y^{\prime \prime 2} y^{\prime \prime \prime \prime}+6 y^{\prime 3} y^{\prime \prime 2} y^{\prime \prime \prime} y^{\prime \prime \prime \prime}+24 y^{\prime 2} y^{\prime \prime 4} y^{\prime \prime \prime \prime}-12 y^{\prime 3} y^{\prime \prime} y^{\prime \prime \prime} 3-29 y^{\prime 2} y^{\prime \prime 3} y^{\prime \prime \prime}{ }^{2}+12 y^{\prime \prime 7}=0
$$

- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear

Conclusion : Rubel's equation allows any piecewise pseudo-linear functions, and those are dense in C^{0}

Universal initial value problem (IVP)

Theorem

There exists a fixed (vector of) polynomial p such that for any continuous functions f and ε, there exists $\alpha \in \mathbb{R}^{d}$ such that

$$
y(0)=\alpha, \quad y^{\prime}(t)=p(y(t))
$$

has a unique solution $y: \mathbb{R} \rightarrow \mathbb{R}^{d}$ and $\forall t \in \mathbb{R}$,

$$
\left|y_{1}(t)-f(t)\right| \leqslant \varepsilon(t)
$$

Universal initial value problem (IVP)

Notes:

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

There exists a fixed (vector of) polynomial p such that for any continuous functions f and ε, there exists $\alpha \in \mathbb{R}^{d}$ such that

$$
y(0)=\alpha, \quad y^{\prime}(t)=p(y(t))
$$

has a unique solution $y: \mathbb{R} \rightarrow \mathbb{R}^{d}$ and $\forall t \in \mathbb{R}$,

$$
\left|y_{1}(t)-f(t)\right| \leqslant \varepsilon(t)
$$

Universal initial value problem (IVP)

Notes:

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

There exists a fixed (vector of) polynomial p such that for any continuous functions f and ε, there exists $\alpha \in \mathbb{R}^{d}$ such that

$$
y(0)=\alpha, \quad y^{\prime}(t)=p(y(t))
$$

has a unique solution $y: \mathbb{R} \rightarrow \mathbb{R}^{d}$ and $\forall t \in \mathbb{R}$,

$$
\left|y_{1}(t)-f(t)\right| \leqslant \varepsilon(t)
$$

Remark : α is usually transcendental, but computable from f and ε

Universal DAE revisited

Theorem

There exists a fixed polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε, there exists $\alpha_{0}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
p\left(y, y^{\prime}, \ldots, y^{(k)}\right)=0, \quad y(0)=\alpha_{0}, y^{\prime}(0)=\alpha_{1}, \ldots, y^{(k)}(0)=\alpha_{k}
$$

has a unique analytic solution and this solution satisfies such that

$$
|y(t)-f(t)| \leqslant \varepsilon(t)
$$

A brief stop

Before I can explain the proof, you need to know more of polynomial ODEs and what I mean by programming with ODEs.

Generable functions : a summary

Definition

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if $\exists d, p$ and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

Generable functions : a summary

Definition

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if $\exists d, p$ and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

Nice theory for the class of total and univariate generable functions:

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)

$$
y^{\prime}=f(y)
$$

- solutions to polynomial ODEs form a very large class

Why is this useful?

Writing polynomial ODEs by hand is hard.

Why is this useful?

Writing polynomial ODEs by hand is hard.
Using generable functions, we can build complicated multivariate partial functions using other operations, and we know they are solutions to polynomial ODEs by construction.

Why is this useful?

Writing polynomial ODEs by hand is hard.
Using generable functions, we can build complicated multivariate partial functions using other operations, and we know they are solutions to polynomial ODEs by construction.

Example : almost rounding function

There exists a generable function round such that for any $n \in \mathbb{Z}, x \in \mathbb{R}$, $\lambda>2$ and $\mu \geqslant 0$:

- if $x \in\left[n-\frac{1}{2}, n+\frac{1}{2}\right]$ then $|\operatorname{round}(x, \mu, \lambda)-n| \leqslant \frac{1}{2}$,
- if $x \in\left[n-\frac{1}{2}+\frac{1}{\lambda}, n+\frac{1}{2}-\frac{1}{\lambda}\right]$ then $|\operatorname{round}(x, \mu, \lambda)-n| \leqslant e^{-\mu}$.

A simplified proof

binary stream generator

A simplified proof

binary stream generator

digits of α

$\alpha \in \mathbb{R} \longrightarrow \mathrm{ODE} \longrightarrow \uparrow 0$| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\cdots, t

"Digital" to Analog
Converter (fixed frequency)

Approximate Lipschitz and bounded functions with fixed precision.

That's the trickiest part.

A simplified proof

binary stream generator

digits of α

$\alpha \in \mathbb{R} \longrightarrow \widehat{O D E} \longrightarrow$| 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | \cdots | | | | | | | | | |t

"Digital" to Analog
Converter (fixed frequency)

ODE?

We need something more : a fast-growing ODE.

A simplified proof

binary stream generator

digits of α

$\alpha \in \mathbb{R} \longrightarrow \widehat{O D E} \longrightarrow$| 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | \cdots | | | | | | | | | |t

"Digital" to Analog
Converter (fixed frequency)

A less simplified proof

binary stream generator : digits of $\alpha \in \mathbb{R}$

$$
f(\alpha, \mu, \lambda, t)=\frac{1}{2}+\frac{1}{2} \tanh \left(\mu \sin \left(2 \alpha \pi 4^{\text {round }(t-1 / 4, \lambda)}+4 \pi / 3\right)\right)
$$

It's horrible, but generable

A less simplified proof

binary stream generator : digits of $\alpha \in \mathbb{R}$

dyadic stream generator: $d_{i}=m_{i} 2^{-d_{i}}, a_{i}=9 i+\sum_{j<i} d_{j}$

$$
\left.f(\alpha, \gamma, t)=\sin \left(2 \alpha \pi 2^{\text {round }(t-1 / 4, \gamma)}\right)\right)
$$

A less simplified proof

This copy operation is the "non-trivial" part.

A less simplified proof

We can do almost piecewise constant functions...

A less simplified proof

We can do almost piecewise constant functions...

- ...that are bounded by 1...
- ...and have super slow changing frequency.

A less simplified proof

We can do almost piecewise constant functions...

- ...that are bounded by 1...
- ...and have super slow changing frequency.

How do we go to arbitrarily large and growing functions? Can a polynomial ODE even have arbitrary growth?

An old question on growth

Building a fast-growing ODE, that exists over \mathbb{R} :

$$
y_{1}^{\prime}=y_{1} \quad \sim \quad y_{1}(t)=\exp (t)
$$

An old question on growth

Building a fast-growing ODE, that exists over \mathbb{R} :

$$
\begin{array}{lll}
y_{1}^{\prime}=y_{1} & \sim & y_{1}(t)=\exp (t) \\
y_{2}^{\prime}=y_{1} y_{2} & \sim & y_{1}(t)=\exp (\exp (t))
\end{array}
$$

An old question on growth

Building a fast-growing ODE, that exists over \mathbb{R} :

$$
\begin{array}{lll}
y_{1}^{\prime}=y_{1} & \leadsto & y_{1}(t)=\exp (t) \\
y_{2}^{\prime}=y_{1} y_{2} & \sim & y_{1}(t)=\exp (\exp (t)) \\
\cdots & & \cdots \\
y_{n}^{\prime}=y_{1} \cdots y_{n} & \leadsto & y_{n}(t)=\exp (\cdots \exp (t) \cdots):=e_{n}(t)
\end{array}
$$

An old question on growth

Building a fast-growing ODE, that exists over \mathbb{R} :

$$
\begin{array}{lll}
y_{1}^{\prime}=y_{1} & \leadsto & y_{1}(t)=\exp (t) \\
y_{2}^{\prime}=y_{1} y_{2} & \leadsto & y_{1}(t)=\exp (\exp (t)) \\
\cdots & & \cdots \\
y_{n}^{\prime}=y_{1} \cdots y_{n} & \leadsto & y_{n}(t)=\exp (\cdots \exp (t) \cdots):=e_{n}(t)
\end{array}
$$

Conjecture (Emil Borel, 1899)

With n variables, cannot do better than $\mathcal{O}_{t}\left(e_{n}\left(A t^{k}\right)\right)$.

An old question on growth

Counter-example (Vijayaraghavan, 1932)

$$
\frac{1}{2-\cos (t)-\cos (\alpha t)}
$$

An old question on growth

Counter-example (Vijayaraghavan, 1932)

$$
\frac{1}{2-\cos (t)-\cos (\alpha t)}
$$

An old question on growth

Theorem

There exists a polynomial $p: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that for any continuous function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$, we can find $\alpha \in \mathbb{R}^{d}$ such that
satisfies

$$
y(0)=\alpha, \quad y^{\prime}(t)=p(y(t))
$$

$$
y_{1}(t) \geqslant f(t), \quad \forall t \geqslant 0 .
$$

An old question on growth

Theorem

There exists a polynomial $p: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that for any continuous function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$, we can find $\alpha \in \mathbb{R}^{d}$ such that
satisfies

$$
y(0)=\alpha, \quad y^{\prime}(t)=p(y(t))
$$

$$
y_{1}(t) \geqslant f(t), \quad \forall t \geqslant 0 .
$$

Note : both results require α to be transcendental. Conjecture still open for rational (or algebraic) coefficients.

Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE? That is, build a generable y such that $y(x, n) \approx f^{[n]}(x)$ for all $n \in \mathbb{N}$

Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE? That is, build a generable y such that $y(x, n) \approx f^{[n]}(x)$ for all $n \in \mathbb{N}$

Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE? That is, build a generable y such that $y(x, n) \approx f^{[n]}(x)$ for all $n \in \mathbb{N}$

Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE?
That is, build a generable y such that $y(x, n) \approx f^{[n]}(x)$ for all $n \in \mathbb{N}$

Universal initial value problem (IVP)

Notes:

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

There exists a fixed (vector of) polynomial p such that for any continuous functions f and ε, there exists $\alpha \in \mathbb{R}^{d}$ such that

$$
y(0)=\alpha, \quad y^{\prime}(t)=p(y(t))
$$

has a unique solution $y: \mathbb{R} \rightarrow \mathbb{R}^{d}$ and $\forall t \in \mathbb{R}$,

$$
\left|y_{1}(t)-f(t)\right| \leqslant \varepsilon(t)
$$

Remark : α is usually transcendental, but computable from f and ε

Universal DAE revisited

Theorem

There exists a fixed polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε, there exists $\alpha_{0}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
p\left(y, y^{\prime}, \ldots, y^{(k)}\right)=0, \quad y(0)=\alpha_{0}, y^{\prime}(0)=\alpha_{1}, \ldots, y^{(k)}(0)=\alpha_{k}
$$

has a unique analytic solution and this solution satisfies such that

$$
|y(t)-f(t)| \leqslant \varepsilon(t)
$$

Backup slides

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector
- $y_{0} \in \mathbb{R}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Note : existence and unicity of y by Cauchy-Lipschitz theorem.

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector
- $y_{0} \in \mathbb{R}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f(x)=x \quad>$ identity

$$
y(0)=0, \quad y^{\prime}=1 \quad \leadsto \quad y(x)=x
$$

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

Example : $f(x)=x^{2} \quad>$ squaring

$$
\begin{aligned}
& y_{1}(0)=0, \quad y_{1}^{\prime}=2 y_{2} \quad \leadsto y_{1}(x)=x^{2} \\
& y_{2}(0)=0, \quad y_{2}^{\prime}=1 \quad \leadsto \quad y_{2}(x)=x
\end{aligned}
$$

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector
- $y_{0} \in \mathbb{R}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f(x)=x^{n} \quad n^{\text {th }}$ power

$$
\begin{array}{rllc}
y_{1}(0)=0, & y_{1}^{\prime}=n y_{2} & \leadsto y_{1}(x)=x^{n} \\
y_{2}(0)=0, & y_{2}^{\prime}=(n-1) y_{3} & \sim & y_{2}(x)=x^{n-1} \\
\ldots & \ldots & & \ldots \\
y_{n}(0)=0, & y_{n}=1 & \sim y_{n}(x)=x
\end{array}
$$

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector
- $y_{0} \in \mathbb{R}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example: $f(x)=\exp (x)>$ exponential

$$
y(0)=1, \quad y^{\prime}=y \quad \leadsto \quad y(x)=\exp (x)
$$

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector
- $y_{0} \in \mathbb{R}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f(x)=\sin (x)$ or $f(x)=\cos (x)$

- sine/cosine

$$
\begin{array}{llll}
y_{1}(0)=0, & y_{1}^{\prime}=y_{2} & \leadsto y_{1}(x)=\sin (x) \\
y_{2}(0)=1, & y_{2}^{\prime}=-y_{1} & \leadsto y_{2}(x)=\cos (x)
\end{array}
$$

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector
- $y_{0} \in \mathbb{R}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f(x)=\tanh (x)>$ hyperbolic tangent

$$
y(0)=0, \quad y^{\prime}=1-y^{2} \leadsto y(x)=\tanh (x)
$$

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector
- $y_{0} \in \mathbb{R}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f(x)=\frac{1}{1+x^{2}} \quad>$ rational function

$$
f^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}}=-2 x f(x)^{2}
$$

$$
\begin{array}{lll}
y_{1}(0)=1, & y_{1}^{\prime}=-2 y_{2} y_{1}^{2} & \leadsto y_{1}(x)=\frac{1}{1+x^{2}} \\
y_{2}(0)=0, & y_{2}^{\prime}=1 & \sim y_{2}(x)=x
\end{array}
$$

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector
- $y_{0} \in \mathbb{R}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f=g \pm h \quad$ sum/difference

$$
(f \pm g)^{\prime}=f^{\prime} \pm g^{\prime}
$$

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector
- $y_{0} \in \mathbb{R}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f=g h$

- product

$$
(g h)^{\prime}=g^{\prime} h+g h^{\prime}
$$

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector
- $y_{0} \in \mathbb{R}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f=\frac{1}{g} \quad>$ inverse

$$
f^{\prime}=\frac{-g^{\prime}}{g^{2}}=-g^{\prime} f^{2}
$$

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector
- $y_{0} \in \mathbb{R}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f=\int g \quad$ integral

$$
f^{\prime}=g
$$

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector
- $y_{0} \in \mathbb{R}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f=g^{\prime} \quad>$ derivative

$$
f^{\prime}=g^{\prime \prime}=\left(p_{1}(z)\right)^{\prime}=\nabla p_{1}(z) \cdot z^{\prime}
$$

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector
- $y_{0} \in \mathbb{R}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f=g \circ h \quad$ composition

$$
(z \circ h)^{\prime}=\left(z^{\prime} \circ h\right) h^{\prime}=p(z \circ h) h^{\prime}
$$

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector
- $y_{0} \in \mathbb{R}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f^{\prime}=$ tanh of $>$ Non-polynomial differential equation

$$
f^{\prime \prime}=\left(\tanh ^{\prime} \circ f\right) f^{\prime}=\left(1-(\tanh \circ f)^{2}\right) f^{\prime}
$$

Generable functions (total, univariate)

Definition

Types

$f: \mathbb{R} \rightarrow \mathbb{R}$ is generable if there exists d, p and y_{0} such that the solution y to

$$
y(0)=y_{0}, \quad y^{\prime}(x)=p(y(x))
$$

satisfies $f(x)=y_{1}(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^{d}\left[\mathbb{R}^{n}\right]$: polynomial vector
- $y_{0} \in \mathbb{R}^{d}, y: \mathbb{R} \rightarrow \mathbb{R}^{d}$

Example : $f(0)=f_{0}, f^{\prime}=g \circ f \quad$ Initial Value Problem (IVP)

$$
f^{\prime}=g^{\prime \prime}=(p(z))^{\prime}=\nabla p(z) \cdot z^{\prime}
$$

Generable functions : a first summary

Nice theory for the class of total and univariate generable functions:

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /$, \circ and Initial Value Problems (IVP)
- technicality on the field \mathbb{K} of coefficients for stability under \circ

Generable functions : a first summary

Nice theory for the class of total and univariate generable functions:

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field \mathbb{K} of coefficients for stability under \circ

Limitations:

- total functions
- univariate

Generable functions (generalization)

Definition

$f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is generable if X is open connected and $\exists d, p, x_{0}, y_{0}, y$ such that

$$
y\left(x_{0}\right)=y_{0}, \quad J_{y}(x)=p(y(x))
$$

and $f(x)=y_{1}(x)$ for all $x \in X$.
$J_{y}(x)=$ Jacobian matrix of y at x

Notes:

- Partial differential equation!
- Unicity of solution y...
- ... but not existence (ie you have to show it exists)

Generable functions (generalization)

Definition

$f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is generable if X is open connected and $\exists d, p, x_{0}, y_{0}, y$ such that

$$
y\left(x_{0}\right)=y_{0}, \quad J_{y}(x)=p(y(x))
$$

and $f(x)=y_{1}(x)$ for all $x \in X$.
$J_{y}(x)=$ Jacobian matrix of y at x
Example : $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}^{2} \quad(n=2, d=3)$

Types

- $n \in \mathbb{N}$: input dimension
- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{K}^{d \times d}\left[\mathbb{R}^{d}\right]$: polynomial matrix
- $x_{0} \in \mathbb{K}^{n}$
- $y_{0} \in \mathbb{K}^{d}, y: X \rightarrow \mathbb{R}^{d}$
- monomial

$$
y(0,0)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad J_{y}=\left(\begin{array}{cc}
y_{3}^{2} & 3 y_{2} y_{3} \\
1 & 0 \\
0 & 1
\end{array}\right) \quad y(x)=\left(\begin{array}{c}
x_{1} x_{2}^{2} \\
x_{1} \\
x_{2}
\end{array}\right)
$$

Generable functions (generalization)

Definition

$f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is generable if X is open connected and $\exists d, p, x_{0}, y_{0}, y$ such that

$$
y\left(x_{0}\right)=y_{0}, \quad J_{y}(x)=p(y(x))
$$

and $f(x)=y_{1}(x)$ for all $x \in X$.
$J_{y}(x)=$ Jacobian matrix of y at x

Types

- $n \in \mathbb{N}$: input dimension
- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{K}^{d \times d}\left[\mathbb{R}^{d}\right]$:
polynomial matrix
- $x_{0} \in \mathbb{K}^{n}$
- $y_{0} \in \mathbb{K}^{d}, y: X \rightarrow \mathbb{R}^{d}$

Example : $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}^{2} \quad$ monomial

$$
\begin{array}{llllr}
y_{1}(0,0)=0, & \partial_{x_{1}} y_{1}=y_{3}^{2}, & \partial_{x_{2}} y_{1}=3 y_{2} y_{3} & \sim & y_{1}(x)=x_{1} x_{2}^{2} \\
y_{2}(0,0)=0, & \partial_{x_{1}} y_{2}=1, & \partial_{x_{2}} y_{2}=0 & \sim & y_{2}(x)=x_{1} \\
y_{3}(0,0)=0, & \partial_{x_{1}} y_{3}=0, & \partial_{x_{2}} y_{3}=1 & \sim & y_{3}(x)=x_{2}
\end{array}
$$

This is tedious!

Generable functions (generalization)

Definition

$f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is generable if X is open connected and $\exists d, p, x_{0}, y_{0}, y$ such that

$$
y\left(x_{0}\right)=y_{0}, \quad J_{y}(x)=p(y(x))
$$

and $f(x)=y_{1}(x)$ for all $x \in X$.
$J_{y}(x)=$ Jacobian matrix of y at x
Last example : $f(x)=\frac{1}{x}$ for $x \in(0, \infty)$

Types

- $n \in \mathbb{N}$: input dimension
- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{K}^{d \times d}\left[\mathbb{R}^{d}\right]$: polynomial matrix
- $x_{0} \in \mathbb{K}^{n}$
- $y_{0} \in \mathbb{K}^{d}, y: X \rightarrow \mathbb{R}^{d}$
- inverse function

$$
y(1)=1, \quad \partial_{x} y=-y^{2} \quad \leadsto \quad y(x)=\frac{1}{x}
$$

Generable functions : summary

Nice theory for the class of multivariate generable functions (over connected domains) :

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field \mathbb{K} of coefficients for stability under \circ

Generable functions : summary

Nice theory for the class of multivariate generable functions (over connected domains) :

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /$, o and Initial Value Problems (IVP)
- technicality on the field \mathbb{K} of coefficients for stability under \circ

Natural questions:

- analytic \rightarrow isn't that very limited ?
- can we generate all analytic functions?

Generable functions : summary

Nice theory for the class of multivariate generable functions (over connected domains) :

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /$, o and Initial Value Problems (IVP)
- technicality on the field \mathbb{K} of coefficients for stability under \circ

Natural questions:

- analytic \rightarrow isn't that very limited ?
- can we generate all analytic functions? No

Riemann Γ and ζ are not generable.

From discrete to real computability

Computable Analysis : lift Turing computability to real numbers
[Ko, 1991 ; Weihrauch, 2000]

From discrete to real computability

Computable Analysis: lift Turing computability to real numbers
[Ko, 1991 ; Weihrauch, 2000]

Definition

$x \in \mathbb{R}$ is computable iff \exists a computable $f: \mathbb{N} \rightarrow \mathbb{Q}$ such that :

$$
|x-f(n)| \leqslant 10^{-n} \quad n \in \mathbb{N}
$$

Examples : rational numbers, π, e, \ldots

\mathbf{n}	$\mathbf{f}(\mathbf{n})$	$\|\pi-\mathbf{f}(\mathbf{n})\|$
0	3	$0.14 \leqslant 10^{-0}$
1	3.1	$0.04 \leqslant 10^{-1}$
2	3.14	$0.001 \leqslant 10^{-2}$
10	3.1415926535	$0.9 \cdot 10^{-10} \leqslant 10^{-10}$

From discrete to real computability

Computable Analysis: lift Turing computability to real numbers
[Ko, 1991 ; Weihrauch, 2000]

Definition

$x \in \mathbb{R}$ is computable iff \exists a computable $f: \mathbb{N} \rightarrow \mathbb{Q}$ such that :

$$
|x-f(n)| \leqslant 10^{-n} \quad n \in \mathbb{N}
$$

Examples : rational numbers, π, e, \ldots

\mathbf{n}	$\mathbf{f}(\mathbf{n})$	$\|\pi-\mathbf{f}(\mathbf{n})\|$
0	3	$0.14 \leqslant 10^{-0}$
1	3.1	$0.04 \leqslant 10^{-1}$
2	3.14	$0.001 \leqslant 10^{-2}$
10	3.1415926535	$0.9 \cdot 10^{-10} \leqslant 10^{-10}$

Beware :there exists uncomputable real numbers !

From discrete to real computability

From discrete to real computability

Definition (Computable function)
$f:[a, b] \rightarrow \mathbb{R}$ is computable iff $\exists m: \mathbb{N} \rightarrow \mathbb{N}$, computable functions such that :

$$
|x-y| \leqslant 10^{-m(n)} \Rightarrow|f(x)-f(y)| \leqslant 10^{-n} \quad x, y \in \mathbb{R}, n \in \mathbb{N}
$$

m : modulus of continuity

From discrete to real computability

Definition (Computable function)
$f:[a, b] \rightarrow \mathbb{R}$ is computable iff $\exists m: \mathbb{N} \rightarrow \mathbb{N}, \psi: \mathbb{Q} \times \mathbb{N} \rightarrow \mathbb{Q}$ computable functions such that :

$$
|x-y| \leqslant 10^{-m(n)} \Rightarrow|f(x)-f(y)| \leqslant 10^{-n} \quad x, y \in \mathbb{R}, n \in \mathbb{N}
$$

m : modulus of continuity

From discrete to real computability

Definition (Computable function)
$f:[a, b] \rightarrow \mathbb{R}$ is computable iff $\exists m: \mathbb{N} \rightarrow \mathbb{N}, \psi: \mathbb{Q} \times \mathbb{N} \rightarrow \mathbb{Q}$ computable functions such that :

$$
|x-y| \leqslant 10^{-m(n)} \Rightarrow|f(x)-f(y)| \leqslant 10^{-n} \quad x, y \in \mathbb{R}, n \in \mathbb{N}
$$

m : modulus of continuity

From discrete to real computability

Definition (Computable function)

$f:[a, b] \rightarrow \mathbb{R}$ is computable iff $\exists m: \mathbb{N} \rightarrow \mathbb{N}, \psi: \mathbb{Q} \times \mathbb{N} \rightarrow \mathbb{Q}$ computable functions such that :

$$
\begin{gathered}
|x-y| \leqslant 10^{-m(n)} \Rightarrow|f(x)-f(y)| \leqslant 10^{-n} \quad x, y \in \mathbb{R}, n \in \mathbb{N} \\
|f(r)-\psi(r, n)| \leqslant 10^{-n} \quad r \in \mathbb{Q}, n \in \mathbb{N}
\end{gathered}
$$

From discrete to real computability

Definition (Computable function)

$f:[a, b] \rightarrow \mathbb{R}$ is computable iff $\exists m: \mathbb{N} \rightarrow \mathbb{N}, \psi: \mathbb{Q} \times \mathbb{N} \rightarrow \mathbb{Q}$ computable functions such that :

$$
\begin{gathered}
|x-y| \leqslant 10^{-m(n)} \Rightarrow|f(x)-f(y)| \leqslant 10^{-n} \quad x, y \in \mathbb{R}, n \in \mathbb{N} \\
|f(r)-\psi(r, n)| \leqslant 10^{-n} \quad r \in \mathbb{Q}, n \in \mathbb{N}
\end{gathered}
$$

From discrete to real computability

Definition (Computable function)

$f:[a, b] \rightarrow \mathbb{R}$ is computable iff $\exists m: \mathbb{N} \rightarrow \mathbb{N}, \psi: \mathbb{Q} \times \mathbb{N} \rightarrow \mathbb{Q}$ computable functions such that :

$$
\begin{gathered}
|x-y| \leqslant 10^{-m(n)} \Rightarrow|f(x)-f(y)| \leqslant 10^{-n} \quad x, y \in \mathbb{R}, n \in \mathbb{N} \\
|f(r)-\psi(r, n)| \leqslant 10^{-n} \quad r \in \mathbb{Q}, n \in \mathbb{N}
\end{gathered}
$$

From discrete to real computability

Definition (Computable function)

$f:[a, b] \rightarrow \mathbb{R}$ is computable iff $\exists m: \mathbb{N} \rightarrow \mathbb{N}, \psi: \mathbb{Q} \times \mathbb{N} \rightarrow \mathbb{Q}$ computable functions such that :

$$
\begin{gathered}
|x-y| \leqslant 10^{-m(n)} \Rightarrow|f(x)-f(y)| \leqslant 10^{-n} \quad x, y \in \mathbb{R}, n \in \mathbb{N} \\
|f(r)-\psi(r, n)| \leqslant 10^{-n} \quad r \in \mathbb{Q}, n \in \mathbb{N}
\end{gathered}
$$

Examples : polynomials, $\sin , \exp , \sqrt{ }$.
Note :all computable functions are continuous
Beware :there exists (continuous) uncomputable real functions!

From discrete to real computability

Definition (Computable function)

$f:[a, b] \rightarrow \mathbb{R}$ is computable iff $\exists m: \mathbb{N} \rightarrow \mathbb{N}, \psi: \mathbb{Q} \times \mathbb{N} \rightarrow \mathbb{Q}$ computable functions such that :

$$
\begin{gathered}
|x-y| \leqslant 10^{-m(n)} \Rightarrow|f(x)-f(y)| \leqslant 10^{-n} \quad x, y \in \mathbb{R}, n \in \mathbb{N} \\
|f(r)-\psi(r, n)| \leqslant 10^{-n} \quad r \in \mathbb{Q}, n \in \mathbb{N}
\end{gathered}
$$

Examples : polynomials, $\sin , \exp , \sqrt{ }$.
Note :all computable functions are continuous
Beware :there exists (continuous) uncomputable real functions!

Polytime complexity

Add "polynomial time computable" everywhere.

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x \in[a, b]$

$$
y(0)=(x, 0, \ldots, 0) \quad y^{\prime}(t)=p(y(t))
$$

satisfies $\left|f(x)-y_{1}(t)\right| \leqslant y_{2}(t)$ et $y_{2}(t) \xrightarrow[t \rightarrow \infty]{ } 0$.

$$
\begin{aligned}
& y_{1}(t) \underset{t \rightarrow \infty}{ } f(x) \\
& y_{2}(t)=\text { error bound }
\end{aligned}
$$

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x \in[a, b]$

$$
y(0)=(x, 0, \ldots, 0) \quad y^{\prime}(t)=p(y(t))
$$

satisfies $\left|f(x)-y_{1}(t)\right| \leqslant y_{2}(t)$ et $y_{2}(t) \xrightarrow[t \rightarrow \infty]{ } 0$.

$$
\begin{aligned}
& y_{1}(t) \underset{t \rightarrow \infty}{ } f(x) \\
& y_{2}(t)=\text { error bound }
\end{aligned}
$$

Theorem (Bournez et al, 2007)

$f:[a, b] \rightarrow \mathbb{R}$ computable ${ }^{1} \Leftrightarrow f$ computable by GPAC

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x \in[a, b]$

$$
y(0)=(x, 0, \ldots, 0) \quad y^{\prime}(t)=p(y(t))
$$

satisfies $\left|f(x)-y_{1}(t)\right| \leqslant y_{2}(t)$ et $y_{2}(t) \xrightarrow[t \rightarrow \infty]{ } 0$.

$$
\begin{aligned}
& y_{1}(t) \underset{t \rightarrow \infty}{ } f(x) \\
& y_{2}(t)=\text { error bound }
\end{aligned}
$$

Theorem (Bournez et al, 2007)

$f:[a, b] \rightarrow \mathbb{R}$ computable ${ }^{1} \Leftrightarrow f$ computable by GPAC

1. In Computable Analysis, a standard model over reals built from Turing machines.

Almost-rounding function

"Perfect round" :

$$
\operatorname{round}(x):=x-\frac{1}{\pi} \arctan (\tan (\pi x))
$$

Almost-rounding function

"Perfect round" :

$$
\operatorname{round}(x):=x-\frac{1}{\pi} \arctan (\tan (\pi x))
$$

Undefined at $x=n+\frac{1}{2}$: observe that

$$
\tan (\theta)=\operatorname{sgn}(\theta) \frac{\sin \theta}{|\cos (\theta)|}
$$

Almost-rounding function

"Perfect round" :

$$
\operatorname{round}(x):=x-\frac{1}{\pi} \arctan (\tan (\pi x))
$$

Undefined at $x=n+\frac{1}{2}$: observe that

$$
\tan (\theta)=\operatorname{sgn}(\theta) \frac{\sin \theta}{|\cos (\theta)|}
$$

Approximate $\operatorname{sgn}(\theta)$:

$$
\operatorname{sgn}(\theta) \approx \tanh (\lambda x) \quad \text { for } \operatorname{big} \lambda
$$

Almost-rounding function

"Perfect round" :

$$
\operatorname{round}(x):=x-\frac{1}{\pi} \arctan (\tan (\pi x))
$$

Undefined at $x=n+\frac{1}{2}$: observe that

$$
\tan (\theta)=\operatorname{sgn}(\theta) \frac{\sin \theta}{|\cos (\theta)|}
$$

Approximate $\operatorname{sgn}(\theta)$:

$$
\operatorname{sgn}(\theta) \approx \tanh (\lambda x) \quad \text { for } \operatorname{big} \lambda
$$

Prevent explosion :

$$
|\cos (\theta)| \leadsto \sqrt{\mathrm{nz}\left(\cos (\theta)^{2}\right)}
$$

where $\mathrm{nz}(x) \approx x$ but $\mathrm{nz}(x)>0$ for all x :

Almost-rounding function

"Perfect round" :

$$
\operatorname{round}(x):=x-\frac{1}{\pi} \arctan (\tan (\pi x))
$$

Undefined at $x=n+\frac{1}{2}$: observe that

$$
\tan (\theta)=\operatorname{sgn}(\theta) \frac{\sin \theta}{|\cos (\theta)|}
$$

Approximate $\operatorname{sgn}(\theta)$:

$$
\operatorname{sgn}(\theta) \approx \tanh (\lambda x) \quad \text { for } \operatorname{big} \lambda
$$

Prevent explosion :

$$
|\cos (\theta)| \leadsto \sqrt{\mathrm{nz}\left(\cos (\theta)^{2}\right)}
$$

where $\mathrm{nz}(x) \approx x$ but $\mathrm{nz}(x)>0$ for all x :

$$
\mathrm{nz}(x)=x+\text { some variation on tanh }
$$

Almost-rounding function : gory details

Formally :

$$
\begin{gathered}
\operatorname{rnd}(x, \mu, \lambda)=x-\frac{1}{\pi} \arctan (\operatorname{cltan}(\pi x, \mu, \lambda)) \\
\operatorname{cltan}(\theta, \mu, \lambda)=\frac{\sin (\theta)}{\sqrt{\mathrm{nz}\left(\cos ^{2} \theta, \mu+16 \lambda^{3}, 4 \lambda^{2}\right)}} \operatorname{sg}(\cos \theta, \mu+3 \lambda, 2 \lambda) \\
\mathrm{nz}(x, \mu, \lambda)=x+\frac{2}{\lambda} \mathrm{ip}_{1}\left(1-x+\frac{3}{4 \lambda}, \mu+1,4 \lambda\right) \\
\mathrm{ip}_{1}(x, \mu, \lambda)=\frac{1+\operatorname{sg}(x-1, \mu, \lambda)}{2} \\
\operatorname{sg}(x, \mu, \lambda)=\tanh (x \mu \lambda)
\end{gathered}
$$

All generable functions!

