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Base field F'= C(x), &= %

o(y) =2z -y
Solution: y = e
Consider the shift operator o with o(f(z)) = f(z + 1):
_ ez A2zt

02(y) _ 6z2+4z+4 _ 62fz2+212+4z+2 _ e2y710(y)2

= y,0(y) and a*(y) are algebraically dependent over F’
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and
G(S) ={ce 8" | o*(c)o(c) Pc =1}

holds for any o-algebra S over C, so G(S) C GL1(S) for "sufficient general” S and
thus G < GL;.
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Difference Galois theory of linear differential equations

This theory was established (over arbitrary do-fields) in
Di Vizio, Hardouin, Wibmer: Difference Galois theory of linear differential equations.
Adv. Math. 260 (2014), 1-58.

Linear d-equation of order n over C(z) ~~ o-Picard-Vessiot extension E/C(z)

~~ o-Galois group G < GL,,

Fact: G is given by polynomial equations over C in the matrix entries and their images
under o, o2

PR

i.e., G is a (linear) difference algebraic group over C.
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> in particular, if G is the finite cyclic group of order d over C we can associate two
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» Subgroups of the additive group G:
G(S)={se S|ass+aio(s)+ -+ aro"(s) = 0} for all C-o-algebras S
(for some fixed r € N, a; € C).

» Unitary group: G(S) = {g € GL,(S) | o(g9)*"g = 1} for all C-o-algebras S
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The additive group

Base field I = C(z), 4= S
1

== 4

oy) =~ (4)

Solution y = log(z) with o(y) = log(z + 1), o°(y) = log(z 4+ 2),... all algebr. indep.
The o-Picard-Vessiot extension E = F(y,0(y),0%(y),...) has o-Galois group G,.
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The additive group

Claim: No non-trivial proper subgroup of G, is a o-Galois group over C(z)

J

Corollary: Let G be a unipotent linear algebraic group over C and let G be its constant
subgroup. Then G is not a o-Galois group over C(z).

)
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The additive group

Claim: No non-trivial proper subgroup of G, is a o-Galois group over C(z)

Sketch of proof: Let E/C(x) be a o-Picard-Vessiot extension with group G < G,.
Step 1: There exists a y € E with E = F(y,o(y),...) and §(y) € C(z).

Step 2: There exists an n € N such that y,o(y),...,0"(y) are algebraically dependent.

Step 3: Write a = §(y) € C(x), wlog- a= Z’f %

j=1 z+8B;
Note that §(c'(y)) = o'(a) = for all I € N.

j=1 :c+l+/3

Step 4: The theorem of Kolchin-Ostrowski implies that there exists a non-zero vector
(coy--.,cn) € C™ with S°1 ot (y) € C(x). After differentiating, we obtain that

Clx
ZZ%JFZJJF»BJ

=0 j=1

has an antiderivative in C(z) and is thus zero, but the terms do not cancel unless
a=0.
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If G is a o-Galois group over C(x) with derivation § = -~ and endomorphism o given
by o(f(z)) = f(z + 1), then G is o-reduced and o-connected.

Examples:

> Linear algebraic groups (interpreted as difference-algebraic groups) are always
o-connected.

> All subgroups of G, are o-connected.
» The constant subgroup of a finite cyclic group is not o-connected.

> A subgroup of G, given by the equation aoz + aio(z) + -+ + arc”(x) =0 is
o-reduced if and only if ag # 0.

The criterion in the theorem above is far from sufficient! J




Main result

Theorem (B., Wibmer)

Let G be a linear algebraic group over C and interpret it as a difference-algebraic group
G over C. Then there exists a o-Picard-Vessiot extension over C(x) with o-Galois

group G.
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is called a diamond of fields with the factorization property if the following holds:

A diamond of fields

. Intersection: F} N Fy = F, and
2. Factorization: Vn € N VAg € GL,(Fp) 3A4; € GL,(F;) 1 Ao = A1 A

Fact: Let Uy, Uz be open, connected proper subsets of the Riemann sphere X = P
such that

» Up := Uy NUs; is connected and

» U1UU; = X.
Let F; be the field of meromorphic functions on U;. Then (F, F1, F», Foy) is a diamond
with the factorization property, where F' = C(x) is the field of meromorphic functions
on X.



Algebraic Patching

Example:

Ur={zePc ||z <2}
Us={z B[zl > 1)
U={zeP:|1<]|z| <2}
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First step: Choose n € N with G < GL,, and show that there exist fundamental
solution matrices Y1 € GL,(E1),Y2 € GL,(E>) (i.e., adjust representations).
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factorization property (F, F1, F2, Fp) such that

> all fields are equipped compatibly with commuting derivations ¢ and
endomorphisms & such that F§ = F?

> there exist o-Picard-Vessiot extensions E1/F1 and Ea/F»> with O‘ Galois groups
isomorphic to Hi and Ha, resp.and

>E1§FoandE2§Fo. ‘
Then there exists a o-Picard-Vessiot extension E/F ‘
with o-Galois group G and E C Fp.

Sketch of proof:
First step: Choose n € N with G < GL,, and show that there exist fundamental
solution matrices Y1 € GL,(E ) Y2 € GL,(E>) (i.e., adjust representations).

Second step: Consider Yy = Y1Y, ! € GL,,(Fp). The factorization property yields
matrices By € GL,(F1), B2 € GL (F») with Yo = B1B;'. The intersection property
implies that Y := B1Y1 = B2Y> solves a differential equation over F'.

Third step: Show that the o-Picard-Vessiot extension E = F(Y,0(Y),0*(Y),...)
over F' has o-Galois group G.
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Let G be a linear algebraic group over C. Then there exist closed subgroups Hi, ..., Hr,
of G such that

» each H,; is isomorphic to either G, or G,, or a finite cyclic group and

> G is generated by H1,...,H, in the following strong sense: the multiplication
map Hi X -+ X H, — G is surjective




Generating subgroups

Let G be a linear algebraic group over C. Then there exist closed subgroups Hi, ..., Hr,
of G such that

» each H,; is isomorphic to either G, or G,, or a finite cyclic group and

> G is generated by H1,...,H, in the following strong sense: the multiplication
map Hi X -+ X H, — G is surjective

Now interpret G as a difference algebraic group G and similarly H1,...,H, as
difference algebraic groups Hi, ..., H,.

Corollary: G is generated as a difference algebraic group by Hy, ..., H,. |
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with the factorization property.

» Construct o-Picard-Vessiot extensions
E1/F:; with o-Galois group Hi and E; C Fy and
E;/F> with o-Galois group Hs and Ez C Fy.

» Obtain a o-Picard-Vessiot extension E/F
with o-Galois group (H1, H2) and E C Fp.

Step 2:
» Choose new diamond of fields (F, Fl,ﬁ‘g,ﬁb)

with the factorization property such that Fy = F.
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Strategy to realize a given G = (H
Step 1:

» Choose suitable diamond of fields (F, F1, F», Fo)
with the factorization property.

» Construct o-Picard-Vessiot extensions
E1/F:; with o-Galois group Hi and E; C Fy and
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Step 2:

» Choose new diamond of fields (F, F‘l,ﬁ‘g,ﬁb) B
with the factorization property such that Fy = F.

> Then E/I lifts to a 0-Picard-Vessiot extension

E> := EF with o-Galois group (Hi, Hs) and E» C Fp.
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VAR
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Step 2:

» Choose new diamond of fields (F, F‘l,ﬁ‘g,ﬁb) B
with the factorization property such that Fy = F.

> Then E/I lifts to a 0-Picard-Vessiot extension

E> := EF with o-Galois group (Hi, Hs) and E» C Fp.

» Construct o-Picard-Vessiot extensions
El/Fl with o-Galois group Hs and E1 C Fo

> Obtain a o-Picard-Vessiot extension E/f‘ B
with o-Galois group (H1, Ha, H3) and E C Fp

4

Continue inductively.

20



Suitable diamonds over F' = C(x), first try

21



Suitable diamonds over F' = C(x), first try
We need to find diamonds (F, F1, F, Fy) with the factorization property such that all

fields are equipped compatibly with extensions of § = d/dx and o from F = C(z) to
F; and FY = C for all 4.

21



Suitable diamonds over F' = C(x), first try
We need to find diamonds (F, F, F», Fy) with the factorization property such that all
fields are equipped compatibly with extensions of § = d/dx and o from F = C(z) to
F; and FY = C for all 4.
Try to find Uy, Uz C P& open, connected such that
» U1UUy = IP’%:
> Uy := U; NUs; is connected

21



Suitable diamonds over F' = C(x), first try
We need to find diamonds (F, F, F», Fy) with the factorization property such that all
fields are equipped compatibly with extensions of § = d/dx and o from F = C(z) to
F; and FY = C for all 4.
Try to find Uy, Uz C P& open, connected such that
» Uy UU; = ]P)ql:
> Uy := U; NUs; is connected
» Uy and Us are stable under the shift operator o

Let F; denote the field of meromorphic functions on U;.

21



Suitable diamonds over F' = C(x), first try
We need to find diamonds (F, F, F», Fy) with the factorization property such that all
fields are equipped compatibly with extensions of § = d/dx and o from F = C(z) to
F; and FY = C for all 4.
Try to find Uy, Uz C P& open, connected such that
» U1UUy = ]P’%:
> Uy := U; NUs; is connected
> Ui and U, are stable under the shift operator o

Let F; denote the field of meromorphic functions on U;.

Example:
Up = {zeC|Im(z) >0}
U = {zeC|Im(z) <1}

Uy = {zeC|0<Im(z) <1}
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Suitable diamonds over F' = C(x), first try
We need to find diamonds (F, F, F», Fy) with the factorization property such that all
fields are equipped compatibly with extensions of § = d/dx and o from F = C(z) to
F; and FY = C for all 4.
Try to find Uy, Uz C P& open, connected such that
» Uy UU; = ]P)ql:
> Uy := U; NUs; is connected
» Uy and Us are stable under the shift operator o

Let F; denote the field of meromorphic functions on U;.

Example:
Up = {zeC|Im(z) >0}
U, = {ze€C|Im(z) <1}
Up = {ze€C|0<Im(z)<1}

But these sets don't cover P& and we won't be able
to find a connected, o-invariant Uz in the second step
with Up U U = PE.

21
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Suitable diamonds over F' = C(x)

Define Fi = | L;

ieN
L; =meromorphic functions on V;
Note: F} is o-invariant, since

L1L>L2L>L3—>...

Y/ A vy
- -2 -3
o} 8]

Define F, = | K;

ieN
K; =meromorphic functions on W;
Note: Fb is o-invariant, since

Kli)KQL)K:;—)...

)
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Suitable diamonds over F' = C(x)
Define Fi = | L;

>
e T
il

P
iEN Vi v Vs
L; =meromorphic functions on V;
Note: Fi is o-invariant, since 3 Iy -3
L1 2 Lo AN Ls — ... ufsd of=} ]
=
. m
Define I> = |J K;
iEN W, Wy _
K; :mero.mor[?hlc functlo.ns on W; i —
Note: Fy is o-invariant, since P -3
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Define Fi = | L;
ieN
L; =meromorphic functions on V;
Note: F} is o-invariant, since

L1 L} Lo L} Ls — ... Ofe}
Define F, = | K;
€N ) i
K; :mero.moryi)hlc functlo.ns on W;
Note: F5 is o-invariant, since
K; L} K> L} K3 — ... ue}
Define Fo = U Ml‘
ieEN
M; =meromorphic functions on V; N W; .

Note: Fpy is o-invariant, since
Ml—‘L)MQ—(L)Mg—)...
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Suitable diamonds over F' = C(x)

Define Fy = J L T

= i
i€N
L; =meromorphic functions on V;
Note: Fi is o-invariant, since 3 2
L1 -2 Lo 25 Ly — ... e ui=d

Uie}

Define F, = | K;
1€EN
K; =meromorphic functions on W;

Note: F5 is o-invariant, since
Kli)Kgi)Kgﬁ...

W,

-3

)

Define Fo = U Ml‘

iEN
M; =meromorphic functions on V; N W;
Note: Fpy is o-invariant, since
Ml—‘L)MQ—(L)Mg—)...

uis}

For all i € N, (F, L;, K;, M;) is a diamond with the factorization property
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Suitable diamonds over F' = C(x)

Define F1 = |J L;
1€EN V'\
L; =meromorphic functions on V;

Note: F} is o-invariant, since 3 -
L1 L} Lo L} Ls — ... ufe}

vf=}

U}

Define F» = | K;

ieN
K; =meromorphic functions on W;
Note: Fb is o-invariant, since

Kli)KQL)Kg—)...

W,

-3

)

Define Fo = |J M;

ieEN
M; =meromorphic functions on V; N W;
Note: Fpy is o-invariant, since

Ml—o—)Mg—J—)Mg—)...

Ufs}

For all i € N, (F, L;, K;, M;) is a diamond with the factorization property

= (F, F1, F», Fy) is a diamond with the factorization property
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Suitable diamonds over F' = C(x)

o o

Define Fi = |J L; R Ty

iEN Vi v Vs
L; =meromorphic functions on V;
Note: Fi is o-invariant, since 3 Iy -3
Ly L} Lo L} Ly — ... ufe} o} uis}
Define F» = |J K;

i€N Wy _

g

K; =meromorphic functions on W;
Note: F5 is o-invariant, since
Kli)KQL)Kg—)...

-3

Ui}

Define Fo = U Ml‘

ieEN
M; =meromorphic functions on V; N W;
Note: Fpy is o-invariant, since
M1—0—)M2—6—>M3—>...

Ufs}

For all i € N, (F, L;, K;, M;) is a diamond with the factorization property
= (F, F1, F», Fy) is a diamond with the factorization property and these fields are
equipped compatibly with extensions of o on F' = C(x).
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Define Fo = | N; = t
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Suitable diamonds over F' = C(z) in the second dnduction step
L~

Define Fy = J M;
iEN
M; =meromorphic functions on V; N W; :
}

1
ufe
: ~ Uy . Uy s
Define Fo = | N; = )
iEN
N; =meromorphic functions on U; -t -2
vl ol

T —
Define Fy = J M;
~ iEN
M; =meromorphic functionson VN W, NU;

i

uf=}

= (F, Fi, Es, 13‘0) is a diamond with the factorization property and these fields are
equipped compatibly with extensions of o on F' = C(z).
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Let F1 = U L;
ieN
L; =meromorphic functions on V;

Us}

Let Fp = U M;
ieN
M; =meromorphic functions on V; N W;
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Let F1 = U L;
iEN
L; =meromorphic functions on V;
—
i}
-
Let Fp = U M; T T
iEN
M; =meromorphic functions on V; N W; ; k
—
=
uga}

uf=}

Building blocks: We need to construct a o-Picard-Vessiot extension F/F; with
o-Galois group Hi and E; C Fp.
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Building blocks

Let F1 = U L; T
iEN ) "
L; =meromorphic functions on V;
3
i
e
Let Fo = U M; o
ieN
M; =meromorphic functions on V; N W; 1 i
—>
A

uf=}

uish

Building blocks: We need to construct a o-Picard-Vessiot extension F/F; with
o-Galois group Hi and E; C Fp.

First case: Hy = G,. Define E1 = Fi{log(-L- + 1)) C Fo.
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iEN ) "
L; =meromorphic functions on V;
3
i
T
Let Fp = U M; “ o
ieN
M; =meromorphic functions on V; N W; 1
A

uf=}

Building blocks: We need to construct a o-Picard-Vessiot extension F/F; with
o-Galois group Hi and E; C Fp.

First case: Hy 2 G,. Define E1 = Fi( +1)) C Fp.
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7)) € Fo.

hence log(-;
Second case: Hi & G,. Define F1 = Fi{
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Building blocks

Let F1 = U L; “ B
iEN ) "
L; =meromorphic functions on V;
3
i
=
Let Fp = U M; <
ieN
M; =meromorphic functions on V; N W; 1
A

ufe}

Building blocks: We need to construct a o-Picard-Vessiot extension F/F; with
o-Galois group Hi and E; C Fp.

First case: H1 2 G,. Define Ey = Fy(log(55 + 1)) C Fo.

Use that (-1 + 1) € (—oo, O]U{oo}c»(x—z)e[ 1,0) U {0} =[-1,0]
hence log(-; 4+ 1) € My, o(log(...)) € Ma, ...

Second case: Hi & G,. Define F1 = Fi{ z;)) C Fy.

Third case: H; finite cyclic of order d. Define B4 = Fi({/ ziz ) C Fo.
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