Difference Galois groups of linear differential equations

Annette Bachmayr, University of Mainz (joint with Michael Wibmer)

February 2020

Example

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

Example

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\delta(y)=2 x \cdot y
$$

Solution: $y=e^{x^{2}}$

Example

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\delta(y)=2 x \cdot y
$$

Solution: $y=e^{x^{2}}$
Picard-Vessiot extension:

$$
E=F(y)=\mathbb{C}\left(x, e^{x^{2}}\right)
$$

Example

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\delta(y)=2 x \cdot y
$$

Solution: $y=e^{x^{2}}$
Picard-Vessiot extension:

$$
E=F(y)=\mathbb{C}\left(x, e^{x^{2}}\right)
$$

Galois group:

$$
G=\left\{\gamma: F(y) \rightarrow F(y) \text { autom. }|\gamma|_{F}=\mathrm{id}, \gamma \circ \delta=\delta \circ \gamma\right\}
$$

Example

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\delta(y)=2 x \cdot y
$$

Solution: $y=e^{x^{2}}$
Picard-Vessiot extension:

$$
E=F(y)=\mathbb{C}\left(x, e^{x^{2}}\right)
$$

Galois group:

$$
\begin{aligned}
G & =\left\{\gamma: F(y) \rightarrow F(y) \text { autom. }|\gamma|_{F}=\mathrm{id}, \gamma \circ \delta=\delta \circ \gamma\right\} \\
& =\left\{\gamma: F(y) \rightarrow F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}\right\} \\
& \cong \mathrm{GL}_{1}(\mathbb{C})
\end{aligned}
$$

Example

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\delta(y)=2 x \cdot y
$$

Solution: $y=e^{x^{2}}$
Picard-Vessiot extension:

$$
E=F(y)=\mathbb{C}\left(x, e^{x^{2}}\right)
$$

Galois group:

$$
\begin{aligned}
G(\mathbb{C}) & =\left\{\gamma: F(y) \rightarrow F(y) \text { autom. }|\gamma|_{F}=\mathrm{id}, \gamma \circ \delta=\delta \circ \gamma\right\} \\
& =\left\{\gamma: F(y) \rightarrow F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}\right\} \\
& \cong \mathrm{GL}_{1}(\mathbb{C})
\end{aligned}
$$

hence $G=\mathrm{GL}_{1}$.

Example

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\delta(y)=2 x \cdot y
$$

Solution: $y=e^{x^{2}}$

Example

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\delta(y)=2 x \cdot y
$$

Solution: $y=e^{x^{2}}$
Consider the shift operator σ with $\sigma(f(x))=f(x+1)$:

Example

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\delta(y)=2 x \cdot y
$$

Solution: $y=e^{x^{2}}$
Consider the shift operator σ with $\sigma(f(x))=f(x+1)$:
$\sigma(y)=e^{x^{2}+2 x+1}$

Example

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\delta(y)=2 x \cdot y
$$

Solution: $y=e^{x^{2}}$
Consider the shift operator σ with $\sigma(f(x))=f(x+1)$:
$\sigma(y)=e^{x^{2}+2 x+1}$
$\sigma^{2}(y)=e^{x^{2}+4 x+4}=e^{2-x^{2}+2 x^{2}+4 x+2}=e^{2} y^{-1} \sigma(y)^{2}$

Example

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\delta(y)=2 x \cdot y
$$

Solution: $y=e^{x^{2}}$
Consider the shift operator σ with $\sigma(f(x))=f(x+1)$:
$\sigma(y)=e^{x^{2}+2 x+1}$
$\sigma^{2}(y)=e^{x^{2}+4 x+4}=e^{2-x^{2}+2 x^{2}+4 x+2}=e^{2} y^{-1} \sigma(y)^{2}$
$\Rightarrow y, \sigma(y)$ and $\sigma^{2}(y)$ are algebraically dependent over F

Example

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\delta(y)=2 x \cdot y
$$

Solution $y=e^{x^{2}}$ satisfies $\sigma^{2}(y)=e^{2} y^{-1} \sigma(y)^{2}$

Example

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\delta(y)=2 x \cdot y
$$

Solution $y=e^{x^{2}}$ satisfies $\sigma^{2}(y)=e^{2} y^{-1} \sigma(y)^{2}$
σ - Picard-Vessiot extension:

$$
E=F\left(y, \sigma(y), \sigma^{2}(y), \ldots\right)=F(y, \sigma(y))
$$

Example

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\delta(y)=2 x \cdot y
$$

Solution $y=e^{x^{2}}$ satisfies $\sigma^{2}(y)=e^{2} y^{-1} \sigma(y)^{2}$
σ - Picard-Vessiot extension:

$$
E=F\left(y, \sigma(y), \sigma^{2}(y), \ldots\right)=F(y, \sigma(y))
$$

σ-Galois group:

$$
G(\mathbb{C})=\left\{\gamma: F(y, \sigma(y)) \rightarrow F(y, \sigma(y)) \text { autom. }|\gamma|_{F}=\text { id, } \gamma \text { commutes with } \delta, \sigma\right\}
$$

Example

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\delta(y)=2 x \cdot y
$$

Solution $y=e^{x^{2}}$ satisfies $\sigma^{2}(y)=e^{2} y^{-1} \sigma(y)^{2}$
σ - Picard-Vessiot extension:

$$
E=F\left(y, \sigma(y), \sigma^{2}(y), \ldots\right)=F(y, \sigma(y))
$$

σ-Galois group:

$$
\begin{aligned}
G(\mathbb{C}) & =\left\{\gamma: F(y, \sigma(y)) \rightarrow F(y, \sigma(y)) \text { autom. }|\gamma|_{F}=\text { id, } \gamma \text { commutes with } \delta, \sigma\right\} \\
& =\left\{\gamma: F(y, \sigma(y)) \rightarrow F(y, \sigma(y)), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma^{2}(c)=c^{-1} \sigma(c)^{2}\right\}
\end{aligned}
$$

Example

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\delta(y)=2 x \cdot y
$$

Solution $y=e^{x^{2}}$ satisfies $\sigma^{2}(y)=e^{2} y^{-1} \sigma(y)^{2}$
σ - Picard-Vessiot extension:

$$
E=F\left(y, \sigma(y), \sigma^{2}(y), \ldots\right)=F(y, \sigma(y))
$$

σ-Galois group:

$$
\begin{aligned}
G(\mathbb{C}) & =\left\{\gamma: F(y, \sigma(y)) \rightarrow F(y, \sigma(y)) \text { autom. }|\gamma|_{F}=\mathrm{id}, \gamma \text { commutes with } \delta, \sigma\right\} \\
& =\left\{\gamma: F(y, \sigma(y)) \rightarrow F(y, \sigma(y)), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma^{2}(c)=c^{-1} \sigma(c)^{2}\right\} \\
& \cong\left\{c \in \mathbb{C}^{\times} \mid \sigma^{2}(c) \sigma(c)^{-2} c=1\right\}=\mathrm{GL}_{1}(\mathbb{C})
\end{aligned}
$$

Example

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\delta(y)=2 x \cdot y
$$

Solution $y=e^{x^{2}}$ satisfies $\sigma^{2}(y)=e^{2} y^{-1} \sigma(y)^{2}$
σ - Picard-Vessiot extension:

$$
E=F\left(y, \sigma(y), \sigma^{2}(y), \ldots\right)=F(y, \sigma(y))
$$

σ-Galois group:

$$
\begin{aligned}
G(\mathbb{C}) & =\left\{\gamma: F(y, \sigma(y)) \rightarrow F(y, \sigma(y)) \text { autom. }|\gamma|_{F}=\text { id, } \gamma \text { commutes with } \delta, \sigma\right\} \\
& =\left\{\gamma: F(y, \sigma(y)) \rightarrow F(y, \sigma(y)), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma^{2}(c)=c^{-1} \sigma(c)^{2}\right\} \\
& \cong\left\{c \in \mathbb{C}^{\times} \mid \sigma^{2}(c) \sigma(c)^{-2} c=1\right\}=\mathrm{GL}_{1}(\mathbb{C})
\end{aligned}
$$

and

$$
G(S)=\left\{c \in S^{\times} \mid \sigma^{2}(c) \sigma(c)^{-2} c=1\right\}
$$

holds for any σ-algebra S over \mathbb{C}, so $G(S) \subsetneq \mathrm{GL}_{1}(S)$ for "sufficient general" S and thus $G \lesseqgtr \mathrm{GL}_{1}$.

Difference Galois theory of linear differential equations

This theory was established (over arbitrary $\delta \sigma$-fields) in Di Vizio, Hardouin, Wibmer: Difference Galois theory of linear differential equations. Adv. Math. 260 (2014), 1-58.

Difference Galois theory of linear differential equations

This theory was established (over arbitrary $\delta \sigma$-fields) in Di Vizio, Hardouin, Wibmer: Difference Galois theory of linear differential equations. Adv. Math. 260 (2014), 1-58.

Linear δ-equation of order n over $\mathbb{C}(x) \rightsquigarrow \sigma$-Picard-Vessiot extension $E / \mathbb{C}(x)$

Difference Galois theory of linear differential equations

This theory was established (over arbitrary $\delta \sigma$-fields) in Di Vizio, Hardouin, Wibmer: Difference Galois theory of linear differential equations. Adv. Math. 260 (2014), 1-58.

Linear δ-equation of order n over $\mathbb{C}(x) \rightsquigarrow \sigma$-Picard-Vessiot extension $E / \mathbb{C}(x)$
$\rightsquigarrow \sigma$-Galois group $G \leq \mathrm{GL}_{n}$

Difference Galois theory of linear differential equations

This theory was established (over arbitrary $\delta \sigma$-fields) in Di Vizio, Hardouin, Wibmer: Difference Galois theory of linear differential equations. Adv. Math. 260 (2014), 1-58.

Linear δ-equation of order n over $\mathbb{C}(x) \rightsquigarrow \sigma$-Picard-Vessiot extension $E / \mathbb{C}(x)$ $\rightsquigarrow \sigma$-Galois group $G \leq \mathrm{GL}_{n}$

Fact: G is given by polynomial equations over \mathbb{C} in the matrix entries and their images under $\sigma, \sigma^{2}, \ldots$
i.e., G is a (linear) difference algebraic group over \mathbb{C}.

Examples of difference algebraic groups

- Linear algebraic Groups

Examples of difference algebraic groups

- Linear algebraic Groups
- Constant points of linear algebraic groups $\mathcal{G}: G(S)=\{g \in \mathcal{G}(S) \mid \sigma(g)=g\}$ for all \mathbb{C} - σ-algebras S

Examples of difference algebraic groups

- Linear algebraic Groups
- Constant points of linear algebraic groups $\mathcal{G}: G(S)=\{g \in \mathcal{G}(S) \mid \sigma(g)=g\}$ for all $\mathbb{C}-\sigma$-algebras S
- in particular, if \mathcal{G} is the finite cyclic group of order d over \mathbb{C} we can associate two difference algebraic groups G_{1}, G_{2} to it: $G_{1}(S)=\mathcal{G}(S)=\left\{g \in S \mid s^{d}=1\right\}$ and $G_{2}(S)=\left\{g \in S \mid s^{d}=1\right.$ and $\left.\sigma(s)=s\right\}$ for all \mathbb{C} - σ-algebras S

Examples of difference algebraic groups

- Linear algebraic Groups
- Constant points of linear algebraic groups $\mathcal{G}: G(S)=\{g \in \mathcal{G}(S) \mid \sigma(g)=g\}$ for all \mathbb{C} - σ-algebras S
- in particular, if \mathcal{G} is the finite cyclic group of order d over \mathbb{C} we can associate two difference algebraic groups G_{1}, G_{2} to it: $G_{1}(S)=\mathcal{G}(S)=\left\{g \in S \mid s^{d}=1\right\}$ and $G_{2}(S)=\left\{g \in S \mid s^{d}=1\right.$ and $\left.\sigma(s)=s\right\}$ for all \mathbb{C} - σ-algebras S
- Subgroups of the multiplicative group $\mathrm{GL}_{1}=\mathbb{G}_{m}$:
$G(S)=\left\{s \in S^{\times} \mid s^{e_{0}} \sigma(s)^{e_{1}} \cdots \sigma^{r}(s)^{e_{r}}=1\right\}$ for all \mathbb{C} - σ-algebras S (for some fixed $r \in \mathbb{N}, e_{i} \in \mathbb{Z}$).

Examples of difference algebraic groups

- Linear algebraic Groups
- Constant points of linear algebraic groups $\mathcal{G}: G(S)=\{g \in \mathcal{G}(S) \mid \sigma(g)=g\}$ for all \mathbb{C} - σ-algebras S
- in particular, if \mathcal{G} is the finite cyclic group of order d over \mathbb{C} we can associate two difference algebraic groups G_{1}, G_{2} to it: $G_{1}(S)=\mathcal{G}(S)=\left\{g \in S \mid s^{d}=1\right\}$ and $G_{2}(S)=\left\{g \in S \mid s^{d}=1\right.$ and $\left.\sigma(s)=s\right\}$ for all \mathbb{C} - σ-algebras S
- Subgroups of the multiplicative group $\mathrm{GL}_{1}=\mathbb{G}_{m}$:
$G(S)=\left\{s \in S^{\times} \mid s^{e_{0}} \sigma(s)^{e_{1}} \cdots \sigma^{r}(s)^{e_{r}}=1\right\}$ for all \mathbb{C} - σ-algebras S (for some fixed $r \in \mathbb{N}, e_{i} \in \mathbb{Z}$).
- Subgroups of the additive group \mathbb{G}_{a} :
$G(S)=\left\{s \in S \mid a_{0} s+a_{1} \sigma(s)+\cdots+a_{r} \sigma^{r}(s)=0\right\}$ for all \mathbb{C} - σ-algebras S (for some fixed $r \in \mathbb{N}, a_{i} \in \mathbb{C}$).

Examples of difference algebraic groups

- Linear algebraic Groups
- Constant points of linear algebraic groups $\mathcal{G}: G(S)=\{g \in \mathcal{G}(S) \mid \sigma(g)=g\}$ for all \mathbb{C} - σ-algebras S
- in particular, if \mathcal{G} is the finite cyclic group of order d over \mathbb{C} we can associate two difference algebraic groups G_{1}, G_{2} to it: $G_{1}(S)=\mathcal{G}(S)=\left\{g \in S \mid s^{d}=1\right\}$ and $G_{2}(S)=\left\{g \in S \mid s^{d}=1\right.$ and $\left.\sigma(s)=s\right\}$ for all \mathbb{C} - σ-algebras S
- Subgroups of the multiplicative group $\mathrm{GL}_{1}=\mathbb{G}_{m}$:
$G(S)=\left\{s \in S^{\times} \mid s^{e_{0}} \sigma(s)^{e_{1}} \cdots \sigma^{r}(s)^{e_{r}}=1\right\}$ for all \mathbb{C} - σ-algebras S
(for some fixed $r \in \mathbb{N}, e_{i} \in \mathbb{Z}$).
- Subgroups of the additive group \mathbb{G}_{a} :
$G(S)=\left\{s \in S \mid a_{0} s+a_{1} \sigma(s)+\cdots+a_{r} \sigma^{r}(s)=0\right\}$ for all \mathbb{C} - σ-algebras S (for some fixed $r \in \mathbb{N}, a_{i} \in \mathbb{C}$).
- Unitary group: $G(S)=\left\{g \in \mathrm{GL}_{n}(S) \mid \sigma(g)^{\operatorname{tr}} g=1\right\}$ for all \mathbb{C} - σ-algebras S

The inverse problem

Inverse Problem: Which difference algebraic groups over \mathbb{C} are σ-Galois groups of some differential equation over $\mathbb{C}(x)$?

The inverse problem

Inverse Problem: Which difference algebraic groups over \mathbb{C} are σ-Galois groups of some differential equation over $\mathbb{C}(x)$?

Examples:

- the subgroup of \mathbb{G}_{m} defined by the equation $\sigma^{2}(x) \sigma(x)^{-2} x=1$.

The inverse problem

Inverse Problem: Which difference algebraic groups over \mathbb{C} are σ-Galois groups of some differential equation over $\mathbb{C}(x)$?

Examples:

- the subgroup of \mathbb{G}_{m} defined by the equation $\sigma^{2}(x) \sigma(x)^{-2} x=1$.
- constant subgroup of \mathbb{G}_{m}

The inverse problem

Inverse Problem: Which difference algebraic groups over \mathbb{C} are σ-Galois groups of some differential equation over $\mathbb{C}(x)$?

Examples:

- the subgroup of \mathbb{G}_{m} defined by the equation $\sigma^{2}(x) \sigma(x)^{-2} x=1$.
- constant subgroup of \mathbb{G}_{m}
- $\mathbb{G}_{m}, \mathbb{G}_{a}$ and finite cyclic groups interpreted as difference algebraic groups

The inverse problem

Inverse Problem: Which difference algebraic groups over \mathbb{C} are σ-Galois groups of some differential equation over $\mathbb{C}(x)$?

Examples:

- the subgroup of \mathbb{G}_{m} defined by the equation $\sigma^{2}(x) \sigma(x)^{-2} x=1$.
- constant subgroup of \mathbb{G}_{m}
- $\mathbb{G}_{m}, \mathbb{G}_{a}$ and finite cyclic groups interpreted as difference algebraic groups
- but no proper, non-trivial subgroup of \mathbb{G}_{a} !

The inverse problem

Inverse Problem: Which difference algebraic groups over \mathbb{C} are σ-Galois groups of some differential equation over $\mathbb{C}(x)$?

Examples:

- the subgroup of \mathbb{G}_{m} defined by the equation $\sigma^{2}(x) \sigma(x)^{-2} x=1$.
- constant subgroup of \mathbb{G}_{m}
- $\mathbb{G}_{m}, \mathbb{G}_{a}$ and finite cyclic groups interpreted as difference algebraic groups
- but no proper, non-trivial subgroup of \mathbb{G}_{a} !
- no constant points of finite cyclic groups!

The multiplicative group
Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=y \tag{1}
\end{equation*}
$$

Solution $y=e^{x}$

The multiplicative group
Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=y \tag{1}
\end{equation*}
$$

Solution $y=e^{x}$ satisfies $\sigma(y)=e y$

The multiplicative group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=y \tag{1}
\end{equation*}
$$

Solution $y=e^{x}$ satisfies $\sigma(y)=e y$,
The σ-Galois group is the constant subgroup of \mathbb{G}_{m} :

The multiplicative group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=y \tag{1}
\end{equation*}
$$

Solution $y=e^{x}$ satisfies $\sigma(y)=e y$,
The σ-Galois group is the constant subgroup of \mathbb{G}_{m} :

$$
G(\mathbb{C})=\left\{\gamma: F(y) \rightarrow F(y) \text { autom. }|\gamma|_{F}=\mathrm{id}, \gamma \text { commutes with } \delta, \sigma\right\}
$$

The multiplicative group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=y \tag{1}
\end{equation*}
$$

Solution $y=e^{x}$ satisfies $\sigma(y)=e y$,
The σ-Galois group is the constant subgroup of \mathbb{G}_{m} :

$$
\begin{aligned}
G(\mathbb{C}) & =\left\{\gamma: F(y) \rightarrow F(y) \text { autom. }|\gamma|_{F}=\mathrm{id}, \gamma \text { commutes with } \delta, \sigma\right\} \\
& =\left\{\gamma: F(y) \rightarrow F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma(c)=c\right\}
\end{aligned}
$$

The multiplicative group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=y \tag{1}
\end{equation*}
$$

Solution $y=e^{x}$ satisfies $\sigma(y)=e y$,
The σ-Galois group is the constant subgroup of \mathbb{G}_{m} :

$$
\begin{gather*}
G(\mathbb{C})=\left\{\gamma: F(y) \rightarrow F(y) \text { autom. }|\gamma|_{F}=\mathrm{id}, \gamma \text { commutes with } \delta, \sigma\right\} \\
=\left\{\gamma: F(y) \rightarrow F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma(c)=c\right\} \\
 \tag{2}\\
\qquad(y)=-\frac{1}{x^{2}} y
\end{gather*}
$$

Solution $y=e^{\frac{1}{x}}$

The multiplicative group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=y \tag{1}
\end{equation*}
$$

Solution $y=e^{x}$ satisfies $\sigma(y)=e y$,
The σ-Galois group is the constant subgroup of \mathbb{G}_{m} :

$$
\begin{gather*}
G(\mathbb{C})=\left\{\gamma: F(y) \rightarrow F(y) \text { autom. }|\gamma|_{F}=\mathrm{id}, \gamma \text { commutes with } \delta, \sigma\right\} \\
=\left\{\gamma: F(y) \rightarrow F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma(c)=c\right\} \\
 \tag{2}\\
\qquad(y)=-\frac{1}{x^{2}} y
\end{gather*}
$$

Solution $y=e^{\frac{1}{x}}$ with $\sigma(y)=e^{\frac{1}{x+1}}, \sigma^{2}(y)=e^{\frac{1}{x+2}}, \ldots$

The multiplicative group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=y \tag{1}
\end{equation*}
$$

Solution $y=e^{x}$ satisfies $\sigma(y)=e y$,
The σ-Galois group is the constant subgroup of \mathbb{G}_{m} :

$$
\begin{gather*}
G(\mathbb{C})=\left\{\gamma: F(y) \rightarrow F(y) \text { autom. }|\gamma|_{F}=\mathrm{id}, \gamma \text { commutes with } \delta, \sigma\right\} \\
=\left\{\gamma: F(y) \rightarrow F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma(c)=c\right\} \\
 \tag{2}\\
\qquad(y)=-\frac{1}{x^{2}} y
\end{gather*}
$$

Solution $y=e^{\frac{1}{x}}$ with $\sigma(y)=e^{\frac{1}{x+1}}, \sigma^{2}(y)=e^{\frac{1}{x+2}}, \ldots$ all algebraically independent

The multiplicative group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=y \tag{1}
\end{equation*}
$$

Solution $y=e^{x}$ satisfies $\sigma(y)=e y$,
The σ-Galois group is the constant subgroup of \mathbb{G}_{m} :

$$
\begin{gather*}
G(\mathbb{C})=\left\{\gamma: F(y) \rightarrow F(y) \text { autom. }|\gamma|_{F}=\mathrm{id}, \gamma \text { commutes with } \delta, \sigma\right\} \\
=\left\{\gamma: F(y) \rightarrow F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma(c)=c\right\} \\
 \tag{2}\\
\qquad(y)=-\frac{1}{x^{2}} y
\end{gather*}
$$

Solution $y=e^{\frac{1}{x}}$ with $\sigma(y)=e^{\frac{1}{x+1}}, \sigma^{2}(y)=e^{\frac{1}{x+2}}, \ldots$ all algebraically independent
The σ-Galois group equals \mathbb{G}_{m} :

The multiplicative group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=y \tag{1}
\end{equation*}
$$

Solution $y=e^{x}$ satisfies $\sigma(y)=e y$,
The σ-Galois group is the constant subgroup of \mathbb{G}_{m} :

$$
\begin{gather*}
G(\mathbb{C})=\left\{\gamma: F(y) \rightarrow F(y) \text { autom. }|\gamma|_{F}=\mathrm{id}, \gamma \text { commutes with } \delta, \sigma\right\} \\
=\left\{\gamma: F(y) \rightarrow F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma(c)=c\right\} \\
 \tag{2}\\
\qquad(y)=-\frac{1}{x^{2}} y
\end{gather*}
$$

Solution $y=e^{\frac{1}{x}}$ with $\sigma(y)=e^{\frac{1}{x+1}}, \sigma^{2}(y)=e^{\frac{1}{x+2}}, \ldots$ all algebraically independent
The σ-Galois group equals \mathbb{G}_{m} :
$G(\mathbb{C})=\{\gamma: F(y, \sigma(y), \ldots) \rightarrow F(y, \sigma(y), \ldots) F$-autom. $\mid \gamma$ commutes with $\delta, \sigma\}$

The multiplicative group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=y \tag{1}
\end{equation*}
$$

Solution $y=e^{x}$ satisfies $\sigma(y)=e y$,
The σ-Galois group is the constant subgroup of \mathbb{G}_{m} :

$$
\begin{aligned}
G(\mathbb{C}) & =\left\{\gamma: F(y) \rightarrow F(y) \text { autom. }|\gamma|_{F}=\mathrm{id}, \gamma \text { commutes with } \delta, \sigma\right\} \\
& =\left\{\gamma: F(y) \rightarrow F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma(c)=c\right\}
\end{aligned}
$$

$$
\begin{equation*}
\delta(y)=-\frac{1}{x^{2}} y \tag{2}
\end{equation*}
$$

Solution $y=e^{\frac{1}{x}}$ with $\sigma(y)=e^{\frac{1}{x+1}}, \sigma^{2}(y)=e^{\frac{1}{x+2}}, \ldots$ all algebraically independent
The σ-Galois group equals \mathbb{G}_{m} :

$$
\begin{aligned}
G(\mathbb{C}) & =\{\gamma: F(y, \sigma(y), \ldots) \rightarrow F(y, \sigma(y), \ldots) F \text {-autom. } \mid \gamma \text { commutes with } \delta, \sigma\} \\
& =\left\{\gamma: F(y, \sigma(y), \ldots) \rightarrow F(y, \sigma(y), \ldots), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}\right\}
\end{aligned}
$$

The multiplicative group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=y \tag{1}
\end{equation*}
$$

Solution $y=e^{x}$ satisfies $\sigma(y)=e y$,
The σ-Galois group is the constant subgroup of \mathbb{G}_{m} :

$$
\begin{aligned}
G(\mathbb{C}) & =\left\{\gamma: F(y) \rightarrow F(y) \text { autom. }|\gamma|_{F}=\mathrm{id}, \gamma \text { commutes with } \delta, \sigma\right\} \\
& =\left\{\gamma: F(y) \rightarrow F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma(c)=c\right\}
\end{aligned}
$$

$$
\begin{equation*}
\delta(y)=-\frac{1}{x^{2}} y \tag{2}
\end{equation*}
$$

Solution $y=e^{\frac{1}{x}}$ with $\sigma(y)=e^{\frac{1}{x+1}}, \sigma^{2}(y)=e^{\frac{1}{x+2}}, \ldots$ all algebraically independent
The σ-Galois group equals \mathbb{G}_{m} :

$$
\begin{aligned}
G(\mathbb{C}) & =\{\gamma: F(y, \sigma(y), \ldots) \rightarrow F(y, \sigma(y), \ldots) F \text {-autom. } \mid \gamma \text { commutes with } \delta, \sigma\} \\
& =\left\{\gamma: F(y, \sigma(y), \ldots) \rightarrow F(y, \sigma(y), \ldots), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}\right\} \\
& \cong \mathbb{G}_{m}(\mathbb{C})
\end{aligned}
$$

The multiplicative group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=\frac{1}{2 x} y \tag{3}
\end{equation*}
$$

Solution $y=\sqrt{x}$

The multiplicative group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=\frac{1}{2 x} y \tag{3}
\end{equation*}
$$

Solution $y=\sqrt{x}$ with $\sigma(y)=\sqrt{x+1}, \sigma^{2}(y)=\sqrt{x+2}, \ldots$
has the following property:

The multiplicative group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=\frac{1}{2 x} y \tag{3}
\end{equation*}
$$

Solution $y=\sqrt{x}$ with $\sigma(y)=\sqrt{x+1}, \sigma^{2}(y)=\sqrt{x+2}, \ldots$
has the following property: $\sigma^{i}(y)$ is of degree 2 over $F\left(y, \sigma(y), \ldots, \sigma^{i-1}(y)\right)$ for all i.

The multiplicative group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=\frac{1}{2 x} y \tag{3}
\end{equation*}
$$

Solution $y=\sqrt{x}$ with $\sigma(y)=\sqrt{x+1}, \sigma^{2}(y)=\sqrt{x+2}, \ldots$
has the following property: $\sigma^{i}(y)$ is of degree 2 over $F\left(y, \sigma(y), \ldots, \sigma^{i-1}(y)\right)$ for all i.
The σ-Galois group is the finite group of oder 2 interpreted as a difference algebraic group:

The multiplicative group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=\frac{1}{2 x} y \tag{3}
\end{equation*}
$$

Solution $y=\sqrt{x}$ with $\sigma(y)=\sqrt{x+1}, \sigma^{2}(y)=\sqrt{x+2}, \ldots$
has the following property: $\sigma^{i}(y)$ is of degree 2 over $F\left(y, \sigma(y), \ldots, \sigma^{i-1}(y)\right)$ for all i.
The σ-Galois group is the finite group of oder 2 interpreted as a difference algebraic group:

$$
\begin{aligned}
G(\mathbb{C}) & =\{\gamma: F(y, \sigma(y), \ldots) \rightarrow F(y, \sigma(y), \ldots) F \text {-autom. } \mid \gamma \text { commutes with } \delta, \sigma\} \\
& =\left\{\gamma: F(y, \sigma(y), \ldots) \rightarrow F(y, \sigma(y), \ldots), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, c^{2}=1\right\}
\end{aligned}
$$

The inverse problem

Inverse Problem: Which difference algebraic groups over \mathbb{C} are difference Galois groups of some differential equation over \mathbb{C} ?

Examples:

- the subgroup of \mathbb{G}_{m} defined by the equation $\sigma^{2}(x) \sigma(x)^{-2} x=1$.
- constant subgroup of \mathbb{G}_{m}
- $\mathbb{G}_{m}, \mathbb{G}_{a}$ and finite cyclic groups interpreted as difference algebraic groups
- but no proper, non-trivial subgroup of \mathbb{G}_{a} !
- no constant points of finite cyclic groups!

The additive group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=\frac{1}{x} \tag{4}
\end{equation*}
$$

Solution $y=\log (x)$

The additive group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=\frac{1}{x} \tag{4}
\end{equation*}
$$

Solution $y=\log (x)$ with $\sigma(y)=\log (x+1), \sigma^{2}(y)=\log (x+2), \ldots$ all algebr. indep.

The additive group

Base field $F=\mathbb{C}(x), \quad \delta=\frac{\delta}{\delta x}$

$$
\begin{equation*}
\delta(y)=\frac{1}{x} \tag{4}
\end{equation*}
$$

Solution $y=\log (x)$ with $\sigma(y)=\log (x+1), \sigma^{2}(y)=\log (x+2), \ldots$ all algebr. indep. The σ-Picard-Vessiot extension $E=F\left(y, \sigma(y), \sigma^{2}(y), \ldots\right)$ has σ-Galois group \mathbb{G}_{a}.

The additive group

Claim: No non-trivial proper subgroup of \mathbb{G}_{a} is a σ-Galois group over $\mathbb{C}(x)$

The additive group

Claim: No non-trivial proper subgroup of \mathbb{G}_{a} is a σ-Galois group over $\mathbb{C}(x)$

Corollary: Let \mathcal{G} be a unipotent linear algebraic group over \mathbb{C} and let G be its constant subgroup. Then G is not a σ-Galois group over $\mathbb{C}(x)$.

The additive group

Claim: No non-trivial proper subgroup of \mathbb{G}_{a} is a σ-Galois group over $\mathbb{C}(x)$

Sketch of proof: Let $E / \mathbb{C}(x)$ be a σ-Picard-Vessiot extension with group $G \lesseqgtr \mathbb{G}_{a}$.

The additive group

Claim: No non-trivial proper subgroup of \mathbb{G}_{a} is a σ-Galois group over $\mathbb{C}(x)$

Sketch of proof: Let $E / \mathbb{C}(x)$ be a σ-Picard-Vessiot extension with group $G \lesseqgtr \mathbb{G}_{a}$. Step 1: There exists a $y \in E$ with $E=F(y, \sigma(y), \ldots)$ and $\delta(y) \in \mathbb{C}(x)$.

The additive group

Claim: No non-trivial proper subgroup of \mathbb{G}_{a} is a σ-Galois group over $\mathbb{C}(x)$

Sketch of proof: Let $E / \mathbb{C}(x)$ be a σ-Picard-Vessiot extension with group $G \lesseqgtr \mathbb{G}_{a}$.
Step 1: There exists a $y \in E$ with $E=F(y, \sigma(y), \ldots)$ and $\delta(y) \in \mathbb{C}(x)$.
Step 2: There exists an $n \in \mathbb{N}$ such that $y, \sigma(y), \ldots, \sigma^{n}(y)$ are algebraically dependent.

The additive group

Claim: No non-trivial proper subgroup of \mathbb{G}_{a} is a σ-Galois group over $\mathbb{C}(x)$

Sketch of proof: Let $E / \mathbb{C}(x)$ be a σ-Picard-Vessiot extension with group $G \lesseqgtr \mathbb{G}_{a}$.
Step 1: There exists a $y \in E$ with $E=F(y, \sigma(y), \ldots)$ and $\delta(y) \in \mathbb{C}(x)$.
Step 2: There exists an $n \in \mathbb{N}$ such that $y, \sigma(y), \ldots, \sigma^{n}(y)$ are algebraically dependent.
Step 3: Write $a=\delta(y) \in \mathbb{C}(x)$, wlog: $a=\sum_{j=1}^{r} \frac{\alpha_{j}}{x+\beta_{j}}$

The additive group

Claim: No non-trivial proper subgroup of \mathbb{G}_{a} is a σ-Galois group over $\mathbb{C}(x)$

Sketch of proof: Let $E / \mathbb{C}(x)$ be a σ-Picard-Vessiot extension with group $G \lesseqgtr \mathbb{G}_{a}$.
Step 1: There exists a $y \in E$ with $E=F(y, \sigma(y), \ldots)$ and $\delta(y) \in \mathbb{C}(x)$.
Step 2: There exists an $n \in \mathbb{N}$ such that $y, \sigma(y), \ldots, \sigma^{n}(y)$ are algebraically dependent.
Step 3: Write $a=\delta(y) \in \mathbb{C}(x)$, wlog: $a=\sum_{j=1}^{r} \frac{\alpha_{j}}{x+\beta_{j}}$
Note that $\delta\left(\sigma^{l}(y)\right)=\sigma^{l}(a)$

The additive group

Claim: No non-trivial proper subgroup of \mathbb{G}_{a} is a σ-Galois group over $\mathbb{C}(x)$

Sketch of proof: Let $E / \mathbb{C}(x)$ be a σ-Picard-Vessiot extension with group $G \lesseqgtr \mathbb{G}_{a}$.
Step 1: There exists a $y \in E$ with $E=F(y, \sigma(y), \ldots)$ and $\delta(y) \in \mathbb{C}(x)$.
Step 2: There exists an $n \in \mathbb{N}$ such that $y, \sigma(y), \ldots, \sigma^{n}(y)$ are algebraically dependent.
Step 3: Write $a=\delta(y) \in \mathbb{C}(x)$, wlog: $a=\sum_{j=1}^{r} \frac{\alpha_{j}}{x+\beta_{j}}$
Note that $\delta\left(\sigma^{l}(y)\right)=\sigma^{l}(a)=\sum_{j=1}^{r} \frac{\alpha_{j}}{x+l+\beta_{j}}$ for all $l \in \mathbb{N}$.

The additive group

Claim: No non-trivial proper subgroup of \mathbb{G}_{a} is a σ-Galois group over $\mathbb{C}(x)$
Sketch of proof: Let $E / \mathbb{C}(x)$ be a σ-Picard-Vessiot extension with group $G \lesseqgtr \mathbb{G}_{a}$.
Step 1: There exists a $y \in E$ with $E=F(y, \sigma(y), \ldots)$ and $\delta(y) \in \mathbb{C}(x)$.
Step 2: There exists an $n \in \mathbb{N}$ such that $y, \sigma(y), \ldots, \sigma^{n}(y)$ are algebraically dependent.
Step 3: Write $a=\delta(y) \in \mathbb{C}(x)$, wlog: $a=\sum_{j=1}^{r} \frac{\alpha_{j}}{x+\beta_{j}}$
Note that $\delta\left(\sigma^{l}(y)\right)=\sigma^{l}(a)=\sum_{j=1}^{r} \frac{\alpha_{j}}{x+l+\beta_{j}}$ for all $l \in \mathbb{N}$.
Step 4: The theorem of Kolchin-Ostrowski implies that there exists a non-zero vector $\left(c_{0}, \ldots, c_{n}\right) \in \mathbb{C}^{n+1}$ with $\sum_{l=0}^{n} c_{l} \sigma^{l}(y) \in \mathbb{C}(x)$.

The additive group

Claim: No non-trivial proper subgroup of \mathbb{G}_{a} is a σ-Galois group over $\mathbb{C}(x)$

Sketch of proof: Let $E / \mathbb{C}(x)$ be a σ-Picard-Vessiot extension with group $G \lesseqgtr \mathbb{G}_{a}$.
Step 1: There exists a $y \in E$ with $E=F(y, \sigma(y), \ldots)$ and $\delta(y) \in \mathbb{C}(x)$.
Step 2: There exists an $n \in \mathbb{N}$ such that $y, \sigma(y), \ldots, \sigma^{n}(y)$ are algebraically dependent.
Step 3: Write $a=\delta(y) \in \mathbb{C}(x)$, wlog: $a=\sum_{j=1}^{r} \frac{\alpha_{j}}{x+\beta_{j}}$
Note that $\delta\left(\sigma^{l}(y)\right)=\sigma^{l}(a)=\sum_{j=1}^{r} \frac{\alpha_{j}}{x+l+\beta_{j}}$ for all $l \in \mathbb{N}$.
Step 4: The theorem of Kolchin-Ostrowski implies that there exists a non-zero vector $\left(c_{0}, \ldots, c_{n}\right) \in \mathbb{C}^{n+1}$ with $\sum_{l=0}^{n} c_{l} \sigma^{l}(y) \in \mathbb{C}(x)$. After differentiating, we obtain that

$$
\sum_{l=0}^{n} \sum_{j=1}^{r} \frac{c_{l} \alpha_{j}}{x+l+\beta_{j}}
$$

has an antiderivative in $\mathbb{C}(x)$ and is thus zero, but the terms do not cancel unless $a=0$.

A necessary criterion

Theorem

If G is a σ-Galois group over $\mathbb{C}(x)$ with derivation $\delta=\frac{d}{d x}$ and endomorphism σ given by $\sigma(f(x))=f(x+1)$, then G is σ-reduced and σ-connected.

A necessary criterion

Theorem

If G is a σ-Galois group over $\mathbb{C}(x)$ with derivation $\delta=\frac{d}{d x}$ and endomorphism σ given by $\sigma(f(x))=f(x+1)$, then G is σ-reduced and σ-connected.

Examples:

- Linear algebraic groups (interpreted as difference-algebraic groups) are always σ-connected.

A necessary criterion

Theorem

If G is a σ-Galois group over $\mathbb{C}(x)$ with derivation $\delta=\frac{d}{d x}$ and endomorphism σ given by $\sigma(f(x))=f(x+1)$, then G is σ-reduced and σ-connected.

Examples:

- Linear algebraic groups (interpreted as difference-algebraic groups) are always σ-connected.
- All subgroups of \mathbb{G}_{a} are σ-connected.

A necessary criterion

Theorem

If G is a σ-Galois group over $\mathbb{C}(x)$ with derivation $\delta=\frac{d}{d x}$ and endomorphism σ given by $\sigma(f(x))=f(x+1)$, then G is σ-reduced and σ-connected.

Examples:

- Linear algebraic groups (interpreted as difference-algebraic groups) are always σ-connected.
- All subgroups of \mathbb{G}_{a} are σ-connected.
- The constant subgroup of a finite cyclic group is not σ-connected.

A necessary criterion

Theorem

If G is a σ-Galois group over $\mathbb{C}(x)$ with derivation $\delta=\frac{d}{d x}$ and endomorphism σ given by $\sigma(f(x))=f(x+1)$, then G is σ-reduced and σ-connected.

Examples:

- Linear algebraic groups (interpreted as difference-algebraic groups) are always σ-connected.
- All subgroups of \mathbb{G}_{a} are σ-connected.
- The constant subgroup of a finite cyclic group is not σ-connected.
- A subgroup of \mathbb{G}_{a} given by the equation $a_{0} x+a_{1} \sigma(x)+\cdots+a_{r} \sigma^{r}(x)=0$ is σ-reduced if and only if $a_{0} \neq 0$.

A necessary criterion

Theorem

If G is a σ-Galois group over $\mathbb{C}(x)$ with derivation $\delta=\frac{d}{d x}$ and endomorphism σ given by $\sigma(f(x))=f(x+1)$, then G is σ-reduced and σ-connected.

Examples:

- Linear algebraic groups (interpreted as difference-algebraic groups) are always σ-connected.
- All subgroups of \mathbb{G}_{a} are σ-connected.
- The constant subgroup of a finite cyclic group is not σ-connected.
- A subgroup of \mathbb{G}_{a} given by the equation $a_{0} x+a_{1} \sigma(x)+\cdots+a_{r} \sigma^{r}(x)=0$ is σ-reduced if and only if $a_{0} \neq 0$.

The criterion in the theorem above is far from sufficient!

Main result

Theorem (B., Wibmer)
Let \mathcal{G} be a linear algebraic group over \mathbb{C} and interpret it as a difference-algebraic group G over \mathbb{C}. Then there exists a σ-Picard-Vessiot extension over $\mathbb{C}(x)$ with σ-Galois group G.

Algebraic Patching

A diamond of fields

Algebraic Patching

A diamond of fields

is called a diamond of fields with the factorization property if the following holds:

Algebraic Patching

A diamond of fields

is called a diamond of fields with the factorization property if the following holds:

1. Intersection: $F_{1} \cap F_{2}=F$,

Algebraic Patching

A diamond of fields

is called a diamond of fields with the factorization property if the following holds:

1. Intersection: $F_{1} \cap F_{2}=F$, and
2. Factorization: $\forall n \in \mathbb{N} \forall A_{0} \in \mathrm{GL}_{n}\left(F_{0}\right) \exists A_{i} \in \mathrm{GL}_{n}\left(F_{i}\right): A_{0}=A_{1} A_{2}$

Algebraic Patching

A diamond of fields

is called a diamond of fields with the factorization property if the following holds:

1. Intersection: $F_{1} \cap F_{2}=F$, and
2. Factorization: $\forall n \in \mathbb{N} \forall A_{0} \in \mathrm{GL}_{n}\left(F_{0}\right) \exists A_{i} \in \mathrm{GL}_{n}\left(F_{i}\right): A_{0}=A_{1} A_{2}$

Fact: Let U_{1}, U_{2} be open, connected proper subsets of the Riemann sphere $\mathcal{X}=\mathbb{P}_{\mathbb{C}}^{1}$ such that

- $U_{0}:=U_{1} \cap U_{2}$ is connected and
- $U_{1} \cup U_{2}=\mathcal{X}$.

Let F_{i} be the field of meromorphic functions on U_{i}. Then $\left(F, F_{1}, F_{2}, F_{0}\right)$ is a diamond with the factorization property, where $F=\mathbb{C}(x)$ is the field of meromorphic functions on \mathcal{X}.

Algebraic Patching

Example:

$$
\begin{aligned}
U_{1} & =\left\{x \in \mathbb{P}_{\mathbb{C}}^{1}| | x \mid<2\right\} \\
U_{2} & =\left\{x \in \mathbb{P}_{\mathbb{C}}^{1}| | x \mid>1\right\} \\
U_{0} & =\left\{x \in \mathbb{P}_{\mathbb{C}}^{1}|1<|x|<2\}\right.
\end{aligned}
$$

Patching σ-Picard Vessiot extensions

Patching σ-Picard Vessiot extensions

Let $G=\left\langle H_{1}, H_{2}\right\rangle$ be a σ-algebraic group with generating (closed) subgroups H_{1} and H_{2}.

Patching σ-Picard Vessiot extensions

Let $G=\left\langle H_{1}, H_{2}\right\rangle$ be a σ-algebraic group with generating (closed) subgroups H_{1} and H_{2}. Consider a diamond with the factorization property (F, F_{1}, F_{2}, F_{0}) such that

Patching σ-Picard Vessiot extensions

Let $G=\left\langle H_{1}, H_{2}\right\rangle$ be a σ-algebraic group with generating (closed) subgroups H_{1} and H_{2}. Consider a diamond with the factorization property (F, F_{1}, F_{2}, F_{0}) such that

- all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_{0}^{\delta}=F^{\delta}$

Patching σ-Picard Vessiot extensions

Let $G=\left\langle H_{1}, H_{2}\right\rangle$ be a σ-algebraic group with generating (closed) subgroups H_{1} and H_{2}. Consider a diamond with the factorization property (F, F_{1}, F_{2}, F_{0}) such that

- all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_{0}^{\delta}=F^{\delta}$
- there exist σ-Picard-Vessiot extensions E_{1} / F_{1} and E_{2} / F_{2} with σ-Galois groups isomorphic to H_{1} and H_{2}, resp.

Patching σ-Picard Vessiot extensions

Let $G=\left\langle H_{1}, H_{2}\right\rangle$ be a σ-algebraic group with generating (closed) subgroups H_{1} and H_{2}. Consider a diamond with the factorization property (F, F_{1}, F_{2}, F_{0}) such that

- all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_{0}^{\delta}=F^{\delta}$
- there exist σ-Picard-Vessiot extensions E_{1} / F_{1} and E_{2} / F_{2} with σ-Galois groups isomorphic to H_{1} and H_{2}, resp. and
- $E_{1} \subseteq F_{0}$ and $E_{2} \subseteq F_{0}$.

Patching σ-Picard Vessiot extensions

Let $G=\left\langle H_{1}, H_{2}\right\rangle$ be a σ-algebraic group with generating (closed) subgroups H_{1} and H_{2}. Consider a diamond with the factorization property (F, F_{1}, F_{2}, F_{0}) such that

- all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_{0}^{\delta}=F^{\delta}$
- there exist σ-Picard-Vessiot extensions E_{1} / F_{1} and E_{2} / F_{2} with σ-Galois groups isomorphic to H_{1} and H_{2}, resp. and
- $E_{1} \subseteq F_{0}$ and $E_{2} \subseteq F_{0}$.

Then there exists a σ-Picard-Vessiot extension E / F with σ-Galois group G and $E \subseteq F_{0}$.

Patching σ-Picard Vessiot extensions

Let $G=\left\langle H_{1}, H_{2}\right\rangle$ be a σ-algebraic group with generating (closed) subgroups H_{1} and H_{2}. Consider a diamond with the factorization property $\left(F, F_{1}, F_{2}, F_{0}\right)$ such that

- all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_{0}^{\delta}=F^{\delta}$
- there exist σ-Picard-Vessiot extensions E_{1} / F_{1} and E_{2} / F_{2} with σ-Galois groups isomorphic to H_{1} and H_{2}, resp.and
- $E_{1} \subseteq F_{0}$ and $E_{2} \subseteq F_{0}$.

Then there exists a σ-Picard-Vessiot extension E / F with σ-Galois group G and $E \subseteq F_{0}$.

Patching σ-Picard Vessiot extensions

Let $G=\left\langle H_{1}, H_{2}\right\rangle$ be a σ-algebraic group with generating (closed) subgroups H_{1} and H_{2}. Consider a diamond with the factorization property (F, F_{1}, F_{2}, F_{0}) such that

- all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_{0}^{\delta}=F^{\delta}$
- there exist σ-Picard-Vessiot extensions E_{1} / F_{1} and E_{2} / F_{2} with σ-Galois groups isomorphic to H_{1} and H_{2}, resp.and
- $E_{1} \subseteq F_{0}$ and $E_{2} \subseteq F_{0}$.

Then there exists a σ-Picard-Vessiot extension E / F with σ-Galois group G and $E \subseteq F_{0}$.

Sketch of proof:

First step: Choose $n \in \mathbb{N}$ with $G \leq \mathrm{GL}_{n}$ and show that there exist fundamental solution matrices $Y_{1} \in \mathrm{GL}_{n}\left(E_{1}\right), Y_{2} \in \mathrm{GL}_{n}\left(E_{2}\right)$ (i.e., adjust representations).

Patching σ-Picard Vessiot extensions

Let $G=\left\langle H_{1}, H_{2}\right\rangle$ be a σ-algebraic group with generating (closed) subgroups H_{1} and H_{2}. Consider a diamond with the factorization property (F, F_{1}, F_{2}, F_{0}) such that

- all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_{0}^{\delta}=F^{\delta}$
- there exist σ-Picard-Vessiot extensions E_{1} / F_{1} and E_{2} / F_{2} with σ-Galois groups isomorphic to H_{1} and H_{2}, resp.and
- $E_{1} \subseteq F_{0}$ and $E_{2} \subseteq F_{0}$.

Then there exists a σ-Picard-Vessiot extension E / F with σ-Galois group G and $E \subseteq F_{0}$.

Sketch of proof:

First step: Choose $n \in \mathbb{N}$ with $G \leq \mathrm{GL}_{n}$ and show that there exist fundamental solution matrices $Y_{1} \in \mathrm{GL}_{n}\left(E_{1}\right), Y_{2} \in \mathrm{GL}_{n}\left(E_{2}\right)$ (i.e., adjust representations).
Second step: Consider $Y_{0}=Y_{1} Y_{2}^{-1} \in \mathrm{GL}_{n}\left(F_{0}\right)$. The factorization property yields matrices $B_{1} \in \mathrm{GL}_{n}\left(F_{1}\right), B_{2} \in \mathrm{GL}_{n}\left(F_{2}\right)$ with $Y_{0}=B_{1} B_{2}^{-1}$.

Patching σ-Picard Vessiot extensions

Let $G=\left\langle H_{1}, H_{2}\right\rangle$ be a σ-algebraic group with generating (closed) subgroups H_{1} and H_{2}. Consider a diamond with the factorization property (F, F_{1}, F_{2}, F_{0}) such that

- all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_{0}^{\delta}=F^{\delta}$
- there exist σ-Picard-Vessiot extensions E_{1} / F_{1} and E_{2} / F_{2} with σ-Galois groups isomorphic to H_{1} and H_{2}, resp.and
- $E_{1} \subseteq F_{0}$ and $E_{2} \subseteq F_{0}$.

Then there exists a σ-Picard-Vessiot extension E / F with σ-Galois group G and $E \subseteq F_{0}$.

Sketch of proof:

First step: Choose $n \in \mathbb{N}$ with $G \leq \mathrm{GL}_{n}$ and show that there exist fundamental solution matrices $Y_{1} \in \mathrm{GL}_{n}\left(E_{1}\right), Y_{2} \in \mathrm{GL}_{n}\left(E_{2}\right)$ (i.e., adjust representations).
Second step: Consider $Y_{0}=Y_{1} Y_{2}^{-1} \in \mathrm{GL}_{n}\left(F_{0}\right)$. The factorization property yields matrices $B_{1} \in \mathrm{GL}_{n}\left(F_{1}\right), B_{2} \in \mathrm{GL}_{n}\left(F_{2}\right)$ with $Y_{0}=B_{1} B_{2}^{-1}$. The intersection property implies that $Y:=B_{1} Y_{1}=B_{2} Y_{2}$ solves a differential equation over F.

Patching σ-Picard Vessiot extensions

Let $G=\left\langle H_{1}, H_{2}\right\rangle$ be a σ-algebraic group with generating (closed) subgroups H_{1} and H_{2}. Consider a diamond with the factorization property (F, F_{1}, F_{2}, F_{0}) such that

- all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_{0}^{\delta}=F^{\delta}$
- there exist σ-Picard-Vessiot extensions E_{1} / F_{1} and E_{2} / F_{2} with σ-Galois groups isomorphic to H_{1} and H_{2}, resp.and
- $E_{1} \subseteq F_{0}$ and $E_{2} \subseteq F_{0}$.

Then there exists a σ-Picard-Vessiot extension E / F with σ-Galois group G and $E \subseteq F_{0}$.

Sketch of proof:

First step: Choose $n \in \mathbb{N}$ with $G \leq \mathrm{GL}_{n}$ and show that there exist fundamental solution matrices $Y_{1} \in \mathrm{GL}_{n}\left(E_{1}\right), Y_{2} \in \mathrm{GL}_{n}\left(E_{2}\right)$ (i.e., adjust representations).
Second step: Consider $Y_{0}=Y_{1} Y_{2}^{-1} \in \mathrm{GL}_{n}\left(F_{0}\right)$. The factorization property yields matrices $B_{1} \in \mathrm{GL}_{n}\left(F_{1}\right), B_{2} \in \mathrm{GL}_{n}\left(F_{2}\right)$ with $Y_{0}=B_{1} B_{2}^{-1}$. The intersection property implies that $Y:=B_{1} Y_{1}=B_{2} Y_{2}$ solves a differential equation over F.
Third step: Show that the σ-Picard-Vessiot extension $E=F\left(Y, \sigma(Y), \sigma^{2}(Y), \ldots\right)$ over F has σ-Galois group G.

Generating subgroups

Generating subgroups

Let \mathcal{G} be a linear algebraic group over \mathbb{C}. Then there exist closed subgroups $\mathcal{H}_{1}, \ldots, \mathcal{H}_{r}$ of \mathcal{G} such that

- each \mathcal{H}_{i} is isomorphic to either \mathbb{G}_{a} or \mathbb{G}_{m} or a finite cyclic group and
- \mathcal{G} is generated by $\mathcal{H}_{1}, \ldots, \mathcal{H}_{r}$ in the following strong sense: the multiplication map $\mathcal{H}_{1} \times \cdots \times \mathcal{H}_{r} \rightarrow \mathcal{G}$ is surjective

Generating subgroups

Let \mathcal{G} be a linear algebraic group over \mathbb{C}. Then there exist closed subgroups $\mathcal{H}_{1}, \ldots, \mathcal{H}_{r}$ of \mathcal{G} such that

- each \mathcal{H}_{i} is isomorphic to either \mathbb{G}_{a} or \mathbb{G}_{m} or a finite cyclic group and
- \mathcal{G} is generated by $\mathcal{H}_{1}, \ldots, \mathcal{H}_{r}$ in the following strong sense: the multiplication map $\mathcal{H}_{1} \times \cdots \times \mathcal{H}_{r} \rightarrow \mathcal{G}$ is surjective

Now interpret \mathcal{G} as a difference algebraic group G and similarly $\mathcal{H}_{1}, \ldots, \mathcal{H}_{r}$ as difference algebraic groups H_{1}, \ldots, H_{r}.

Corollary: G is generated as a difference algebraic group by H_{1}, \ldots, H_{r}.

Strategy to realize a given $G=\left\langle H_{1}, \ldots, H_{m}\right\rangle$ as a σ-Galois group

Strategy to realize a given $G=\left\langle H_{1}, \ldots, H_{m}\right\rangle$ as a σ-Galois group
Step 1:

- Choose suitable diamond of fields (F, F_{1}, F_{2}, F_{0}) with the factorization property.

Strategy to realize a given $G=\left\langle H_{1}, \ldots, H_{m}\right\rangle$ as a σ-Galois group

Step 1:

- Choose suitable diamond of fields $\left(F, F_{1}, F_{2}, F_{0}\right)$ with the factorization property.
- Construct σ-Picard-Vessiot extensions E_{1} / F_{1} with σ-Galois group H_{1} and $E_{1} \subseteq F_{0}$ and E_{2} / F_{2} with σ-Galois group H_{2} and $E_{2} \subseteq F_{0}$.

Strategy to realize a given $G=\left\langle H_{1}, \ldots, H_{m}\right\rangle$ as a σ-Galois group

Step 1:

- Choose suitable diamond of fields $\left(F, F_{1}, F_{2}, F_{0}\right)$ with the factorization property.
- Construct σ-Picard-Vessiot extensions E_{1} / F_{1} with σ-Galois group H_{1} and $E_{1} \subseteq F_{0}$ and E_{2} / F_{2} with σ-Galois group H_{2} and $E_{2} \subseteq F_{0}$.
- Obtain a σ-Picard-Vessiot extension E / F with σ-Galois group $\left\langle H_{1}, H_{2}\right\rangle$ and $E \subseteq F_{0}$.

Strategy to realize a given $G=\left\langle H_{1}, \ldots, H_{m}\right\rangle$ as a σ-Galois group

Step 1:

- Choose suitable diamond of fields $\left(F, F_{1}, F_{2}, F_{0}\right)$ with the factorization property.
- Construct σ-Picard-Vessiot extensions E_{1} / F_{1} with σ-Galois group H_{1} and $E_{1} \subseteq F_{0}$ and E_{2} / F_{2} with σ-Galois group H_{2} and $E_{2} \subseteq F_{0}$.
- Obtain a σ-Picard-Vessiot extension E / F with σ-Galois group $\left\langle H_{1}, H_{2}\right\rangle$ and $E \subseteq F_{0}$.

Step 2:

- Choose new diamond of fields $\left(F, \tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{0}\right)$ with the factorization property such that $F_{0}=\tilde{F}_{1}$.

Strategy to realize a given $G=\left\langle H_{1}, \ldots, H_{m}\right\rangle$ as a σ-Galois group

Step 1:

- Choose suitable diamond of fields $\left(F, F_{1}, F_{2}, F_{0}\right)$ with the factorization property.
- Construct σ-Picard-Vessiot extensions E_{1} / F_{1} with σ-Galois group H_{1} and $E_{1} \subseteq F_{0}$ and E_{2} / F_{2} with σ-Galois group H_{2} and $E_{2} \subseteq F_{0}$.
- Obtain a σ-Picard-Vessiot extension E / F with σ-Galois group $\left\langle H_{1}, H_{2}\right\rangle$ and $E \subseteq F_{0}$.

Step 2:

- Choose new diamond of fields $\left(F, \tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{0}\right)$ with the factorization property such that $F_{0}=\tilde{F}_{1}$.
- Then $E / \underset{\tilde{F}}{F}$ lifts to a σ-Picard-Vessiot extension $\tilde{E}_{2}:=E \tilde{F}_{2}$ with σ-Galois group $\left\langle H_{1}, H_{2}\right\rangle$ and $\tilde{E}_{2} \subseteq \tilde{F}_{0}$.
- Construct σ-Picard-Vessiot extensions $\tilde{E}_{1} / \tilde{F}_{1}$ with σ-Galois group H_{3} and $\tilde{E}_{1} \subseteq \tilde{F}_{0}$
- Obtain a σ-Picard-Vessiot extension \tilde{E} / F with σ-Galois group $\left\langle H_{1}, H_{2}, H_{3}\right\rangle$ and $\tilde{E} \subseteq \tilde{F}_{0}$.

Strategy to realize a given $G=\left\langle H_{1}, \ldots, H_{m}\right\rangle$ as a σ-Galois group

Step 1:

- Choose suitable diamond of fields $\left(F, F_{1}, F_{2}, F_{0}\right)$ with the factorization property.
- Construct σ-Picard-Vessiot extensions E_{1} / F_{1} with σ-Galois group H_{1} and $E_{1} \subseteq F_{0}$ and E_{2} / F_{2} with σ-Galois group H_{2} and $E_{2} \subseteq F_{0}$.
- Obtain a σ-Picard-Vessiot extension E / F with σ-Galois group $\left\langle H_{1}, H_{2}\right\rangle$ and $E \subseteq F_{0}$.

Step 2:

- Choose new diamond of fields $\left(F, \tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{0}\right)$ with the factorization property such that $F_{0}=\tilde{F}_{1}$.
- Then $E / \underset{\tilde{F}}{F}$ lifts to a σ-Picard-Vessiot extension $\tilde{E}_{2}:=E \tilde{F}_{2}$ with σ-Galois group $\left\langle H_{1}, H_{2}\right\rangle$ and $\tilde{E}_{2} \subseteq \tilde{F}_{0}$.
- Construct σ-Picard-Vessiot extensions $\tilde{E}_{1} / \tilde{F}_{1}$ with σ-Galois group H_{3} and $\tilde{E}_{1} \subseteq \tilde{F}_{0}$
- Obtain a σ-Picard-Vessiot extension \tilde{E} / F with σ-Galois group $\left\langle H_{1}, H_{2}, H_{3}\right\rangle$ and $\tilde{E} \subseteq \tilde{F}_{0}$.

Continue inductively.

Suitable diamonds over $F=\mathbb{C}(x)$, first try

Suitable diamonds over $F=\mathbb{C}(x)$, first try

We need to find diamonds (F, F_{1}, F_{2}, F_{0}) with the factorization property such that all fields are equipped compatibly with extensions of $\delta=d / d x$ and σ from $F=\mathbb{C}(x)$ to F_{i} and $F_{i}^{\delta}=\mathbb{C}$ for all i.

Suitable diamonds over $F=\mathbb{C}(x)$, first try

We need to find diamonds (F, F_{1}, F_{2}, F_{0}) with the factorization property such that all fields are equipped compatibly with extensions of $\delta=d / d x$ and σ from $F=\mathbb{C}(x)$ to F_{i} and $F_{i}^{\delta}=\mathbb{C}$ for all i.

Try to find $U_{1}, U_{2} \subsetneq \mathbb{P}_{\mathbb{C}}^{1}$ open, connected such that

- $U_{1} \cup U_{2}=\mathbb{P}_{\mathbb{C}}^{1}$
- $U_{0}:=U_{1} \cap U_{2}$ is connected

Suitable diamonds over $F=\mathbb{C}(x)$, first try

We need to find diamonds (F, F_{1}, F_{2}, F_{0}) with the factorization property such that all fields are equipped compatibly with extensions of $\delta=d / d x$ and σ from $F=\mathbb{C}(x)$ to F_{i} and $F_{i}^{\delta}=\mathbb{C}$ for all i.

Try to find $U_{1}, U_{2} \subsetneq \mathbb{P}_{\mathbb{C}}^{1}$ open, connected such that

- $U_{1} \cup U_{2}=\mathbb{P}_{\mathbb{C}}^{1}$
- $U_{0}:=U_{1} \cap U_{2}$ is connected
- U_{1} and U_{2} are stable under the shift operator σ

Let F_{i} denote the field of meromorphic functions on U_{i}.

Suitable diamonds over $F=\mathbb{C}(x)$, first try

We need to find diamonds (F, F_{1}, F_{2}, F_{0}) with the factorization property such that all fields are equipped compatibly with extensions of $\delta=d / d x$ and σ from $F=\mathbb{C}(x)$ to F_{i} and $F_{i}^{\delta}=\mathbb{C}$ for all i.

Try to find $U_{1}, U_{2} \subsetneq \mathbb{P}_{\mathbb{C}}^{1}$ open, connected such that

- $U_{1} \cup U_{2}=\mathbb{P}_{\mathbb{C}}^{1}$
- $U_{0}:=U_{1} \cap U_{2}$ is connected
- U_{1} and U_{2} are stable under the shift operator σ

Let F_{i} denote the field of meromorphic functions on U_{i}.

Example:

$$
\begin{aligned}
& U_{1}=\{x \in \mathbb{C} \mid \operatorname{Im}(x)>0\} \\
& U_{2}=\{x \in \mathbb{C} \mid \operatorname{Im}(x)<1\} \\
& U_{0}=\{x \in \mathbb{C} \mid 0<\operatorname{Im}(x)<1\}
\end{aligned}
$$

Suitable diamonds over $F=\mathbb{C}(x)$, first try

We need to find diamonds (F, F_{1}, F_{2}, F_{0}) with the factorization property such that all fields are equipped compatibly with extensions of $\delta=d / d x$ and σ from $F=\mathbb{C}(x)$ to F_{i} and $F_{i}^{\delta}=\mathbb{C}$ for all i.

Try to find $U_{1}, U_{2} \subsetneq \mathbb{P}_{\mathbb{C}}^{1}$ open, connected such that

- $U_{1} \cup U_{2}=\mathbb{P}_{\mathbb{C}}^{1}$
- $U_{0}:=U_{1} \cap U_{2}$ is connected
- U_{1} and U_{2} are stable under the shift operator σ

Let F_{i} denote the field of meromorphic functions on U_{i}.

Example:

$$
\begin{aligned}
& U_{1}=\{x \in \mathbb{C} \mid \operatorname{Im}(x)>0\} \\
& U_{2}=\{x \in \mathbb{C} \mid \operatorname{Im}(x)<1\} \\
& U_{0}=\{x \in \mathbb{C} \mid 0<\operatorname{Im}(x)<1\}
\end{aligned}
$$

But these sets don't cover $\mathbb{P}_{\mathbb{C}}^{1}$ and we won't be able to find a connected, σ-invariant \tilde{U}_{2} in the second step with $U_{0} \cup \tilde{U}_{2}=\mathbb{P}_{\mathbb{C}}^{1}$.

Suitable diamonds over $F=\mathbb{C}(x)$

Define $F_{1}=\bigcup_{i \in \mathbb{N}} L_{i}$

$L_{i}=$ meromorphic functions on V_{i}

Suitable diamonds over $F=\mathbb{C}(x)$

Define $F_{1}=\bigcup_{i \in \mathbb{N}} L_{i}$
$L_{i}=$ meromorphic functions on V_{i} Note: F_{1} is σ-invariant, since $L_{1} \xrightarrow{\sigma} L_{2} \xrightarrow{\sigma} L_{3} \rightarrow \ldots$

Suitable diamonds over $F=\mathbb{C}(x)$

Define $F_{1}=\bigcup_{i \in \mathbb{N}} L_{i}$
$L_{i}=$ meromorphic functions on V_{i} Note: F_{1} is σ-invariant, since $L_{1} \xrightarrow{\sigma} L_{2} \xrightarrow{\sigma} L_{3} \rightarrow \ldots$

Define $F_{2}=\bigcup_{i \in \mathbb{N}} K_{i}$
$K_{i}=$ meromorphic functions on W_{i}

Suitable diamonds over $F=\mathbb{C}(x)$

Define $F_{1}=\bigcup_{i \in \mathbb{N}} L_{i}$
$L_{i}=$ meromorphic functions on V_{i} Note: F_{1} is σ-invariant, since $L_{1} \xrightarrow{\sigma} L_{2} \xrightarrow{\sigma} L_{3} \rightarrow \ldots$

Define $F_{2}=\bigcup_{i \in \mathbb{N}} K_{i}$
$K_{i}=$ meromorphic functions on W_{i} Note: F_{2} is σ-invariant, since $K_{1} \xrightarrow{\sigma} K_{2} \xrightarrow{\sigma} K_{3} \rightarrow \ldots$

Suitable diamonds over $F=\mathbb{C}(x)$

Define $F_{1}=\bigcup_{i \in \mathbb{N}} L_{i}$
$L_{i}=$ meromorphic functions on V_{i} Note: F_{1} is σ-invariant, since

$$
L_{1} \xrightarrow{\sigma} L_{2} \xrightarrow{\sigma} L_{3} \rightarrow \ldots
$$

Define $F_{2}=\bigcup_{i \in \mathbb{N}} K_{i}$
$K_{i}=$ meromorphic functions on W_{i} Note: F_{2} is σ-invariant, since $K_{1} \xrightarrow{\sigma} K_{2} \xrightarrow{\sigma} K_{3} \rightarrow \ldots$

Define $F_{0}=\bigcup_{i \in \mathbb{N}} M_{i}$
$M_{i}=$ meromorphic functions on $V_{i} \cap W_{i}$

Suitable diamonds over $F=\mathbb{C}(x)$

Define $F_{1}=\bigcup_{i \in \mathbb{N}} L_{i}$
$L_{i}=$ meromorphic functions on V_{i} Note: F_{1} is σ-invariant, since $L_{1} \xrightarrow{\sigma} L_{2} \xrightarrow{\sigma} L_{3} \rightarrow \ldots$

Define $F_{2}=\bigcup_{i \in \mathbb{N}} K_{i}$
$K_{i}=$ meromorphic functions on W_{i} Note: F_{2} is σ-invariant, since $K_{1} \xrightarrow{\sigma} K_{2} \xrightarrow{\sigma} K_{3} \rightarrow \ldots$

Define $F_{0}=\bigcup_{i \in \mathbb{N}} M_{i}$
$M_{i}=$ meromorphic functions on $V_{i} \cap W_{i}$ Note: F_{0} is σ-invariant, since $M_{1} \xrightarrow{\sigma} M_{2} \xrightarrow{\sigma} M_{3} \rightarrow \ldots$

Suitable diamonds over $F=\mathbb{C}(x)$

Define $F_{1}=\bigcup_{i \in \mathbb{N}} L_{i}$
$L_{i}=$ meromorphic functions on V_{i} Note: F_{1} is σ-invariant, since $L_{1} \xrightarrow{\sigma} L_{2} \xrightarrow{\sigma} L_{3} \rightarrow \ldots$

Define $F_{2}=\bigcup_{i \in \mathbb{N}} K_{i}$
$K_{i}=$ meromorphic functions on W_{i}
Note: F_{2} is σ-invariant, since $K_{1} \xrightarrow{\sigma} K_{2} \xrightarrow{\sigma} K_{3} \rightarrow \ldots$

Define $F_{0}=\bigcup_{i \in \mathbb{N}} M_{i}$
$M_{i}=$ meromorphic functions on $V_{i} \cap W_{i}$ Note: F_{0} is σ-invariant, since $M_{1} \xrightarrow{\sigma} M_{2} \xrightarrow{\sigma} M_{3} \rightarrow \ldots$

For all $i \in \mathbb{N},\left(F, L_{i}, K_{i}, M_{i}\right)$ is a diamond with the factorization property

Suitable diamonds over $F=\mathbb{C}(x)$

Define $F_{1}=\bigcup_{i \in \mathbb{N}} L_{i}$
$L_{i}=$ meromorphic functions on V_{i} Note: F_{1} is σ-invariant, since $L_{1} \xrightarrow{\sigma} L_{2} \xrightarrow{\sigma} L_{3} \rightarrow \ldots$

Define $F_{2}=\bigcup_{i \in \mathbb{N}} K_{i}$
$K_{i}=$ meromorphic functions on W_{i}
Note: F_{2} is σ-invariant, since $K_{1} \xrightarrow{\sigma} K_{2} \xrightarrow{\sigma} K_{3} \rightarrow \ldots$

Define $F_{0}=\bigcup_{i \in \mathbb{N}} M_{i}$
$M_{i}=$ meromorphic functions on $V_{i} \cap W_{i}$
Note: F_{0} is σ-invariant, since
$M_{1} \xrightarrow{\sigma} M_{2} \xrightarrow{\sigma} M_{3} \rightarrow \ldots$

For all $i \in \mathbb{N},\left(F, L_{i}, K_{i}, M_{i}\right)$ is a diamond with the factorization property $\Rightarrow\left(F, F_{1}, F_{2}, F_{0}\right)$ is a diamond with the factorization property

Suitable diamonds over $F=\mathbb{C}(x)$

Define $F_{1}=\bigcup_{i \in \mathbb{N}} L_{i}$
$L_{i}=$ meromorphic functions on V_{i} Note: F_{1} is σ-invariant, since $L_{1} \xrightarrow{\sigma} L_{2} \xrightarrow{\sigma} L_{3} \rightarrow \ldots$

Define $F_{2}=\bigcup_{i \in \mathbb{N}} K_{i}$
$K_{i}=$ meromorphic functions on W_{i}
Note: F_{2} is σ-invariant, since $K_{1} \xrightarrow{\sigma} K_{2} \xrightarrow{\sigma} K_{3} \rightarrow \ldots$

Define $F_{0}=\bigcup_{i \in \mathbb{N}} M_{i}$
$M_{i}=$ meromorphic functions on $V_{i} \cap W_{i}$
Note: F_{0} is σ-invariant, since $M_{1} \xrightarrow{\sigma} M_{2} \xrightarrow{\sigma} M_{3} \rightarrow \ldots$

For all $i \in \mathbb{N},\left(F, L_{i}, K_{i}, M_{i}\right)$ is a diamond with the factorization property $\Rightarrow\left(F, F_{1}, F_{2}, F_{0}\right)$ is a diamond with the factorization property and these fields are equipped compatibly with extensions of σ on $F=\mathbb{C}(x)$.

Suitable diamonds over $F=\mathbb{C}(x)$ in the second induction step

Suitable diamonds over $F=\mathbb{C}(x)$ in the second बंnduction step
Define $\tilde{F}_{1}=\bigcup_{i \in \mathbb{N}} M_{i}$
$M_{i}=$ meromorphic functions on $V_{i} \cap W_{i}$

Suitable diamonds over $F=\mathbb{C}(x)$ in the second aंnduction step

Define $\tilde{F}_{1}=\bigcup_{i \in \mathbb{N}} M_{i}$
$M_{i}=$ meromorphic functions on $V_{i} \cap W_{i}$

Define $\tilde{F}_{2}=\bigcup_{i \in \mathbb{N}} N_{i}$
$N_{i}=$ meromorphic functions on U_{i}

Suitable diamonds over $F=\mathbb{C}(x)$ in the second बंnduction step Define $\tilde{F}_{1}=\bigcup_{i \in \mathbb{N}} M_{i}$ $M_{i}=$ meromorphic functions on $V_{i} \cap W_{i}$

Define $\tilde{F}_{2}=\bigcup_{i \in \mathbb{N}} N_{i}$
$N_{i}=$ meromorphic functions on U_{i}

Define $\tilde{F}_{0}=\bigcup_{i \in \mathbb{N}} \tilde{M}_{i}$

Suitable diamonds over $F=\mathbb{C}(x)$ in the second ginduction step

Define $\tilde{F}_{1}=\bigcup_{i \in \mathbb{N}} M_{i}$
$M_{i}=$ meromorphic functions on $V_{i} \cap W_{i}$

Define $\tilde{F}_{2}=\bigcup_{i \in \mathbb{N}} N_{i}$
$N_{i}=$ meromorphic functions on U_{i}

Define $\tilde{F}_{0}=\bigcup_{i \in \mathbb{N}} \tilde{M}_{i}$

$\Rightarrow\left(F, \tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{0}\right)$ is a diamond with the factorization property and these fields are equipped compatibly with extensions of σ on $F=\mathbb{C}(x)$.

Building blocks

Building blocks

Let $F_{1}=\bigcup_{i \in \mathbb{N}} L_{i}$
$L_{i}=$ meromorphic functions on V_{i}

Let $F_{0}=\bigcup_{i \in \mathbb{N}} M_{i}$
$M_{i}=$ meromorphic functions on $V_{i} \cap W_{i}$

Building blocks

Let $F_{1}=\bigcup_{i \in \mathbb{N}} L_{i}$
$L_{i}=$ meromorphic functions on V_{i}

Let $F_{0}=\bigcup_{i \in \mathbb{N}} M_{i}$
$M_{i}=$ meromorphic functions on $V_{i} \cap W_{i}$

Building blocks: We need to construct a σ-Picard-Vessiot extension E_{1} / F_{1} with σ-Galois group H_{1} and $E_{1} \subseteq F_{0}$.

Building blocks

Let $F_{1}=\bigcup_{i \in \mathbb{N}} L_{i}$
$L_{i}=$ meromorphic functions on V_{i}

Let $F_{0}=\bigcup_{i \in \mathbb{N}} M_{i}$
$M_{i}=$ meromorphic functions on $V_{i} \cap W_{i}$

Building blocks: We need to construct a σ-Picard-Vessiot extension E_{1} / F_{1} with σ-Galois group H_{1} and $E_{1} \subseteq F_{0}$.
First case: $H_{1} \cong \mathbb{G}_{a}$. Define $E_{1}=F_{1}\left\langle\log \left(\frac{1}{x-i}+1\right)\right\rangle \subseteq F_{0}$.

Building blocks

Let $F_{1}=\bigcup_{i \in \mathbb{N}} L_{i}$
$L_{i}=$ meromorphic functions on V_{i}

Let $F_{0}=\bigcup_{i \in \mathbb{N}} M_{i}$
$M_{i}=$ meromorphic functions on $V_{i} \cap W_{i}$

Building blocks: We need to construct a σ-Picard-Vessiot extension E_{1} / F_{1} with σ-Galois group H_{1} and $E_{1} \subseteq F_{0}$.
First case: $H_{1} \cong \mathbb{G}_{a}$. Define $E_{1}=F_{1}\left\langle\log \left(\frac{1}{x-i}+1\right)\right\rangle \subseteq F_{0}$.
Use that $\left(\frac{1}{x-i}+1\right) \in(-\infty, 0] \cup\{\infty\} \Leftrightarrow(x-i) \in[-1,0) \cup\{0\}=[-1,0]$ hence $\log \left(\frac{1}{x-i}+1\right) \in M_{1}, \sigma(\log (\ldots)) \in M_{2}, \ldots$

Building blocks

Let $F_{1}=\bigcup_{i \in \mathbb{N}} L_{i}$
$L_{i}=$ meromorphic functions on V_{i}

Let $F_{0}=\bigcup_{i \in \mathbb{N}} M_{i}$
$M_{i}=$ meromorphic functions on $V_{i} \cap W_{i}$

Building blocks: We need to construct a σ-Picard-Vessiot extension E_{1} / F_{1} with σ-Galois group H_{1} and $E_{1} \subseteq F_{0}$.
First case: $H_{1} \cong \mathbb{G}_{a}$. Define $E_{1}=F_{1}\left\langle\log \left(\frac{1}{x-i}+1\right)\right\rangle \subseteq F_{0}$.
Use that $\left(\frac{1}{x-i}+1\right) \in(-\infty, 0] \cup\{\infty\} \Leftrightarrow(x-i) \in[-1,0) \cup\{0\}=[-1,0]$ hence $\log \left(\frac{1}{x-i}+1\right) \in M_{1}, \sigma(\log (\ldots)) \in M_{2}, \ldots$
Second case: $H_{1} \cong \mathbb{G}_{m}$. Define $E_{1}=F_{1}\left\langle\exp \left(\frac{1}{x-i}\right)\right\rangle \subseteq F_{0}$.

Building blocks

Let $F_{1}=\bigcup_{i \in \mathbb{N}} L_{i}$
$L_{i}=$ meromorphic functions on V_{i}

Let $F_{0}=\bigcup_{i \in \mathbb{N}} M_{i}$
$M_{i}=$ meromorphic functions on $V_{i} \cap W_{i}$

Building blocks: We need to construct a σ-Picard-Vessiot extension E_{1} / F_{1} with σ-Galois group H_{1} and $E_{1} \subseteq F_{0}$.
First case: $H_{1} \cong \mathbb{G}_{a}$. Define $E_{1}=F_{1}\left\langle\log \left(\frac{1}{x-i}+1\right)\right\rangle \subseteq F_{0}$.
Use that $\left(\frac{1}{x-i}+1\right) \in(-\infty, 0] \cup\{\infty\} \Leftrightarrow(x-i) \in[-1,0) \cup\{0\}=[-1,0]$ hence $\log \left(\frac{1}{x-i}+1\right) \in M_{1}, \sigma(\log (\ldots)) \in M_{2}, \ldots$
Second case: $H_{1} \cong \mathbb{G}_{m}$. Define $E_{1}=F_{1}\left\langle\exp \left(\frac{1}{x-i}\right)\right\rangle \subseteq F_{0}$.

Building blocks

Let $F_{1}=\bigcup_{i \in \mathbb{N}} L_{i}$
$L_{i}=$ meromorphic functions on V_{i}

Let $F_{0}=\bigcup_{i \in \mathbb{N}} M_{i}$
$M_{i}=$ meromorphic functions on $V_{i} \cap W_{i}$

Building blocks: We need to construct a σ-Picard-Vessiot extension E_{1} / F_{1} with σ-Galois group H_{1} and $E_{1} \subseteq F_{0}$.
First case: $H_{1} \cong \mathbb{G}_{a}$. Define $E_{1}=F_{1}\left\langle\log \left(\frac{1}{x-i}+1\right)\right\rangle \subseteq F_{0}$.
Use that $\left(\frac{1}{x-i}+1\right) \in(-\infty, 0] \cup\{\infty\} \Leftrightarrow(x-i) \in[-1,0) \cup\{0\}=[-1,0]$ hence $\log \left(\frac{1}{x-i}+1\right) \in M_{1}, \sigma(\log (\ldots)) \in M_{2}, \ldots$
Second case: $H_{1} \cong \mathbb{G}_{m}$. Define $E_{1}=F_{1}\left\langle\exp \left(\frac{1}{x-i}\right)\right\rangle \subseteq F_{0}$.
Third case: H_{1} finite cyclic of order d. Define $E_{1}=F_{1}\left\langle\sqrt[d]{\frac{1}{x-i}+1}\right\rangle \subseteq F_{0}$.

Building blocks

Let $F_{1}=\bigcup_{i \in \mathbb{N}} L_{i}$
$L_{i}=$ meromorphic functions on V_{i}

Let $F_{0}=\bigcup_{i \in \mathbb{N}} M_{i}$
$M_{i}=$ meromorphic functions on $V_{i} \cap W_{i}$

Building blocks: We need to construct a σ-Picard-Vessiot extension E_{1} / F_{1} with σ-Galois group H_{1} and $E_{1} \subseteq F_{0}$.
First case: $H_{1} \cong \mathbb{G}_{a}$. Define $E_{1}=F_{1}\left\langle\log \left(\frac{1}{x-i}+1\right)\right\rangle \subseteq F_{0}$.
Use that $\left(\frac{1}{x-i}+1\right) \in(-\infty, 0] \cup\{\infty\} \Leftrightarrow(x-i) \in[-1,0) \cup\{0\}=[-1,0]$ hence $\log \left(\frac{1}{x-i}+1\right) \in M_{1}, \sigma(\log (\ldots)) \in M_{2}, \ldots$
Second case: $H_{1} \cong \mathbb{G}_{m}$. Define $E_{1}=F_{1}\left\langle\exp \left(\frac{1}{x-i}\right)\right\rangle \subseteq F_{0}$.
Third case: H_{1} finite cyclic of order d. Define $E_{1}=F_{1}\left\langle\sqrt[d]{\frac{1}{x-i}+1}\right\rangle \subseteq F_{0}$.

