Difference Galois groups of linear differential equations

Annette Bachmayr, University of Mainz (joint with Michael Wibmer)

February 2020

Base field
$$F = \mathbb{C}(x)$$
, $\delta = \frac{\delta}{\delta x}$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = 2x \cdot y$$

Solution: $y = e^{x^2}$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = 2x \cdot y$$

Solution: $y = e^{x^2}$

Picard-Vessiot extension:

$$E = F(y) = \mathbb{C}(x, e^{x^2})$$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = 2x \cdot y$$

Solution: $y = e^{x^2}$

Picard-Vessiot extension:

$$E = F(y) = \mathbb{C}(x, e^{x^2})$$

Galois group:

$$G = \{\gamma \colon F(y) \to F(y) \text{ autom. } | \gamma|_F = \mathrm{id}, \gamma \circ \delta = \delta \circ \gamma \}$$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = 2x \cdot y$$

Solution: $y = e^{x^2}$

Picard-Vessiot extension:

$$E = F(y) = \mathbb{C}(x, e^{x^2})$$

Galois group:

$$G = \{\gamma \colon F(y) \to F(y) \text{ autom. } | \gamma|_F = \mathrm{id}, \gamma \circ \delta = \delta \circ \gamma \}$$
$$= \{\gamma \colon F(y) \to F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times} \}$$
$$\cong \mathrm{GL}_1(\mathbb{C})$$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = 2x \cdot y$$

Solution: $y = e^{x^2}$

Picard-Vessiot extension:

$$E = F(y) = \mathbb{C}(x, e^{x^2})$$

Galois group:

$$G(\mathbb{C}) = \{\gamma \colon F(y) \to F(y) \text{ autom. } | \gamma|_F = \mathrm{id}, \gamma \circ \delta = \delta \circ \gamma \}$$

= $\{\gamma \colon F(y) \to F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times} \}$
 $\cong \mathrm{GL}_1(\mathbb{C})$

hence $G = GL_1$.

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = 2x \cdot y$$

Solution: $y = e^{x^2}$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = 2x \cdot y$$

Solution: $y = e^{x^2}$

Consider the shift operator σ with $\sigma(f(x)) = f(x+1)$:

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = 2x \cdot y$$

Solution: $y = e^{x^2}$

Consider the shift operator σ with $\sigma(f(x)) = f(x+1)$:

 $\sigma(y) = e^{x^2 + 2x + 1}$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = 2x \cdot y$$

Solution: $y = e^{x^2}$

Consider the shift operator σ with $\sigma(f(x))=f(x+1)$:

 $\sigma(y) = e^{x^2 + 2x + 1}$ $\sigma^2(y) = e^{x^2 + 4x + 4} = e^{2 - x^2 + 2x^2 + 4x + 2} = e^2 y^{-1} \sigma(y)^2$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = 2x \cdot y$$

Solution: $y = e^{x^2}$

Consider the shift operator σ with $\sigma(f(x)) = f(x+1)$:

$$\sigma(y) = e^{x^2 + 2x + 1}$$

$$\sigma^2(y) = e^{x^2 + 4x + 4} = e^{2 - x^2 + 2x^2 + 4x + 2} = e^2 y^{-1} \sigma(y)^2$$

 $\Rightarrow~y,\sigma(y)~{\rm and}~\sigma^2(y)$ are algebraically dependent over F

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = 2x \cdot y$$
 Solution $y = e^{x^2}$ satisfies $\sigma^2(y) = e^2 y^{-1} \sigma(y)^2$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = 2x \cdot y$$
 Solution $y = e^{x^2}$ satisfies $\sigma^2(y) = e^2 y^{-1} \sigma(y)^2$

<u>*o*- Picard-Vessiot extension:</u>

$$E = F(y, \sigma(y), \sigma^2(y), \ldots) = F(y, \sigma(y))$$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = 2x \cdot y$$
 Solution $y = e^{x^2}$ satisfies $\sigma^2(y) = e^2 y^{-1} \sigma(y)^2$

<u>σ- Picard-Vessiot extension:</u>

$$E = F(y, \sigma(y), \sigma^2(y), \ldots) = F(y, \sigma(y))$$

 σ -Galois group:

 $G(\mathbb{C}) = \{\gamma \colon F(y, \sigma(y)) \to F(y, \sigma(y)) \text{ autom. } | \gamma|_F = \mathrm{id}, \gamma \text{ commutes with } \delta, \sigma \}$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = 2x \cdot y$$
 Solution $y = e^{x^2}$ satisfies $\sigma^2(y) = e^2 y^{-1} \sigma(y)^2$

 σ - Picard-Vessiot extension:

$$E = F(y, \sigma(y), \sigma^2(y), \ldots) = F(y, \sigma(y))$$

 σ -Galois group:

$$\begin{array}{ll} G(\mathbb{C}) &=& \{\gamma \colon F(y, \sigma(y)) \to F(y, \sigma(y)) \text{ autom. } \mid \gamma \mid_F = \mathrm{id}, \gamma \text{ commutes with } \delta, \sigma \} \\ &=& \{\gamma \colon F(y, \sigma(y)) \to F(y, \sigma(y)), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma^2(c) = c^{-1} \sigma(c)^2 \} \end{array}$$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = 2x \cdot y$$
 Solution $y = e^{x^2}$ satisfies $\sigma^2(y) = e^2 y^{-1} \sigma(y)^2$

 σ - Picard-Vessiot extension:

$$E = F(y, \sigma(y), \sigma^2(y), \ldots) = F(y, \sigma(y))$$

 σ -Galois group:

$$G(\mathbb{C}) = \{\gamma \colon F(y, \sigma(y)) \to F(y, \sigma(y)) \text{ autom. } | \gamma|_F = \mathrm{id}, \gamma \text{ commutes with } \delta, \sigma \}$$

= $\{\gamma \colon F(y, \sigma(y)) \to F(y, \sigma(y)), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma^2(c) = c^{-1}\sigma(c)^2 \}$
 $\cong \{c \in \mathbb{C}^{\times} \mid \sigma^2(c)\sigma(c)^{-2}c = 1\} = \mathrm{GL}_1(\mathbb{C})$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = 2x \cdot y$$
 Solution $y = e^{x^2}$ satisfies $\sigma^2(y) = e^2 y^{-1} \sigma(y)^2$

<u>σ- Picard-Vessiot extension:</u>

$$E = F(y, \sigma(y), \sigma^2(y), \ldots) = F(y, \sigma(y))$$

 σ -Galois group:

$$\begin{aligned} G(\mathbb{C}) &= \{\gamma \colon F(y, \sigma(y)) \to F(y, \sigma(y)) \text{ autom. } | \gamma|_F = \mathrm{id}, \gamma \text{ commutes with } \delta, \sigma \} \\ &= \{\gamma \colon F(y, \sigma(y)) \to F(y, \sigma(y)), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma^2(c) = c^{-1} \sigma(c)^2 \} \\ &\cong \{c \in \mathbb{C}^{\times} \mid \sigma^2(c) \sigma(c)^{-2} c = 1\} = \mathrm{GL}_1(\mathbb{C}) \end{aligned}$$

and

$$G(S) = \{ c \in S^{\times} \mid \sigma^{2}(c)\sigma(c)^{-2}c = 1 \}$$

holds for any σ -algebra S over \mathbb{C} , so $G(S) \subsetneq \operatorname{GL}_1(S)$ for "sufficient general" S and thus $G \lneq \operatorname{GL}_1$.

Linear δ -equation of order n over $\mathbb{C}(x) \rightsquigarrow \sigma$ -Picard-Vessiot extension $E/\mathbb{C}(x)$

Linear δ -equation of order n over $\mathbb{C}(x) \rightsquigarrow \sigma$ -Picard-Vessiot extension $E/\mathbb{C}(x)$ $\rightsquigarrow \sigma$ -Galois group $G \leq GL_n$

Linear δ -equation of order n over $\mathbb{C}(x) \rightsquigarrow \sigma$ -Picard-Vessiot extension $E/\mathbb{C}(x)$

 $\rightsquigarrow \sigma$ -Galois group $G \leq \operatorname{GL}_n$

<u>Fact</u>: G is given by polynomial equations over \mathbb{C} in the matrix entries and their images under σ , σ^2 ,...

i.e., G is a (linear) difference algebraic group over \mathbb{C} .

Linear algebraic Groups

- Linear algebraic Groups
- ▶ Constant points of linear algebraic groups \mathcal{G} : $G(S) = \{g \in \mathcal{G}(S) \mid \sigma(g) = g\}$ for all \mathbb{C} - σ -algebras S

- Linear algebraic Groups
- Constant points of linear algebraic groups G: G(S) = {g ∈ G(S) | σ(g) = g} for all C-σ-algebras S
- ▶ in particular, if \mathcal{G} is the finite cyclic group of order d over \mathbb{C} we can associate two difference algebraic groups G_1, G_2 to it: $G_1(S) = \mathcal{G}(S) = \{g \in S \mid s^d = 1\}$ and $G_2(S) = \{g \in S \mid s^d = 1 \text{ and } \sigma(s) = s\}$ for all \mathbb{C} - σ -algebras S

- Linear algebraic Groups
- ▶ Constant points of linear algebraic groups \mathcal{G} : $G(S) = \{g \in \mathcal{G}(S) \mid \sigma(g) = g\}$ for all \mathbb{C} - σ -algebras S
- ▶ in particular, if \mathcal{G} is the finite cyclic group of order d over \mathbb{C} we can associate two difference algebraic groups G_1, G_2 to it: $G_1(S) = \mathcal{G}(S) = \{g \in S \mid s^d = 1\}$ and $G_2(S) = \{g \in S \mid s^d = 1 \text{ and } \sigma(s) = s\}$ for all \mathbb{C} - σ -algebras S
- ► Subgroups of the multiplicative group $GL_1 = \mathbb{G}_m$: $G(S) = \{s \in S^{\times} \mid s^{e_0}\sigma(s)^{e_1}\cdots\sigma^r(s)^{e_r} = 1\}$ for all \mathbb{C} - σ -algebras S(for some fixed $r \in \mathbb{N}, e_i \in \mathbb{Z}$).

- Linear algebraic Groups
- ▶ Constant points of linear algebraic groups \mathcal{G} : $G(S) = \{g \in \mathcal{G}(S) \mid \sigma(g) = g\}$ for all \mathbb{C} - σ -algebras S
- ▶ in particular, if \mathcal{G} is the finite cyclic group of order d over \mathbb{C} we can associate two difference algebraic groups G_1, G_2 to it: $G_1(S) = \mathcal{G}(S) = \{g \in S \mid s^d = 1\}$ and $G_2(S) = \{g \in S \mid s^d = 1 \text{ and } \sigma(s) = s\}$ for all \mathbb{C} - σ -algebras S
- ► Subgroups of the multiplicative group $GL_1 = \mathbb{G}_m$: $G(S) = \{s \in S^{\times} | s^{e_0} \sigma(s)^{e_1} \cdots \sigma^r(s)^{e_r} = 1\}$ for all \mathbb{C} - σ -algebras S(for some fixed $r \in \mathbb{N}, e_i \in \mathbb{Z}$).
- ► Subgroups of the additive group \mathbb{G}_a : $G(S) = \{s \in S \mid a_0s + a_1\sigma(s) + \dots + a_r\sigma^r(s) = 0\}$ for all \mathbb{C} - σ -algebras S(for some fixed $r \in \mathbb{N}$, $a_i \in \mathbb{C}$).

- Linear algebraic Groups
- ▶ Constant points of linear algebraic groups \mathcal{G} : $G(S) = \{g \in \mathcal{G}(S) \mid \sigma(g) = g\}$ for all \mathbb{C} - σ -algebras S
- ▶ in particular, if \mathcal{G} is the finite cyclic group of order d over \mathbb{C} we can associate two difference algebraic groups G_1, G_2 to it: $G_1(S) = \mathcal{G}(S) = \{g \in S \mid s^d = 1\}$ and $G_2(S) = \{g \in S \mid s^d = 1 \text{ and } \sigma(s) = s\}$ for all \mathbb{C} - σ -algebras S
- ► Subgroups of the multiplicative group $GL_1 = \mathbb{G}_m$: $G(S) = \{s \in S^{\times} | s^{e_0} \sigma(s)^{e_1} \cdots \sigma^r(s)^{e_r} = 1\}$ for all \mathbb{C} - σ -algebras S(for some fixed $r \in \mathbb{N}, e_i \in \mathbb{Z}$).
- ► Subgroups of the additive group \mathbb{G}_a : $G(S) = \{s \in S \mid a_0s + a_1\sigma(s) + \dots + a_r\sigma^r(s) = 0\}$ for all \mathbb{C} - σ -algebras S(for some fixed $r \in \mathbb{N}$, $a_i \in \mathbb{C}$).
- Unitary group: $G(S) = \{g \in \operatorname{GL}_n(S) \mid \sigma(g)^{\operatorname{tr}}g = 1\}$ for all \mathbb{C} - σ -algebras S

Examples:

• the subgroup of \mathbb{G}_m defined by the equation $\sigma^2(x)\sigma(x)^{-2}x = 1$.

- the subgroup of \mathbb{G}_m defined by the equation $\sigma^2(x)\sigma(x)^{-2}x = 1$.
- constant subgroup of \mathbb{G}_m

- the subgroup of \mathbb{G}_m defined by the equation $\sigma^2(x)\sigma(x)^{-2}x = 1$.
- constant subgroup of \mathbb{G}_m
- \mathbb{G}_m , \mathbb{G}_a and finite cyclic groups interpreted as difference algebraic groups

- the subgroup of \mathbb{G}_m defined by the equation $\sigma^2(x)\sigma(x)^{-2}x = 1$.
- constant subgroup of \mathbb{G}_m
- \mathbb{G}_m , \mathbb{G}_a and finite cyclic groups interpreted as difference algebraic groups
- ▶ but <u>no</u> proper, non-trivial subgroup of C_a!

- the subgroup of \mathbb{G}_m defined by the equation $\sigma^2(x)\sigma(x)^{-2}x = 1$.
- constant subgroup of \mathbb{G}_m
- \mathbb{G}_m , \mathbb{G}_a and finite cyclic groups interpreted as difference algebraic groups
- ▶ but <u>no</u> proper, non-trivial subgroup of C_a!
- <u>no</u> constant points of finite cyclic groups!

The multiplicative group

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = y \tag{1}$$
 Solution $y = e^x$

The multiplicative group

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = y \tag{1}$$
 Solution $y = e^x$ satisfies $\sigma(y) = ey$
Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = y \tag{1}$$

Solution
$$y = e^x$$
 satisfies $\sigma(y) = ey$,

The σ -Galois group is the constant subgroup of \mathbb{G}_m :

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = y \tag{1}$$

Solution
$$y = e^x$$
 satisfies $\sigma(y) = ey$,

The σ -Galois group is the constant subgroup of \mathbb{G}_m :

 $G(\mathbb{C}) \hspace{0.1 in} = \hspace{0.1 in} \{\gamma \colon F(y) \to F(y) \text{ autom. } \mid \gamma |_{F} = \mathrm{id}, \gamma \text{ commutes with } \delta, \sigma \}$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = y \tag{1}$$

Solution
$$y = e^x$$
 satisfies $\sigma(y) = ey$,

The σ -Galois group is the constant subgroup of \mathbb{G}_m :

$$\begin{array}{ll} G(\mathbb{C}) &=& \{\gamma \colon F(y) \to F(y) \text{ autom. } \mid \gamma \mid_F = \operatorname{id}, \gamma \text{ commutes with } \delta, \sigma \} \\ &=& \{\gamma \colon F(y) \to F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma(c) = c \} \end{array}$$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = y \tag{1}$$

Solution
$$y = e^x$$
 satisfies $\sigma(y) = ey$,

The σ -Galois group is the constant subgroup of \mathbb{G}_m :

$$\begin{array}{ll} G(\mathbb{C}) &=& \{\gamma \colon F(y) \to F(y) \text{ autom. } \mid \gamma \mid_F = \operatorname{id}, \gamma \text{ commutes with } \delta, \sigma \} \\ &=& \{\gamma \colon F(y) \to F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma(c) = c \} \end{array}$$

$$\delta(y) = -\frac{1}{x^2}y\tag{2}$$

Solution $y = e^{\frac{1}{x}}$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = y \tag{1}$$

Solution
$$y = e^x$$
 satisfies $\sigma(y) = ey$,

The σ -Galois group is the constant subgroup of \mathbb{G}_m :

$$\begin{array}{ll} G(\mathbb{C}) &=& \{\gamma \colon F(y) \to F(y) \text{ autom. } \mid \gamma \mid_F = \operatorname{id}, \gamma \text{ commutes with } \delta, \sigma \} \\ &=& \{\gamma \colon F(y) \to F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma(c) = c \} \end{array}$$

$$\delta(y) = -\frac{1}{x^2}y$$
Solution $y = e^{\frac{1}{x}}$ with $\sigma(y) = e^{\frac{1}{x+1}}, \sigma^2(y) = e^{\frac{1}{x+2}}, \dots$
(2)

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = y \tag{1}$$

Solution
$$y = e^x$$
 satisfies $\sigma(y) = ey$,

The σ -Galois group is the constant subgroup of \mathbb{G}_m :

$$\begin{array}{ll} G(\mathbb{C}) &=& \{\gamma \colon F(y) \to F(y) \text{ autom. } \mid \gamma \mid_F = \operatorname{id}, \gamma \text{ commutes with } \delta, \sigma \} \\ &=& \{\gamma \colon F(y) \to F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma(c) = c \} \end{array}$$

$$\delta(y) = -\frac{1}{x^2}y\tag{2}$$

Solution $y = e^{\frac{1}{x}}$ with $\sigma(y) = e^{\frac{1}{x+1}}, \sigma^2(y) = e^{\frac{1}{x+2}}, \ldots$ all algebraically independent

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = y \tag{1}$$

Solution
$$y = e^x$$
 satisfies $\sigma(y) = ey$,

The σ -Galois group is the constant subgroup of \mathbb{G}_m :

$$\begin{array}{ll} G(\mathbb{C}) &=& \{\gamma \colon F(y) \to F(y) \text{ autom. } \mid \gamma \mid_F = \operatorname{id}, \gamma \text{ commutes with } \delta, \sigma \} \\ &=& \{\gamma \colon F(y) \to F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma(c) = c \} \end{array}$$

$$\delta(y) = -\frac{1}{x^2}y\tag{2}$$

Solution $y = e^{\frac{1}{x}}$ with $\sigma(y) = e^{\frac{1}{x+1}}, \sigma^2(y) = e^{\frac{1}{x+2}}, \dots$ all algebraically independent The σ -Galois group equals \mathbb{G}_m :

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = y \tag{1}$$

Solution
$$y = e^x$$
 satisfies $\sigma(y) = ey$,

The σ -Galois group is the constant subgroup of \mathbb{G}_m :

$$\begin{array}{ll} G(\mathbb{C}) &=& \{\gamma \colon F(y) \to F(y) \text{ autom. } \mid \gamma \mid_F = \operatorname{id}, \gamma \text{ commutes with } \delta, \sigma \} \\ &=& \{\gamma \colon F(y) \to F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma(c) = c \} \end{array}$$

$$\delta(y) = -\frac{1}{x^2}y \tag{2}$$

Solution $y = e^{\frac{1}{x}}$ with $\sigma(y) = e^{\frac{1}{x+1}}, \sigma^2(y) = e^{\frac{1}{x+2}}, \ldots$ all algebraically independent The σ -Galois group equals \mathbb{G}_m : $G(\mathbb{C}) = \{\gamma \colon F(y, \sigma(y), \ldots) \to F(y, \sigma(y), \ldots)F$ -autom. $| \gamma \text{ commutes with } \delta, \sigma \}$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = y \tag{1}$$

Solution
$$y = e^x$$
 satisfies $\sigma(y) = ey$,

The σ -Galois group is the constant subgroup of \mathbb{G}_m :

$$\begin{array}{ll} G(\mathbb{C}) &=& \{\gamma \colon F(y) \to F(y) \text{ autom. } \mid \gamma \mid_F = \operatorname{id}, \gamma \text{ commutes with } \delta, \sigma \} \\ &=& \{\gamma \colon F(y) \to F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma(c) = c \} \end{array}$$

$$\delta(y) = -\frac{1}{x^2}y\tag{2}$$

Solution $y = e^{\frac{1}{x}}$ with $\sigma(y) = e^{\frac{1}{x+1}}, \sigma^2(y) = e^{\frac{1}{x+2}}, \dots$ all algebraically independent The σ -Galois group equals \mathbb{G}_m : $G(\mathbb{C}) = \{\gamma \colon F(y, \sigma(y), \dots) \to F(y, \sigma(y), \dots) F$ -autom. $| \gamma \text{ commutes with } \delta, \sigma \}$ $= \{\gamma \colon F(y, \sigma(y), \dots) \to F(y, \sigma(y), \dots), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times} \}$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = y \tag{1}$$

Solution
$$y = e^x$$
 satisfies $\sigma(y) = ey$,

The σ -Galois group is the constant subgroup of \mathbb{G}_m :

$$\begin{array}{ll} G(\mathbb{C}) &=& \{\gamma \colon F(y) \to F(y) \text{ autom. } \mid \gamma \mid_F = \operatorname{id}, \gamma \text{ commutes with } \delta, \sigma \} \\ &=& \{\gamma \colon F(y) \to F(y), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, \sigma(c) = c \} \end{array}$$

$$\delta(y) = -\frac{1}{x^2}y\tag{2}$$

Solution $y = e^{\frac{1}{x}}$ with $\sigma(y) = e^{\frac{1}{x+1}}, \sigma^2(y) = e^{\frac{1}{x+2}}, \dots$ all algebraically independent

The
$$\sigma$$
-Galois group equals \mathbb{G}_m :
 $G(\mathbb{C}) = \{\gamma : F(y, \sigma(y), \ldots) \to F(y, \sigma(y), \ldots) F$ -autom. $| \gamma \text{ commutes with } \delta, \sigma \}$
 $= \{\gamma : F(y, \sigma(y), \ldots) \to F(y, \sigma(y), \ldots), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times} \}$
 $\cong \mathbb{G}_m(\mathbb{C})$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = \frac{1}{2x}y\tag{3}$$

Solution $y = \sqrt{x}$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = \frac{1}{2x}y$$
Solution $y = \sqrt{x}$ with $\sigma(y) = \sqrt{x+1}, \ \sigma^2(y) = \sqrt{x+2}, \dots$
(3)

has the following property:

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = \frac{1}{2x}y\tag{3}$$

Solution $y = \sqrt{x}$ with $\sigma(y) = \sqrt{x+1}, \ \sigma^2(y) = \sqrt{x+2}, \dots$

has the following property: $\sigma^i(y)$ is of degree 2 over $F(y, \sigma(y), \ldots, \sigma^{i-1}(y))$ for all i.

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = \frac{1}{2x}y$$
Solution $y = \sqrt{x}$ with $\sigma(y) = \sqrt{x+1}, \ \sigma^2(y) = \sqrt{x+2}, \dots$
(3)

has the following property: $\sigma^{i}(y)$ is of degree 2 over $F(y, \sigma(y), \ldots, \sigma^{i-1}(y))$ for all *i*.

The σ -Galois group is the finite group of oder 2 interpreted as a difference algebraic group:

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = \frac{1}{2x}y \tag{3}$$

Solution
$$y = \sqrt{x}$$
 with $\sigma(y) = \sqrt{x+1}$, $\sigma^2(y) = \sqrt{x+2}$,...

has the following property: $\sigma^i(y)$ is of degree 2 over $F(y, \sigma(y), \dots, \sigma^{i-1}(y))$ for all i.

The $\sigma\text{-}\mathsf{Galois}$ group is the finite group of oder 2 interpreted as a difference algebraic group:

$$\begin{array}{ll} G(\mathbb{C}) &=& \{\gamma \colon F(y, \sigma(y), \ldots) \to F(y, \sigma(y), \ldots) \} F \text{-autom.} \mid \gamma \text{ commutes with } \delta, \sigma \} \\ &=& \{\gamma \colon F(y, \sigma(y), \ldots) \to F(y, \sigma(y), \ldots), y \mapsto c \cdot y \mid c \in \mathbb{C}^{\times}, c^2 = 1 \} \end{array}$$

Inverse Problem: Which difference algebraic groups over $\mathbb C$ are difference Galois groups of some differential equation over $\mathbb C?$

- the subgroup of \mathbb{G}_m defined by the equation $\sigma^2(x)\sigma(x)^{-2}x = 1$.
- constant subgroup of \mathbb{G}_m
- \mathbb{G}_m , \mathbb{G}_a and finite cyclic groups interpreted as difference algebraic groups
- ▶ but <u>no</u> proper, non-trivial subgroup of C_a!
- <u>no</u> constant points of finite cyclic groups!

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = \frac{1}{x} \tag{4}$$

Solution $y = \log(x)$

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = \frac{1}{x} \tag{4}$$

Solution $y = \log(x)$ with $\sigma(y) = \log(x+1)$, $\sigma^2(y) = \log(x+2)$,... all algebr. indep.

Base field $F = \mathbb{C}(x)$, $\delta = \frac{\delta}{\delta x}$

$$\delta(y) = \frac{1}{x} \tag{4}$$

Solution $y = \log(x)$ with $\sigma(y) = \log(x+1)$, $\sigma^2(y) = \log(x+2)$,... all algebr. indep. The σ -Picard-Vessiot extension $E = F(y, \sigma(y), \sigma^2(y), ...)$ has σ -Galois group \mathbb{G}_a .

Claim: No non-trivial proper subgroup of \mathbb{G}_a is a σ -Galois group over $\mathbb{C}(x)$

Claim: No non-trivial proper subgroup of \mathbb{G}_a is a σ -Galois group over $\mathbb{C}(x)$

Corollary: Let \mathcal{G} be a unipotent linear algebraic group over \mathbb{C} and let G be its constant subgroup. Then G is not a σ -Galois group over $\mathbb{C}(x)$.

Claim: No non-trivial proper subgroup of \mathbb{G}_a is a σ -Galois group over $\mathbb{C}(x)$

Sketch of proof: Let $E/\mathbb{C}(x)$ be a σ -Picard-Vessiot extension with group $G \lneq \mathbb{G}_a$.

Claim: No non-trivial proper subgroup of \mathbb{G}_a is a σ -Galois group over $\mathbb{C}(x)$

Sketch of proof: Let $E/\mathbb{C}(x)$ be a σ -Picard-Vessiot extension with group $G \lneq \mathbb{G}_a$.

<u>Step 1</u>: There exists a $y \in E$ with $E = F(y, \sigma(y), ...)$ and $\delta(y) \in \mathbb{C}(x)$.

Claim: No non-trivial proper subgroup of \mathbb{G}_a is a σ -Galois group over $\mathbb{C}(x)$

Sketch of proof: Let $E/\mathbb{C}(x)$ be a σ -Picard-Vessiot extension with group $G \lneq \mathbb{G}_a$.

<u>Step 1</u>: There exists a $y \in E$ with $E = F(y, \sigma(y), ...)$ and $\delta(y) \in \mathbb{C}(x)$.

Step 2: There exists an $n \in \mathbb{N}$ such that $y, \sigma(y), \ldots, \sigma^n(y)$ are algebraically dependent.

Claim: No non-trivial proper subgroup of \mathbb{G}_a is a σ -Galois group over $\mathbb{C}(x)$

Sketch of proof: Let $E/\mathbb{C}(x)$ be a σ -Picard-Vessiot extension with group $G \lneq \mathbb{G}_a$.

Step 1: There exists a $y \in E$ with $E = F(y, \sigma(y), ...)$ and $\delta(y) \in \mathbb{C}(x)$.

Step 2: There exists an $n \in \mathbb{N}$ such that $y, \sigma(y), \ldots, \sigma^n(y)$ are algebraically dependent.

Step 3: Write $a = \delta(y) \in \mathbb{C}(x)$, wlog: $a = \sum_{j=1}^{r} \frac{\alpha_j}{x+\beta_j}$

Claim: No non-trivial proper subgroup of \mathbb{G}_a is a σ -Galois group over $\mathbb{C}(x)$

Sketch of proof: Let $E/\mathbb{C}(x)$ be a σ -Picard-Vessiot extension with group $G \lneq \mathbb{G}_a$.

Step 1: There exists a $y \in E$ with $E = F(y, \sigma(y), ...)$ and $\delta(y) \in \mathbb{C}(x)$.

Step 2: There exists an $n \in \mathbb{N}$ such that $y, \sigma(y), \ldots, \sigma^n(y)$ are algebraically dependent.

 $\underbrace{ \underline{ Step 3:} }_{ \text{Note that } \delta(\sigma^l(y)) \in \mathbb{C}(x), \text{ wlog: } a = \sum_{j=1}^r \frac{\alpha_j}{x + \beta_j} }_{ \overline{ x + \beta_j}}$

Claim: No non-trivial proper subgroup of \mathbb{G}_a is a σ -Galois group over $\mathbb{C}(x)$

Sketch of proof: Let $E/\mathbb{C}(x)$ be a σ -Picard-Vessiot extension with group $G \lneq \mathbb{G}_a$.

Step 1: There exists a $y \in E$ with $E = F(y, \sigma(y), ...)$ and $\delta(y) \in \mathbb{C}(x)$.

Step 2: There exists an $n \in \mathbb{N}$ such that $y, \sigma(y), \ldots, \sigma^n(y)$ are algebraically dependent.

 $\underbrace{\underline{\mathsf{Step 3:}}}_{\mathsf{Note that } \delta(\sigma^l(y)) = \sigma^l(a) = \sum_{j=1}^r \frac{\alpha_j}{x+l+\beta_j}}_{j=1} \text{ for all } l \in \mathbb{N}.$

Claim: No non-trivial proper subgroup of \mathbb{G}_a is a σ -Galois group over $\mathbb{C}(x)$

Sketch of proof: Let $E/\mathbb{C}(x)$ be a σ -Picard-Vessiot extension with group $G \lneq \mathbb{G}_a$.

Step 1: There exists a $y \in E$ with $E = F(y, \sigma(y), ...)$ and $\delta(y) \in \mathbb{C}(x)$.

Step 2: There exists an $n \in \mathbb{N}$ such that $y, \sigma(y), \ldots, \sigma^n(y)$ are algebraically dependent.

 $\underbrace{\underline{\mathsf{Step 3:}}}_{\mathsf{Note that } \delta(\sigma^l(y)) = \sigma^l(a) = \sum_{j=1}^r \frac{\alpha_j}{x+l+\beta_j}}_{j=1} \text{ for all } l \in \mathbb{N}.$

<u>Step 4:</u> The theorem of Kolchin-Ostrowski implies that there exists a non-zero vector $\overline{(c_0, \ldots, c_n)} \in \mathbb{C}^{n+1}$ with $\sum_{l=0}^n c_l \sigma^l(y) \in \mathbb{C}(x)$.

Claim: No non-trivial proper subgroup of \mathbb{G}_a is a σ -Galois group over $\mathbb{C}(x)$

Sketch of proof: Let $E/\mathbb{C}(x)$ be a σ -Picard-Vessiot extension with group $G \lneq \mathbb{G}_a$.

<u>Step 1</u>: There exists a $y \in E$ with $E = F(y, \sigma(y), ...)$ and $\delta(y) \in \mathbb{C}(x)$.

Step 2: There exists an $n \in \mathbb{N}$ such that $y, \sigma(y), \ldots, \sigma^n(y)$ are algebraically dependent.

Step 3: Write
$$a = \delta(y) \in \mathbb{C}(x)$$
, wlog: $a = \sum_{j=1}^{r} \frac{\alpha_j}{x+\beta_j}$
Note that $\delta(\sigma^l(y)) = \sigma^l(a) = \sum_{j=1}^{r} \frac{\alpha_j}{x+l+\beta_j}$ for all $l \in \mathbb{N}$.

<u>Step 4</u>: The theorem of Kolchin-Ostrowski implies that there exists a non-zero vector $(c_0, \ldots, c_n) \in \mathbb{C}^{n+1}$ with $\sum_{l=0}^n c_l \sigma^l(y) \in \mathbb{C}(x)$. After differentiating, we obtain that

$$\sum_{l=0}^{n} \sum_{j=1}^{r} \frac{c_l \alpha_j}{x+l+\beta_j}$$

has an antiderivative in $\mathbb{C}(x)$ and is thus zero, but the terms do not cancel unless a=0.

A necessary criterion

Theorem

If G is a σ -Galois group over $\mathbb{C}(x)$ with derivation $\delta = \frac{d}{dx}$ and endomorphism σ given by $\sigma(f(x)) = f(x+1)$, then G is σ -reduced and σ -connected.

A necessary criterion

Theorem

If G is a σ -Galois group over $\mathbb{C}(x)$ with derivation $\delta = \frac{d}{dx}$ and endomorphism σ given by $\sigma(f(x)) = f(x+1)$, then G is σ -reduced and σ -connected.

Examples:

• Linear algebraic groups (interpreted as difference-algebraic groups) are always σ -connected.

If G is a σ -Galois group over $\mathbb{C}(x)$ with derivation $\delta = \frac{d}{dx}$ and endomorphism σ given by $\sigma(f(x)) = f(x+1)$, then G is σ -reduced and σ -connected.

- Linear algebraic groups (interpreted as difference-algebraic groups) are always σ -connected.
- All subgroups of \mathbb{G}_a are σ -connected.

If G is a σ -Galois group over $\mathbb{C}(x)$ with derivation $\delta = \frac{d}{dx}$ and endomorphism σ given by $\sigma(f(x)) = f(x+1)$, then G is σ -reduced and σ -connected.

- Linear algebraic groups (interpreted as difference-algebraic groups) are always σ -connected.
- All subgroups of \mathbb{G}_a are σ -connected.
- The constant subgroup of a finite cyclic group is not σ -connected.

If G is a σ -Galois group over $\mathbb{C}(x)$ with derivation $\delta = \frac{d}{dx}$ and endomorphism σ given by $\sigma(f(x)) = f(x+1)$, then G is σ -reduced and σ -connected.

- Linear algebraic groups (interpreted as difference-algebraic groups) are always σ -connected.
- All subgroups of \mathbb{G}_a are σ -connected.
- The constant subgroup of a finite cyclic group is not σ -connected.
- A subgroup of \mathbb{G}_a given by the equation $a_0x + a_1\sigma(x) + \cdots + a_r\sigma^r(x) = 0$ is σ -reduced if and only if $a_0 \neq 0$.

If G is a σ -Galois group over $\mathbb{C}(x)$ with derivation $\delta = \frac{d}{dx}$ and endomorphism σ given by $\sigma(f(x)) = f(x+1)$, then G is σ -reduced and σ -connected.

Examples:

- Linear algebraic groups (interpreted as difference-algebraic groups) are always σ -connected.
- All subgroups of \mathbb{G}_a are σ -connected.
- The constant subgroup of a finite cyclic group is not σ -connected.
- ► A subgroup of \mathbb{G}_a given by the equation $a_0x + a_1\sigma(x) + \cdots + a_r\sigma^r(x) = 0$ is σ -reduced if and only if $a_0 \neq 0$.

The criterion in the theorem above is far from sufficient!

Main result

Theorem (B., Wibmer)

Let \mathcal{G} be a linear algebraic group over \mathbb{C} and interpret it as a difference-algebraic group G over \mathbb{C} . Then there exists a σ -Picard-Vessiot extension over $\mathbb{C}(x)$ with σ -Galois group G.
A diamond of fields

 F_1 F_2 F_2 F_1 F_2 F_3 F_4 F_4

A diamond of fields

is called a diamond of fields with the factorization property if the following holds:

A diamond of fields

is called a diamond of fields with the factorization property if the following holds:

1. Intersection: $F_1 \cap F_2 = F$,

A diamond of fields

is called a diamond of fields with the factorization property if the following holds:

- 1. Intersection: $F_1 \cap F_2 = F$, and
- 2. Factorization: $\forall n \in \mathbb{N} \ \forall A_0 \in \operatorname{GL}_n(F_0) \ \exists A_i \in \operatorname{GL}_n(F_i) : A_0 = A_1A_2$

A diamond of fields

is called a diamond of fields with the factorization property if the following holds:

- 1. Intersection: $F_1 \cap F_2 = F$, and
- 2. Factorization: $\forall n \in \mathbb{N} \ \forall A_0 \in \operatorname{GL}_n(F_0) \ \exists A_i \in \operatorname{GL}_n(F_i) : A_0 = A_1 A_2$

Fact: Let U_1, U_2 be open, connected proper subsets of the Riemann sphere $\mathcal{X} = \mathbb{P}^1_{\mathbb{C}}$ such that

- $U_0 := U_1 \cap U_2$ is connected and
- $\blacktriangleright U_1 \cup U_2 = \mathcal{X}.$

Let F_i be the field of meromorphic functions on U_i . Then (F, F_1, F_2, F_0) is a diamond with the factorization property, where $F = \mathbb{C}(x)$ is the field of meromorphic functions on \mathcal{X} .

Example:

Patching σ -Picard Vessiot extensions Let $G = \langle H_1, H_2 \rangle$ be a σ -algebraic group with generating

(closed) subgroups H_1 and H_2 .

Let $G = \langle H_1, H_2 \rangle$ be a σ -algebraic group with generating (closed) subgroups H_1 and H_2 . Consider a diamond with the factorization property (F, F_1, F_2, F_0) such that

Let $G = \langle H_1, H_2 \rangle$ be a σ -algebraic group with generating (closed) subgroups H_1 and H_2 . Consider a diamond with the factorization property (F, F_1, F_2, F_0) such that

▶ all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_0^{\delta} = F^{\delta}$

 F_1

Let $G = \langle H_1, H_2 \rangle$ be a σ -algebraic group with generating (closed) subgroups H_1 and H_2 . Consider a diamond with the factorization property (F, F_1, F_2, F_0) such that

- $\begin{array}{c} & F_0 \\ F_1 \\ & F_2 \\ & F \end{array}$
- ▶ all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_0^{\delta} = F^{\delta}$
- ▶ there exist σ -Picard-Vessiot extensions E_1/F_1 and E_2/F_2 with σ -Galois groups isomorphic to H_1 and H_2 , resp.

Let $G = \langle H_1, H_2 \rangle$ be a σ -algebraic group with generating (closed) subgroups H_1 and H_2 . Consider a diamond with the factorization property (F, F_1, F_2, F_0) such that

- $\begin{array}{c} & F_0 \\ F_1 \\ & F_2 \\ & F \end{array}$
- ▶ all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_0^{\delta} = F^{\delta}$
- ▶ there exist σ -Picard-Vessiot extensions E_1/F_1 and E_2/F_2 with σ -Galois groups isomorphic to H_1 and H_2 , resp.and
- $E_1 \subseteq F_0$ and $E_2 \subseteq F_0$.

Let $G = \langle H_1, H_2 \rangle$ be a σ -algebraic group with generating (closed) subgroups H_1 and H_2 . Consider a diamond with the factorization property (F, F_1, F_2, F_0) such that

- ▶ all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_0^{\delta} = F^{\delta}$
- ▶ there exist σ -Picard-Vessiot extensions E_1/F_1 and E_2/F_2 with σ -Galois groups isomorphic to H_1 and H_2 , resp.and
- $E_1 \subseteq F_0$ and $E_2 \subseteq F_0$.

Then there exists a σ -Picard-Vessiot extension E/F with σ -Galois group G and $E \subseteq F_0$.

Let $G = \langle H_1, H_2 \rangle$ be a σ -algebraic group with generating (closed) subgroups H_1 and H_2 . Consider a diamond with the factorization property (F, F_1, F_2, F_0) such that

- ▶ all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_0^{\delta} = F^{\delta}$
- ► there exist σ -Picard-Vessiot extensions E_1/F_1 and E_2/F_2 with σ -Galois groups isomorphic to H_1 and H_2 , resp.and
- $E_1 \subseteq F_0$ and $E_2 \subseteq F_0$.

Then there exists a σ -Picard-Vessiot extension E/F with σ -Galois group G and $E \subseteq F_0$.

Let $G = \langle H_1, H_2 \rangle$ be a σ -algebraic group with generating (closed) subgroups H_1 and H_2 . Consider a diamond with the factorization property (F, F_1, F_2, F_0) such that

- ▶ all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_0^{\delta} = F^{\delta}$
- ► there exist σ -Picard-Vessiot extensions E_1/F_1 and E_2/F_2 with σ -Galois groups isomorphic to H_1 and H_2 , resp.and
- $E_1 \subseteq F_0$ and $E_2 \subseteq F_0$.

Then there exists a σ -Picard-Vessiot extension E/F with σ -Galois group G and $E \subseteq F_0$.

Sketch of proof:

First step: Choose $n \in \mathbb{N}$ with $G \leq \operatorname{GL}_n$ and show that there exist fundamental solution matrices $Y_1 \in \operatorname{GL}_n(E_1), Y_2 \in \operatorname{GL}_n(E_2)$ (i.e., adjust representations).

Let $G = \langle H_1, H_2 \rangle$ be a σ -algebraic group with generating (closed) subgroups H_1 and H_2 . Consider a diamond with the factorization property (F, F_1, F_2, F_0) such that

- ▶ all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_0^{\delta} = F^{\delta}$
- ► there exist σ -Picard-Vessiot extensions E_1/F_1 and E_2/F_2 with σ -Galois groups isomorphic to H_1 and H_2 , resp.and
- $E_1 \subseteq F_0$ and $E_2 \subseteq F_0$.

Then there exists a σ -Picard-Vessiot extension E/F with σ -Galois group G and $E \subseteq F_0$.

Sketch of proof:

First step: Choose $n \in \mathbb{N}$ with $G \leq \operatorname{GL}_n$ and show that there exist fundamental solution matrices $Y_1 \in \operatorname{GL}_n(E_1), Y_2 \in \operatorname{GL}_n(E_2)$ (i.e., adjust representations).

<u>Second step</u>: Consider $Y_0 = Y_1 Y_2^{-1} \in GL_n(F_0)$. The factorization property yields matrices $B_1 \in GL_n(F_1), B_2 \in GL_n(F_2)$ with $Y_0 = B_1 B_2^{-1}$.

Let $G = \langle H_1, H_2 \rangle$ be a σ -algebraic group with generating (closed) subgroups H_1 and H_2 . Consider a diamond with the factorization property (F, F_1, F_2, F_0) such that

- ▶ all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_0^{\delta} = F^{\delta}$
- ► there exist σ -Picard-Vessiot extensions E_1/F_1 and E_2/F_2 with σ -Galois groups isomorphic to H_1 and H_2 , resp.and
- $E_1 \subseteq F_0$ and $E_2 \subseteq F_0$.

Then there exists a σ -Picard-Vessiot extension E/F with σ -Galois group G and $E \subseteq F_0$.

Sketch of proof:

First step: Choose $n \in \mathbb{N}$ with $G \leq \operatorname{GL}_n$ and show that there exist fundamental solution matrices $Y_1 \in \operatorname{GL}_n(E_1), Y_2 \in \operatorname{GL}_n(E_2)$ (i.e., adjust representations).

Second step: Consider $Y_0 = Y_1 Y_2^{-1} \in \operatorname{GL}_n(F_0)$. The factorization property yields matrices $B_1 \in \operatorname{GL}_n(F_1), B_2 \in \operatorname{GL}_n(F_2)$ with $Y_0 = B_1 B_2^{-1}$. The intersection property implies that $Y := B_1 Y_1 = B_2 Y_2$ solves a differential equation over F.

Let $G = \langle H_1, H_2 \rangle$ be a σ -algebraic group with generating (closed) subgroups H_1 and H_2 . Consider a diamond with the factorization property (F, F_1, F_2, F_0) such that

- ▶ all fields are equipped compatibly with commuting derivations δ and endomorphisms σ such that $F_0^{\delta} = F^{\delta}$
- ► there exist σ -Picard-Vessiot extensions E_1/F_1 and E_2/F_2 with σ -Galois groups isomorphic to H_1 and H_2 , resp.and
- $E_1 \subseteq F_0$ and $E_2 \subseteq F_0$.

Then there exists a σ -Picard-Vessiot extension E/F with σ -Galois group G and $E \subseteq F_0$.

Sketch of proof:

First step: Choose $n \in \mathbb{N}$ with $G \leq \operatorname{GL}_n$ and show that there exist fundamental solution matrices $Y_1 \in \operatorname{GL}_n(E_1), Y_2 \in \operatorname{GL}_n(E_2)$ (i.e., adjust representations).

Second step: Consider $Y_0 = Y_1 Y_2^{-1} \in \operatorname{GL}_n(F_0)$. The factorization property yields matrices $B_1 \in \operatorname{GL}_n(F_1), B_2 \in \operatorname{GL}_n(F_2)$ with $Y_0 = B_1 B_2^{-1}$. The intersection property implies that $Y := B_1 Y_1 = B_2 Y_2$ solves a differential equation over F.

<u>Third step</u>: Show that the σ -Picard-Vessiot extension $E = F(Y, \sigma(Y), \sigma^2(Y), ...)$ over F has σ -Galois group G.

Generating subgroups

Let G be a linear algebraic group over \mathbb{C} . Then there exist closed subgroups $\mathcal{H}_1, \ldots, \mathcal{H}_r$ of G such that

- each \mathcal{H}_i is isomorphic to either \mathbb{G}_a or \mathbb{G}_m or a finite cyclic group and
- ▶ \mathcal{G} is generated by $\mathcal{H}_1, \ldots, \mathcal{H}_r$ in the following strong sense: the multiplication map $\mathcal{H}_1 \times \cdots \times \mathcal{H}_r \to \mathcal{G}$ is surjective

Let $\mathcal G$ be a linear algebraic group over $\mathbb C$. Then there exist closed subgroups $\mathcal H_1,\ldots,\mathcal H_r$ of $\mathcal G$ such that

- each \mathcal{H}_i is isomorphic to either \mathbb{G}_a or \mathbb{G}_m or a finite cyclic group and
- ▶ \mathcal{G} is generated by $\mathcal{H}_1, \ldots, \mathcal{H}_r$ in the following strong sense: the multiplication map $\mathcal{H}_1 \times \cdots \times \mathcal{H}_r \to \mathcal{G}$ is surjective

Now interpret \mathcal{G} as a difference algebraic group G and similarly $\mathcal{H}_1, \ldots, \mathcal{H}_r$ as difference algebraic groups H_1, \ldots, H_r .

Corollary: G is generated as a difference algebraic group by H_1, \ldots, H_r .

Strategy to realize a given $G=\langle H_1,\ldots,H_m\rangle$ as a $\sigma\text{-}\mathsf{Galois}$ group

• Choose suitable diamond of fields (F, F_1, F_2, F_0) with the factorization property.

- ► Choose suitable diamond of fields (*F*, *F*₁, *F*₂, *F*₀) with the factorization property.
- Construct σ -Picard-Vessiot extensions E_1/F_1 with σ -Galois group H_1 and $E_1 \subseteq F_0$ and E_2/F_2 with σ -Galois group H_2 and $E_2 \subseteq F_0$.

- ► Choose suitable diamond of fields (*F*, *F*₁, *F*₂, *F*₀) with the factorization property.
- Construct σ -Picard-Vessiot extensions E_1/F_1 with σ -Galois group H_1 and $E_1 \subseteq F_0$ and E_2/F_2 with σ -Galois group H_2 and $E_2 \subseteq F_0$.
- Obtain a σ-Picard-Vessiot extension E/F with σ-Galois group (H₁, H₂) and E ⊆ F₀.

- ► Choose suitable diamond of fields (*F*, *F*₁, *F*₂, *F*₀) with the factorization property.
- Construct σ -Picard-Vessiot extensions E_1/F_1 with σ -Galois group H_1 and $E_1 \subseteq F_0$ and E_2/F_2 with σ -Galois group H_2 and $E_2 \subseteq F_0$.
- Obtain a σ-Picard-Vessiot extension E/F with σ-Galois group (H₁, H₂) and E ⊆ F₀.

Step 2:

► Choose new diamond of fields (F, F
₁, F
₂, F
₀) with the factorization property such that F
₀ = F
₁.

- ► Choose suitable diamond of fields (*F*, *F*₁, *F*₂, *F*₀) with the factorization property.
- Construct σ -Picard-Vessiot extensions E_1/F_1 with σ -Galois group H_1 and $E_1 \subseteq F_0$ and E_2/F_2 with σ -Galois group H_2 and $E_2 \subseteq F_0$.
- Obtain a σ-Picard-Vessiot extension E/F with σ-Galois group (H₁, H₂) and E ⊆ F₀.

Step 2:

- ► Then E/F lifts to a σ -Picard-Vessiot extension $\tilde{E}_2 := E\tilde{F}_2$ with σ -Galois group $\langle H_1, H_2 \rangle$ and $\tilde{E}_2 \subseteq \tilde{F}_0$.
- Construct σ -Picard-Vessiot extensions \tilde{E}_1/\tilde{F}_1 with σ -Galois group H_3 and $\tilde{E}_1 \subseteq \tilde{F}_0$
- ▶ Obtain a σ-Picard-Vessiot extension *Ẽ*/*F* with σ-Galois group ⟨*H*₁, *H*₂, *H*₃⟩ and *Ẽ* ⊆ *F̃*₀.

- ► Choose suitable diamond of fields (*F*, *F*₁, *F*₂, *F*₀) with the factorization property.
- Construct σ -Picard-Vessiot extensions E_1/F_1 with σ -Galois group H_1 and $E_1 \subseteq F_0$ and E_2/F_2 with σ -Galois group H_2 and $E_2 \subseteq F_0$.
- Obtain a σ-Picard-Vessiot extension E/F with σ-Galois group ⟨H₁, H₂⟩ and E ⊆ F₀.

Step 2:

- ► Choose new diamond of fields (F, F
 ₁, F
 ₂, F
 ₀) with the factorization property such that F
 ₀ = F
 ₁.
- ► Then E/F lifts to a σ -Picard-Vessiot extension $\tilde{E}_2 := E\tilde{F}_2$ with σ -Galois group $\langle H_1, H_2 \rangle$ and $\tilde{E}_2 \subseteq \tilde{F}_0$.
- Construct σ -Picard-Vessiot extensions \tilde{E}_1/\tilde{F}_1 with σ -Galois group H_3 and $\tilde{E}_1 \subseteq \tilde{F}_0$
- ▶ Obtain a σ-Picard-Vessiot extension *Ẽ*/*F* with σ-Galois group ⟨*H*₁, *H*₂, *H*₃⟩ and *Ẽ* ⊆ *F̃*₀.

Continue inductively.

We need to find diamonds (F, F_1, F_2, F_0) with the factorization property such that all fields are equipped compatibly with extensions of $\delta = d/dx$ and σ from $F = \mathbb{C}(x)$ to F_i and $F_i^{\delta} = \mathbb{C}$ for all i.

We need to find diamonds (F, F_1, F_2, F_0) with the factorization property such that all fields are equipped compatibly with extensions of $\delta = d/dx$ and σ from $F = \mathbb{C}(x)$ to F_i and $F_i^{\delta} = \mathbb{C}$ for all i.

Try to find $U_1, U_2 \subsetneq \mathbb{P}^1_{\mathbb{C}}$ open, connected such that

- $\blacktriangleright U_1 \cup U_2 = \mathbb{P}^1_{\mathbb{C}}$
- $U_0 := U_1 \cap U_2$ is connected

We need to find diamonds (F, F_1, F_2, F_0) with the factorization property such that all fields are equipped compatibly with extensions of $\delta = d/dx$ and σ from $F = \mathbb{C}(x)$ to F_i and $F_i^{\delta} = \mathbb{C}$ for all i.

Try to find $U_1, U_2 \subsetneq \mathbb{P}^1_{\mathbb{C}}$ open, connected such that

- $\blacktriangleright U_1 \cup U_2 = \mathbb{P}^1_{\mathbb{C}}$
- $U_0 := U_1 \cap U_2$ is connected
- U_1 and U_2 are stable under the shift operator σ

Let F_i denote the field of meromorphic functions on U_i .

We need to find diamonds (F, F_1, F_2, F_0) with the factorization property such that all fields are equipped compatibly with extensions of $\delta = d/dx$ and σ from $F = \mathbb{C}(x)$ to F_i and $F_i^{\delta} = \mathbb{C}$ for all i.

Try to find $U_1, U_2 \subsetneq \mathbb{P}^1_{\mathbb{C}}$ open, connected such that

- $\blacktriangleright U_1 \cup U_2 = \mathbb{P}^1_{\mathbb{C}}$
- $U_0 := U_1 \cap U_2$ is connected
- U_1 and U_2 are stable under the shift operator σ

Let F_i denote the field of meromorphic functions on U_i .

Example:

 $\begin{array}{rcl} U_1 & = & \{x \in \mathbb{C} \mid \mathrm{Im}(x) > 0\} \\ U_2 & = & \{x \in \mathbb{C} \mid \mathrm{Im}(x) < 1\} \\ U_0 & = & \{x \in \mathbb{C} \mid 0 < \mathrm{Im}(x) < 1\} \end{array}$

We need to find diamonds (F, F_1, F_2, F_0) with the factorization property such that all fields are equipped compatibly with extensions of $\delta = d/dx$ and σ from $F = \mathbb{C}(x)$ to F_i and $F_i^{\delta} = \mathbb{C}$ for all i.

Try to find $U_1, U_2 \subsetneq \mathbb{P}^1_{\mathbb{C}}$ open, connected such that

- $\blacktriangleright U_1 \cup U_2 = \mathbb{P}^1_{\mathbb{C}}$
- $U_0 := U_1 \cap U_2$ is connected
- U_1 and U_2 are stable under the shift operator σ

Let F_i denote the field of meromorphic functions on U_i .

Example:

 $U_1 = \{x \in \mathbb{C} \mid \text{Im}(x) > 0\}$ $U_2 = \{x \in \mathbb{C} \mid \text{Im}(x) < 1\}$ $U_0 = \{x \in \mathbb{C} \mid 0 < \text{Im}(x) < 1\}$

But these sets don't cover $\mathbb{P}^1_{\mathbb{C}}$ and we won't be able to find a connected, σ -invariant \tilde{U}_2 in the second step with $U_0 \cup \tilde{U}_2 = \mathbb{P}^1_{\mathbb{C}}$. Suitable diamonds over $F = \mathbb{C}(x)$

Define $F_1 = \bigcup_{i \in \mathbb{N}} L_i$ L_i =meromorphic functions on V_i Suitable diamonds over $F = \mathbb{C}(x)$

Define $F_1 = \bigcup_{i \in \mathbb{N}} L_i$ L_i =meromorphic functions on V_i Note: F_1 is σ -invariant, since $L_1 \xrightarrow{\sigma} L_2 \xrightarrow{\sigma} L_3 \rightarrow ...$

Define $F_1 = \bigcup_{i \in \mathbb{N}} L_i$ L_i =meromorphic functions on V_i Note: F_1 is σ -invariant, since $L_1 \xrightarrow{\sigma} L_2 \xrightarrow{\sigma} L_3 \rightarrow ...$

Define $F_2 = \bigcup_{i \in \mathbb{N}} K_i$ K_i =meromorphic functions on W_i

Define $F_1 = \bigcup_{i \in \mathbb{N}} L_i$ L_i =meromorphic functions on V_i Note: F_1 is σ -invariant, since $L_1 \xrightarrow{\sigma} L_2 \xrightarrow{\sigma} L_3 \rightarrow ...$

Define $F_2 = \bigcup_{i \in \mathbb{N}} K_i$ K_i =meromorphic functions on W_i Note: F_2 is σ -invariant, since $K_1 \xrightarrow{\sigma} K_2 \xrightarrow{\sigma} K_3 \rightarrow ...$

Define $F_1 = \bigcup_{i \in \mathbb{N}} L_i$ L_i =meromorphic functions on V_i Note: F_1 is σ -invariant, since $L_1 \xrightarrow{\sigma} L_2 \xrightarrow{\sigma} L_3 \rightarrow ...$

Define $F_2 = \bigcup_{i \in \mathbb{N}} K_i$ K_i =meromorphic functions on W_i Note: F_2 is σ -invariant, since $K_1 \xrightarrow{\sigma} K_2 \xrightarrow{\sigma} K_3 \rightarrow ...$

Define $F_0 = \bigcup_{i \in \mathbb{N}} M_i$ M_i =meromorphic functions on $V_i \cap W_i$

Define $F_1 = \bigcup_{i \in \mathbb{N}} L_i$ L_i =meromorphic functions on V_i Note: F_1 is σ -invariant, since $L_1 \xrightarrow{\sigma} L_2 \xrightarrow{\sigma} L_3 \rightarrow ...$

Define $F_2 = \bigcup_{i \in \mathbb{N}} K_i$ K_i =meromorphic functions on W_i Note: F_2 is σ -invariant, since $K_1 \xrightarrow{\sigma} K_2 \xrightarrow{\sigma} K_3 \rightarrow \dots$

Define $F_0 = \bigcup_{i \in \mathbb{N}} M_i$ M_i =meromorphic functions on $V_i \cap W_i$ Note: F_0 is σ -invariant, since $M_1 \xrightarrow{\sigma} M_2 \xrightarrow{\sigma} M_3 \rightarrow \dots$

Define $F_1 = \bigcup_{i \in \mathbb{N}} L_i$ L_i =meromorphic functions on V_i Note: F_1 is σ -invariant, since $L_1 \xrightarrow{\sigma} L_2 \xrightarrow{\sigma} L_3 \rightarrow ...$

Define $F_2 = \bigcup_{i \in \mathbb{N}} K_i$ K_i =meromorphic functions on W_i Note: F_2 is σ -invariant, since $K_1 \xrightarrow{\sigma} K_2 \xrightarrow{\sigma} K_3 \rightarrow ...$

Define $F_0 = \bigcup_{i \in \mathbb{N}} M_i$ M_i =meromorphic functions on $V_i \cap W_i$ Note: F_0 is σ -invariant, since $M_1 \xrightarrow{\sigma} M_2 \xrightarrow{\sigma} M_3 \rightarrow \dots$

For all $i \in \mathbb{N}$, (F, L_i, K_i, M_i) is a diamond with the factorization property

Define $F_1 = \bigcup_{i \in \mathbb{N}} L_i$ L_i =meromorphic functions on V_i Note: F_1 is σ -invariant, since $L_1 \xrightarrow{\sigma} L_2 \xrightarrow{\sigma} L_3 \rightarrow ...$

Define $F_2 = \bigcup_{i \in \mathbb{N}} K_i$ K_i =meromorphic functions on W_i Note: F_2 is σ -invariant, since $K_1 \xrightarrow{\sigma} K_2 \xrightarrow{\sigma} K_3 \rightarrow ...$

Define $F_0 = \bigcup_{i \in \mathbb{N}} M_i$ M_i =meromorphic functions on $V_i \cap W_i$ Note: F_0 is σ -invariant, since $M_1 \xrightarrow{\sigma} M_2 \xrightarrow{\sigma} M_3 \rightarrow \dots$

For all $i \in \mathbb{N}$, (F, L_i, K_i, M_i) is a diamond with the factorization property $\Rightarrow (F, F_1, F_2, F_0)$ is a diamond with the factorization property

Define $F_1 = \bigcup_{i \in \mathbb{N}} L_i$ L_i =meromorphic functions on V_i Note: F_1 is σ -invariant, since $L_1 \xrightarrow{\sigma} L_2 \xrightarrow{\sigma} L_3 \rightarrow ...$

Define $F_2 = \bigcup_{i \in \mathbb{N}} K_i$ K_i =meromorphic functions on W_i Note: F_2 is σ -invariant, since $K_1 \xrightarrow{\sigma} K_2 \xrightarrow{\sigma} K_3 \rightarrow ...$

Define $F_0 = \bigcup_{i \in \mathbb{N}} M_i$ M_i =meromorphic functions on $V_i \cap W_i$ Note: F_0 is σ -invariant, since $M_1 \xrightarrow{\sigma} M_2 \xrightarrow{\sigma} M_3 \rightarrow \dots$

For all $i \in \mathbb{N}$, (F, L_i, K_i, M_i) is a diamond with the factorization property $\Rightarrow (F, F_1, F_2, F_0)$ is a diamond with the factorization property and these fields are equipped compatibly with extensions of σ on $F = \mathbb{C}(x)$.

 $\Rightarrow (F, \tilde{F}_1, \tilde{F}_2, \tilde{F}_0)$ is a diamond with the factorization property and these fields are equipped compatibly with extensions of σ on $F = \mathbb{C}(x)$.

ç Let $F_1 = \bigcup_{i \in \mathbb{N}} L_i$ V2 V3 V_1 $L_i =$ meromorphic functions on V_i -3 -2 -1 U {≈} ∪{~} ∪{∾} ~ \sim Let $F_0 = \bigcup_{i \in \mathbb{N}} M_i$ M_i =meromorphic functions on $V_i \cap W_i$ -2 -2 -1 U \$≈} ∪{~} ∪{∾}

Building blocks: We need to construct a σ -Picard-Vessiot extension E_1/F_1 with σ -Galois group H_1 and $E_1 \subseteq F_0$.

Building blocks: We need to construct a σ -Picard-Vessiot extension E_1/F_1 with σ -Galois group H_1 and $E_1 \subseteq F_0$.

First case: $H_1 \cong \mathbb{G}_a$. Define $E_1 = F_1 \langle \log(\frac{1}{x-i} + 1) \rangle \subseteq F_0$.

Building blocks: We need to construct a σ -Picard-Vessiot extension E_1/F_1 with σ -Galois group H_1 and $E_1 \subseteq F_0$.

First case: $H_1 \cong \mathbb{G}_a$. Define $E_1 = F_1 \langle \log(\frac{1}{x-i}+1) \rangle \subseteq F_0$. Use that $(\frac{1}{x-i}+1) \in (-\infty, 0] \cup \{\infty\} \Leftrightarrow (x-i) \in [-1, 0] \cup \{0\} = [-1, 0]$ hence $\log(\frac{1}{x-i}+1) \in M_1$, $\sigma(\log(\ldots)) \in M_2$, ...

Building blocks: We need to construct a σ -Picard-Vessiot extension E_1/F_1 with σ -Galois group H_1 and $E_1 \subseteq F_0$.

First case: $H_1 \cong \mathbb{G}_a$. Define $E_1 = F_1 \langle \log(\frac{1}{x-i}+1) \rangle \subseteq F_0$. Use that $(\frac{1}{x-i}+1) \in (-\infty, 0] \cup \{\infty\} \Leftrightarrow (x-i) \in [-1,0) \cup \{0\} = [-1,0]$ hence $\log(\frac{1}{x-i}+1) \in M_1$, $\sigma(\log(...)) \in M_2$, ...

Second case: $H_1 \cong \mathbb{G}_m$. Define $E_1 = F_1 \langle \exp(\frac{1}{x-i}) \rangle \subseteq F_0$.

Building blocks: We need to construct a σ -Picard-Vessiot extension E_1/F_1 with σ -Galois group H_1 and $E_1 \subseteq F_0$.

First case: $H_1 \cong \mathbb{G}_a$. Define $E_1 = F_1 \langle \log(\frac{1}{x-i}+1) \rangle \subseteq F_0$. Use that $(\frac{1}{x-i}+1) \in (-\infty, 0] \cup \{\infty\} \Leftrightarrow (x-i) \in [-1,0) \cup \{0\} = [-1,0]$ hence $\log(\frac{1}{x-i}+1) \in M_1$, $\sigma(\log(...)) \in M_2$, ...

Second case: $H_1 \cong \mathbb{G}_m$. Define $E_1 = F_1 \langle \exp(\frac{1}{x-i}) \rangle \subseteq F_0$.

Building blocks: We need to construct a σ -Picard-Vessiot extension E_1/F_1 with σ -Galois group H_1 and $E_1 \subseteq F_0$.

First case: $H_1 \cong \mathbb{G}_a$. Define $E_1 = F_1 \langle \log(\frac{1}{x-i}+1) \rangle \subseteq F_0$. Use that $(\frac{1}{x-i}+1) \in (-\infty, 0] \cup \{\infty\} \Leftrightarrow (x-i) \in [-1, 0] \cup \{0\} = [-1, 0]$ hence $\log(\frac{1}{x-i}+1) \in M_1$, $\sigma(\log(\ldots)) \in M_2$,...

Second case: $H_1 \cong \mathbb{G}_m$. Define $E_1 = F_1 \langle \exp(\frac{1}{x-i}) \rangle \subseteq F_0$.

Third case: H_1 finite cyclic of order d. Define $E_1 = F_1 \langle \sqrt[d]{\frac{1}{x-i} + 1} \rangle \subseteq F_0$.

Building blocks: We need to construct a σ -Picard-Vessiot extension E_1/F_1 with σ -Galois group H_1 and $E_1 \subseteq F_0$.

First case: $H_1 \cong \mathbb{G}_a$. Define $E_1 = F_1 \langle \log(\frac{1}{x-i}+1) \rangle \subseteq F_0$. Use that $(\frac{1}{x-i}+1) \in (-\infty, 0] \cup \{\infty\} \Leftrightarrow (x-i) \in [-1, 0] \cup \{0\} = [-1, 0]$ hence $\log(\frac{1}{x-i}+1) \in M_1$, $\sigma(\log(\ldots)) \in M_2$,...

Second case: $H_1 \cong \mathbb{G}_m$. Define $E_1 = F_1 \langle \exp(\frac{1}{x-i}) \rangle \subseteq F_0$.

Third case: H_1 finite cyclic of order d. Define $E_1 = F_1 \langle \sqrt[d]{\frac{1}{x-i} + 1} \rangle \subseteq F_0$.