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Example

Base field F = C(x), δ = δ
δx

δ(y) = 2x · y

Solution: y = ex
2

Picard-Vessiot extension:

E = F (y) = C(x, ex
2

)

Galois group:

G = {γ : F (y)→ F (y) autom. | γ|F = id, γ ◦ δ = δ ◦ γ}
= {γ : F (y)→ F (y), y 7→ c · y | c ∈ C×}
∼= GL1(C)
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E = F (y) = C(x, ex
2

)

Galois group:

G(C) = {γ : F (y)→ F (y) autom. | γ|F = id, γ ◦ δ = δ ◦ γ}
= {γ : F (y)→ F (y), y 7→ c · y | c ∈ C×}
∼= GL1(C)

hence G = GL1.
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Example

Base field F = C(x), δ = δ
δx

δ(y) = 2x · y

Solution: y = ex
2

Consider the shift operator σ with σ(f(x)) = f(x+ 1):

σ(y) = ex
2+2x+1

σ2(y) = ex
2+4x+4 = e2−x

2+2x2+4x+2 = e2y−1σ(y)2

⇒ y, σ(y) and σ2(y) are algebraically dependent over F
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Example

Base field F = C(x), δ = δ
δx

δ(y) = 2x · y

Solution y = ex
2

satisfies σ2(y) = e2y−1σ(y)2

σ- Picard-Vessiot extension:

E = F (y, σ(y), σ2(y), . . .) = F (y, σ(y))

σ-Galois group:

G(C) = {γ : F (y, σ(y))→ F (y, σ(y)) autom. | γ|F = id, γ commutes with δ, σ}
= {γ : F (y, σ(y))→ F (y, σ(y)), y 7→ c · y | c ∈ C×, σ2(c) = c−1σ(c)2}
∼= {c ∈ C× | σ2(c)σ(c)−2c = 1} = GL1(C)

and
G(S) = {c ∈ S× | σ2(c)σ(c)−2c = 1}

holds for any σ-algebra S over C, so G(S) ( GL1(S) for ”sufficient general” S and
thus G � GL1.
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Difference Galois theory of linear differential equations

This theory was established (over arbitrary δσ-fields) in
Di Vizio, Hardouin, Wibmer: Difference Galois theory of linear differential equations.
Adv. Math. 260 (2014), 1–58.

Linear δ-equation of order n over C(x)  σ-Picard-Vessiot extension E/C(x)

 σ-Galois group G ≤ GLn

Fact: G is given by polynomial equations over C in the matrix entries and their images
under σ, σ2, . . .

i.e., G is a (linear) difference algebraic group over C.
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Examples of difference algebraic groups

I Linear algebraic Groups

I Constant points of linear algebraic groups G: G(S) = {g ∈ G(S) | σ(g) = g} for
all C-σ-algebras S

I in particular, if G is the finite cyclic group of order d over C we can associate two
difference algebraic groups G1, G2 to it: G1(S) = G(S) = {g ∈ S | sd = 1} and
G2(S) = {g ∈ S | sd = 1 and σ(s) = s} for all C-σ-algebras S

I Subgroups of the multiplicative group GL1 = Gm:
G(S) = {s ∈ S× | se0σ(s)e1 · · ·σr(s)er = 1} for all C-σ-algebras S
(for some fixed r ∈ N, ei ∈ Z).

I Subgroups of the additive group Ga:
G(S) = {s ∈ S | a0s+ a1σ(s) + · · ·+ arσ

r(s) = 0} for all C-σ-algebras S
(for some fixed r ∈ N, ai ∈ C).

I Unitary group: G(S) = {g ∈ GLn(S) | σ(g)trg = 1} for all C-σ-algebras S
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The inverse problem

Inverse Problem: Which difference algebraic groups over C are σ-Galois groups of some
differential equation over C(x)?

Examples:

I the subgroup of Gm defined by the equation σ2(x)σ(x)−2x = 1.

I constant subgroup of Gm
I Gm, Ga and finite cyclic groups interpreted as difference algebraic groups

I but no proper, non-trivial subgroup of Ga!

I no constant points of finite cyclic groups!
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The multiplicative group

Base field F = C(x), δ = δ
δx

δ(y) = y (1)

Solution y = ex

satisfies σ(y) = ey,

The σ-Galois group is the constant subgroup of Gm:

G(C) = {γ : F (y)→ F (y) autom. | γ|F = id, γ commutes with δ, σ}
= {γ : F (y)→ F (y), y 7→ c · y | c ∈ C×, σ(c) = c}

δ(y) = − 1

x2
y (2)

Solution y = e
1
x with σ(y) = e

1
x+1 , σ2(y) = e

1
x+2 , . . . all algebraically independent

The σ-Galois group equals Gm:
G(C) = {γ : F (y, σ(y), . . . )→ F (y, σ(y), . . . )F -autom. | γ commutes with δ, σ}

= {γ : F (y, σ(y), . . . )→ F (y, σ(y), . . . ), y 7→ c · y | c ∈ C×}
∼= Gm(C)
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The multiplicative group

Base field F = C(x), δ = δ
δx

δ(y) =
1

2x
y (3)

Solution y =
√
x

with σ(y) =
√
x+ 1, σ2(y) =

√
x+ 2, . . .

has the following property: σi(y) is of degree 2 over F (y, σ(y), . . . , σi−1(y)) for all i.

The σ-Galois group is the finite group of oder 2 interpreted as a difference algebraic
group:
G(C) = {γ : F (y, σ(y), . . . )→ F (y, σ(y), . . . )F -autom. | γ commutes with δ, σ}

= {γ : F (y, σ(y), . . . )→ F (y, σ(y), . . . ), y 7→ c · y | c ∈ C×, c2 = 1}
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The inverse problem

Inverse Problem: Which difference algebraic groups over C are difference Galois groups
of some differential equation over C?

Examples:

I the subgroup of Gm defined by the equation σ2(x)σ(x)−2x = 1.

I constant subgroup of Gm
I Gm, Ga and finite cyclic groups interpreted as difference algebraic groups

I but no proper, non-trivial subgroup of Ga!

I no constant points of finite cyclic groups!

10



The additive group

Base field F = C(x), δ = δ
δx

δ(y) =
1

x
(4)

Solution y = log(x)

with σ(y) = log(x+ 1), σ2(y) = log(x+ 2), . . . all algebr. indep.

The σ-Picard-Vessiot extension E = F (y, σ(y), σ2(y), . . . ) has σ-Galois group Ga.
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The additive group

Claim: No non-trivial proper subgroup of Ga is a σ-Galois group over C(x)

Corollary: Let G be a unipotent linear algebraic group over C and let G be its constant
subgroup. Then G is not a σ-Galois group over C(x).
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The additive group

Claim: No non-trivial proper subgroup of Ga is a σ-Galois group over C(x)

Sketch of proof: Let E/C(x) be a σ-Picard-Vessiot extension with group G � Ga.

Step 1: There exists a y ∈ E with E = F (y, σ(y), . . . ) and δ(y) ∈ C(x).

Step 2: There exists an n ∈ N such that y, σ(y), . . . , σn(y) are algebraically dependent.

Step 3: Write a = δ(y) ∈ C(x), wlog: a =
∑r
j=1

αj

x+βj

Note that δ(σl(y)) = σl(a) =
∑r
j=1

αj

x+l+βj
for all l ∈ N.

Step 4: The theorem of Kolchin-Ostrowski implies that there exists a non-zero vector

(c0, . . . , cn) ∈ Cn+1 with
∑n
l=0 clσ

l(y) ∈ C(x). After differentiating, we obtain that

n∑
l=0

r∑
j=1

clαj
x+ l + βj

has an antiderivative in C(x) and is thus zero, but the terms do not cancel unless
a = 0.
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A necessary criterion

Theorem

If G is a σ-Galois group over C(x) with derivation δ = d
dx

and endomorphism σ given
by σ(f(x)) = f(x+ 1), then G is σ-reduced and σ-connected.

Examples:

I Linear algebraic groups (interpreted as difference-algebraic groups) are always
σ-connected.

I All subgroups of Ga are σ-connected.

I The constant subgroup of a finite cyclic group is not σ-connected.

I A subgroup of Ga given by the equation a0x+ a1σ(x) + · · ·+ arσ
r(x) = 0 is

σ-reduced if and only if a0 6= 0.

The criterion in the theorem above is far from sufficient!
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Main result

Theorem (B., Wibmer)

Let G be a linear algebraic group over C and interpret it as a difference-algebraic group
G over C. Then there exists a σ-Picard-Vessiot extension over C(x) with σ-Galois
group G.
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Algebraic Patching

A diamond of fields

F0

F1 F2

F

is called a diamond of fields with the factorization property if the following holds:

1. Intersection: F1 ∩ F2 = F , and

2. Factorization: ∀n ∈ N ∀A0 ∈ GLn(F0) ∃Ai ∈ GLn(Fi) : A0 = A1A2

Fact: Let U1, U2 be open, connected proper subsets of the Riemann sphere X = P1C
such that

I U0 := U1 ∩ U2 is connected and

I U1 ∪ U2 = X .

Let Fi be the field of meromorphic functions on Ui. Then (F, F1, F2, F0) is a diamond
with the factorization property, where F = C(x) is the field of meromorphic functions
on X .
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Algebraic Patching

Example:

U1 = {x ∈ P1C | |x| < 2}

U2 = {x ∈ P1C | |x| > 1}

U0 = {x ∈ P1
C | 1 < |x| < 2}

17



Patching σ-Picard Vessiot extensions

Let G = 〈H1, H2〉 be a σ-algebraic group with generating
(closed) subgroups H1 and H2. Consider a diamond with the
factorization property (F, F1, F2, F0) such that

F0

F1 F2

F

I all fields are equipped compatibly with commuting derivations δ and
endomorphisms σ such that F δ0 = F δ

I there exist σ-Picard-Vessiot extensions E1/F1 and E2/F2 with σ-Galois groups
isomorphic to H1 and H2, resp.and

I E1 ⊆ F0 and E2 ⊆ F0.

Then there exists a σ-Picard-Vessiot extension E/F
with σ-Galois group G and E ⊆ F0.

F0

E1 E2

E

F1 F2

F
Sketch of proof:
First step: Choose n ∈ N with G ≤ GLn and show that there exist fundamental
solution matrices Y1 ∈ GLn(E1), Y2 ∈ GLn(E2) (i.e., adjust representations).

Second step: Consider Y0 = Y1Y
−1
2 ∈ GLn(F0). The factorization property yields

matrices B1 ∈ GLn(F1), B2 ∈ GLn(F2) with Y0 = B1B
−1
2 . The intersection property

implies that Y := B1Y1 = B2Y2 solves a differential equation over F .

Third step: Show that the σ-Picard-Vessiot extension E = F (Y, σ(Y ), σ2(Y ), . . . )
over F has σ-Galois group G.
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Generating subgroups

Let G be a linear algebraic group over C. Then there exist closed subgroups H1, . . . ,Hr
of G such that

I each Hi is isomorphic to either Ga or Gm or a finite cyclic group and

I G is generated by H1, . . . ,Hr in the following strong sense: the multiplication
map H1 × · · · × Hr → G is surjective

Now interpret G as a difference algebraic group G and similarly H1, . . . ,Hr as
difference algebraic groups H1, . . . , Hr.

Corollary: G is generated as a difference algebraic group by H1, . . . , Hr.
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Strategy to realize a given G = 〈H1, . . . ,Hm〉 as a σ-Galois group

Step 1:

I Choose suitable diamond of fields (F, F1, F2, F0)
with the factorization property.

I Construct σ-Picard-Vessiot extensions
E1/F1 with σ-Galois group H1 and E1 ⊆ F0 and
E2/F2 with σ-Galois group H2 and E2 ⊆ F0.

I Obtain a σ-Picard-Vessiot extension E/F
with σ-Galois group 〈H1, H2〉 and E ⊆ F0.

F0

E1 E2

E

F1 F2

F

Step 2:

I Choose new diamond of fields (F, F̃1, F̃2, F̃0)
with the factorization property such that F0 = F̃1.

I Then E/F lifts to a σ-Picard-Vessiot extension
Ẽ2 := EF̃2 with σ-Galois group 〈H1, H2〉 and Ẽ2 ⊆ F̃0.

I Construct σ-Picard-Vessiot extensions
Ẽ1/F̃1 with σ-Galois group H3 and Ẽ1 ⊆ F̃0

I Obtain a σ-Picard-Vessiot extension Ẽ/F
with σ-Galois group 〈H1, H2, H3〉 and Ẽ ⊆ F̃0.

F̃0

Ẽ1 Ẽ2

Ẽ

F̃1 F̃2

F

Continue inductively.
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I Construct σ-Picard-Vessiot extensions
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Ẽ2 := EF̃2 with σ-Galois group 〈H1, H2〉 and Ẽ2 ⊆ F̃0.
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Ẽ1 Ẽ2

Ẽ
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Suitable diamonds over F = C(x), first try

We need to find diamonds (F, F1, F2, F0) with the factorization property such that all
fields are equipped compatibly with extensions of δ = d/dx and σ from F = C(x) to
Fi and F δi = C for all i.

Try to find U1, U2 ( P1
C open, connected such that

I U1 ∪ U2 = P1
C

I U0 := U1 ∩ U2 is connected

I U1 and U2 are stable under the shift operator σ

Let Fi denote the field of meromorphic functions on Ui.

Example:

U1 = {x ∈ C | Im(x) > 0}
U2 = {x ∈ C | Im(x) < 1}
U0 = {x ∈ C | 0 < Im(x) < 1}

But these sets don’t cover P1C and we won’t be able
to find a connected, σ-invariant Ũ2 in the second step
with U0 ∪ Ũ2 = P1C.
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Suitable diamonds over F = C(x)
Define F1 =

⋃
i∈N

Li

Li =meromorphic functions on Vi

Note: F1 is σ-invariant, since
L1

σ−−→ L2
σ−−→ L3 → ...

Define F2 =
⋃
i∈N

Ki

Ki =meromorphic functions on Wi

Note: F2 is σ-invariant, since
K1

σ−−→ K2
σ−−→ K3 → ...

Define F0 =
⋃
i∈N

Mi

Mi =meromorphic functions on Vi ∩Wi

Note: F0 is σ-invariant, since
M1

σ−−→M2
σ−−→M3 → ...

For all i ∈ N, (F,Li,Ki,Mi) is a diamond with the factorization property
⇒ (F, F1, F2, F0) is a diamond with the factorization property and these fields are
equipped compatibly with extensions of σ on F = C(x).
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Suitable diamonds over F = C(x) in the second induction step

Define F̃1 =
⋃
i∈N

Mi

Mi =meromorphic functions on Vi ∩Wi

Define F̃2 =
⋃
i∈N

Ni

Ni =meromorphic functions on Ui

Define F̃0 =
⋃
i∈N

M̃i

M̃i =meromorphic functions on Vi ∩Wi ∩ Ui

⇒ (F, F̃1, F̃2, F̃0) is a diamond with the factorization property and these fields are
equipped compatibly with extensions of σ on F = C(x).
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Building blocks

Let F1 =
⋃
i∈N

Li

Li =meromorphic functions on Vi

Let F0 =
⋃
i∈N

Mi

Mi =meromorphic functions on Vi ∩Wi

Building blocks: We need to construct a σ-Picard-Vessiot extension E1/F1 with
σ-Galois group H1 and E1 ⊆ F0.

First case: H1
∼= Ga. Define E1 = F1〈log( 1

x−i + 1)〉 ⊆ F0.

Use that ( 1
x−i + 1) ∈ (−∞, 0] ∪ {∞} ⇔ (x− i) ∈ [−1, 0) ∪ {0} = [−1, 0]

hence log( 1
x−i + 1) ∈M1, σ(log(...)) ∈M2, . . .

Second case: H1
∼= Gm. Define E1 = F1〈exp( 1

x−i )〉 ⊆ F0.

Third case: H1 finite cyclic of order d. Define E1 = F1〈 d

√
1
x−i + 1〉 ⊆ F0.
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