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Modal Logic Background

Modal Axioms

K �(ϕ→ ψ)→ (�ϕ→ �ψ)
T �ϕ→ ϕ
4 �ϕ→ ��ϕ
.2 ♦�ϕ→ �♦ϕ
.3 (♦ϕ ∧ ♦ψ)→ ♦[(ϕ ∧ ♦ψ) ∨ (ψ ∧ ♦ϕ)]
5 ♦�ϕ→ ϕ

Modal Theories

S4 = K + T + 4
S4.2 = K + T + 4 + .2
S4.3 = K + T + 4 + .3

S5 = K + T + 4 + 5
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Modal Logic Background

Soundness and Completeness with respect to Frame Classes

If F is a frame, a modal assertion is valid for F if it is true at all worlds of all Kripke
models having frame F , and it is valid for F at w if it is true at w in all Kripke models
having frame F .
If C is a class of frames, a modal theory is sound with respect to C if every assertion in
the theory is valid for every frame in C.
A modal theory is complete with respect to C if every assertion valid for every frame in
C is in the theory.
Finally, a modal theory is characterized by C (equivalently, C characterizes the modal
theory) if it is both sound and complete with respect to C[11, p. 40].

George Leibman Modal Logic of Forcing Classes



favicon

Modal Logic of Forcing Classes

Modal Logic Background

Theorem

The modal logic S4.3 is characterized by the class of finite linear pre-order frames.
That is, a modal assertion is derivable in S4.3 if and only if it holds in all Kripke
models having a finite linear pre-ordered frame. Cf. [2]

Theorem

[[9, theorem 11]] The modal logic S4.2 is characterized by the class of finite
pre-Boolean algebras. That is, a modal assertion is derivable in S4.2 if and only if it
holds in all Kripke models having a finite pre-Boolean algebra frame.

Theorem

The modal logic S5 is characterized by the class of finite equivalence relations with
one equivalence class (a single cluster).
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Valid Modal Logic Principles for Forcing Classes

Definitions

A set-theoretic sentence ψ is Γ-forceable or Γ-possible, written ♦Γ ψ (or simply ♦ψ), if
ψ holds in a forcing extension by some forcing notion in Γ, and ψ is Γ-necessary,
written �Γ ψ (or simply �ψ), if ψ holds in all forcing extensions by forcing notions in
Γ.
For any forcing class Γ, every assignment pi 7→ ψi of the propositional variables pi to
set-theoretical assertions ψi extends recursively to a Γ forcing translation H:L� → L∈.
H(ϕ) is called a substitution instance of the modal assertion ϕ. In this terminology,
the modal logic of Γ forcing over a model of set theory W is the set

{ϕ ∈ L� |W |= H(ϕ) for all Γ forcing translations H }.

A formula in this set is said to be a valid principle of Γ forcing.
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Valid Modal Logic Principles for Forcing Classes

Definitions

A forcing class Γ is reflexive if in every model of set theory, Γ contains the trivial
forcing poset.
The class Γ is transitive if it closed under finite iterations, in the sense that if Q ∈ Γ

and Ṙ ∈ ΓVQ , then Q ∗ Ṙ ∈ Γ.
The class Γ is closed under product forcing if, necessarily, whenever Q and R are in Γ,
then so is Q× R. Related to this, Γ is persistent if, necessarily, members of Γ are Γ

necessarily in Γ; that is, if P,Q ∈ Γ implies P ∈ ΓVQ in all models.
The class Γ is directed if whenever P,Q ∈ Γ, then there is R ∈ Γ, such that both P
and Q are factors of R by further Γ forcing, that is, if R is forcing equivalent to P ∗ Ṡ
for some Ṡ ∈ ΓVP and also equivalent to Q ∗ Ṫ for some Ṫ ∈ ΓVQ .
The class Γ has the linearity property if for any two forcing notions P,Q, then one of
them is forcing equivalent to the other one followed by additional Γ forcing; that is,

either P is forcing equivalent to Q ∗ Ṙ for some Ṙ ∈ ΓVQ or Q is forcing equivalent to

P ∗ Ṙ for some Ṙ ∈ ΓVQ . Combining these notions, we define that Γ is a linear forcing
class if Γ is reflexive, transitive and has the linearity property.
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Valid Modal Logic Principles for Forcing Classes

Theorem

1 S4 is valid for any reflexive transitive forcing class.

2 S4.2 is valid for any reflexive transitive directed forcing class.

3 S4.3 is valid for any linear forcing class.
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Γ− Labeling

Definition

Suppose that F is a transitive reflexive frame with initial world w0. A Γ-labeling of
this rooted frame for a model of set theory W is an assignment to each node w in F
an assertion Φw in the language of set theory, such that

1 The statements Φw form a mutually exclusive partition of truth in the Γ forcing
extensions of W , meaning that every such extension W [G ] satisfies exactly one
Φw .

2 Any Γ forcing extension W [G ] in which Φw is true satisfies ♦Φu if and only if
w ≤F u.

3 W |= Φw0 , where w0 is the given initial world of F .

George Leibman Modal Logic of Forcing Classes



favicon

Modal Logic of Forcing Classes

Γ− Labeling

Lemma

Suppose that w 7→ Φw is a Γ-labeling for a model of set theory W of a finite transitive
reflexive frame F with initial world w0. Then for any Kripke model M having frame F ,
there is an assignment of the propositional variables to set-theoretic assertions p 7→ ψp

such that for any modal assertion ϕ(p0, . . . , pk ),

(M,w0) |= ϕ(p0, . . . , pk ) iff W |= ϕ(ψp0 , . . . , ψpk ).

In particular, any modal assertion ϕ that fails at w0 in M also fails in W under the Γ
forcing interpretation. Consequently, the modal logic of Γ forcing over W is contained
in the modal logic of assertions valid in F at w0.

Proof.

Suppose that w 7→ Φw is a Γ-labeling of F for W , and suppose that M is a Kripke
model with frame F . Thus, we may view each w ∈ F as a propositional world in M.
For each propositional variable p, let ψp =

∨
{Φw | (M,w) |= p }. We prove, a

fortiori, that whenever W [G ] is a Γ forcing extension of W and W [G ] |= Φw , then

(M,w) |= ϕ(p0, . . . , pk ) iff W [G ] |= ϕ(ψp0 , . . . , ψpk ).

The proof is by induction on the complexity of ϕ.
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Control Statements

Switches and Buttons

Suppose that Γ is a reflexive transitive forcing class.
A switch for Γ is a statement s such that both s and ¬s are Γ necessarily possible.
A button for Γ is a statement b that is Γ necessarily possibly necessary.
In the case that S4.2 is valid for Γ, this is equivalent to saying that b is possibly
necessary. The button b is pushed when � b holds, and otherwise it is unpushed.
A finite collection of buttons and switches (or other controls of this type) is
independent if, necessarily, each can be operated without affecting the truth of the
others.
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Control Statements

Ratchets

A sequence of first-order statements r1, r2, . . . rn is a ratchet for Γ of length n if each
is an unpushed pure button for Γ, each necessarily implies the previous, and each can
be pushed without pushing the next. This is expressed formally as follows:

¬ri
�(ri → � ri )

�(ri+1 → ri )

�[¬ri+1 → ♦(ri ∧ ¬ri+1)]

A ratchet is unidirectional: any further Γ forcing can only increase the ratchet value or
leave it the same.
A ratchet is uniform if there is a formula r(x) with one free variable, such that
rα = r(α). Every finite length ratchet is uniform. A ratchet is continuous, if for every
limit ordinal λ < δ, the statement rλ is equivalent to ∀α<λ rα.
A long ratchet is a uniform ratchet 〈rα | 0 < α < ORD〉 of length ORD, with the
additional property that no Γ forcing extension satisfies all rα, so that every Γ
extension exhibits some ordinal ratchet value.
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Sample Result

Theorem

If Γ is a reflexive transitive forcing class having arbitrarily long finite ratchets over a
model of set theory W , mutually independent with arbitrarily large finite families of
switches, then the valid principles of Γ forcing over W are contained within the modal
theory S4.3.

Proof.

Suppose that Γ is a reflexive transitive forcing class with arbitrarily long finite ratchets,
mutually independent of switches over a model of set theory W . By the theorem on
valid principles of forcing classes, any modal assertion not in S4.3 must fail at an
initial world of a Kripke model M built on a finite pre-linear order frame, consisting of
a finite increasing sequence of n clusters of mutually accessible worlds
wk

0 ,w
k
1 , . . . ,w

k
nk−1. The frame order is simply wk

i ≤ w s
j if and only if k ≤ s. We may

assume that all clusters have the same size nk = 2m for fixed m.
Let r1, . . . , rn be a ratchet of length n for Γ over W , mutually independent from the m
many switches s0, . . . , sm−1. We may assume that all switches are off in W . Let r̄k be
the assertion that the ratchet value is exactly k, so that r̄0 = ¬r1, r̄k = rk ∧ ¬rk+1 for
1 ≤ k < n and r̄n = rn, and let s̄j assert for j < 2m that the pattern of switches
accords with the m binary digits of j . The required Γ labeling assigns to each world
wk
j , where k < n and j < 2m, the assertion that the ratchet value is exactly k and the

switches exhibit pattern j .
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Sample Result

Theorem

If Γ is a reflexive transitive forcing class having a long ratchet over a model of set
theory W , then the valid principles of Γ forcing over W are contained within the
modal theory S4.3.

Proof.

Suppose that 〈rα | 0 < α < ORD〉 is a long ratchet over W , that is, a uniform ratchet
control of length ORD, such that no Γ extension satisfies every rα. We may assume
the ratchet is continuous. It suffices by theorem 7 to produce arbitrarily long finite
ratchets independent from arbitrarily large finite families of switches. To do this, we
shall divide the ordinals into blocks of length ω, and think of the position within one
such a block as determining a switch pattern and the choice of block itself as another
ratchet. Specifically, every ordinal can be uniquely expressed in the form ω · α+ k,
where k < ω, and we think of this ordinal as being the kth element in the αth block.
Let si be the statement that if the current ratchet value is exactly ω · α+ k, then the
ith binary bit of k is 1. Let vα be the assertion rω·α, which expresses that the current
ratchet value is in the αth block of ordinals of length ω or higher. Since we may freely
increase the ratchet value to any higher value, we may increase the value of k while
staying in the same block of ordinals, and so the vα form themselves a ratchet,
mutually independent of the switches si . Thus, by the previous theorem, the valid
principles of Γ forcing over W are contained within S4.3.
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Sample Result

Theorem

If ZFC is consistent, then the ZFC-provably valid principles of collapse forcing
Coll = {Coll(ω, θ)|θ ∈ ORD} are exactly those in S4.3.

Proof.

(Sketch) For the lower bound, Coll is easily seen to be a linear forcing class (it
includes trivial forcing, hence reflexive; also, Coll(ω,<θ) ∗ Coll(ω,<λ) is forcing
equivalent to Coll(ω,<max{θ, λ}), so Coll is transitive.
For the upper bound, we shall show that Coll admits a long ratchet over the
constructible universe L. For each non-zero ordinal α, let rα be the statement “ℵLα is
countable.” These statements form a long ratchet for collapse forcing over the
constructible universe L, since any collapse extension L[G ] collapses an initial segment
of the cardinals of L to ω, and in any such extension in which ℵLα is not yet collapsed,
the forcing to collapse it will not yet collapse ℵLα+1. Thus, by the previous theorem,
the valid principles of collapse forcing over L are contained within S4.3. So the valid
principles of collapse forcing over L are precisely S4.3, and if ZFC is consistent, then
the ZFC-provably valid principles of collapse forcing are exactly S4.3.
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