IDENTITIES FROM THE HOLOMORPHIC PROJECTION OF MODULAR FORMS ${ }^{1}$

Cormac O'Sullivan

1. Introduction.

Set $\mathfrak{H}=\{z=x+i y \in \mathbb{C}: y>0\}$ and let Γ be the modular group

$$
P S L_{2}(\mathbb{Z})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{Z}, a d-b c=1\right\} / \pm 1
$$

The complex vector space of modular forms for Γ of weight $2 k$, denoted $\mathcal{M}_{2 k}(\Gamma)=\mathcal{M}_{2 k}$, consists of functions $f: \mathfrak{H} \rightarrow \mathbb{C}$ that satisfy

$$
f\left(\left(\begin{array}{ll}
a & b \tag{1.1}\\
c & d
\end{array}\right) z\right)=f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{2 k} f(z)
$$

for each $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ and are holomorphic on \mathfrak{H}. We also require them to be holomorphic at infinity. In other words f has the Fourier expansion $f(z)=\sum_{n=0}^{\infty} a_{n} e^{2 \pi i n z}$. If $a_{0}=0$ then $f(z)$ has exponential decay as $y \rightarrow \infty$. We term the space of such forms $\mathcal{S}_{2 k}$, the cusp forms. The spaces $\mathcal{M}_{2 k}, \mathcal{S}_{2 k}$ with $k \in \mathbb{N}$ are finite dimensional with

$$
\begin{aligned}
\operatorname{dim} \mathcal{M}_{2 k} & =\left[\frac{2 k}{12}\right]+1\left(\text { or }\left[\frac{2 k}{12}\right] \text { if } 2 k \equiv 2 \bmod 12\right) \\
\operatorname{dim} \mathcal{S}_{2 k} & =\operatorname{dim} \mathcal{M}_{2 k}-1(\text { or } 0 \text { if } 2 k \leqslant 10)
\end{aligned}
$$

For example an element of $\mathcal{M}_{2 k}$ is the Eisenstein series

$$
\begin{equation*}
E_{2 k}(z)=1-\frac{4 k}{B_{2 k}} \sum_{m=1}^{\infty} \sigma_{2 k-1}(m) q^{m} \tag{1.2}
\end{equation*}
$$

where $k \geq 2, B_{k}$ is the k th Bernoulli number, $\left(B_{2}=\frac{1}{6}, B_{4}=\frac{-1}{30}, B_{6}=\frac{1}{42}, B_{8}=\frac{-1}{30}, \ldots\right), q=e^{2 \pi i z}$ and the divisor sum $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$.

If $f \in \mathcal{M}_{k}$ and $g \in \mathcal{M}_{l}$ then $f g \in \mathcal{M}_{k+l}$ so we get the well known result $E_{4}(z) E_{4}(z)=c E_{8}(z)$ since $\operatorname{dim} \mathcal{M}_{8}=1$. Comparing Fourier expansions we obtain the identity

$$
\begin{equation*}
\sigma_{3}(n)+120 \sum_{i=1}^{n-1} \sigma_{3}(i) \sigma_{3}(n-i)=\sigma_{7}(n) \tag{1.3}
\end{equation*}
$$

for all $n \geq 1$. What kinds of identities of this type are possible in more general settings?
Acknowledgements. I would like to express my thanks to Professor K.S. Williams for sending me his preprint and to the Millennial Conference on Number Theory organizers for a very enjoyable week.

[^0]
2. The space $C^{\infty}(\Gamma \backslash \mathfrak{H}, 2 k)$.

This is the space of smooth functions Φ that transform as follows

$$
\Phi\left(\left(\begin{array}{ll}
a & b \tag{2.1}\\
c & d
\end{array}\right) z\right)=\left(\frac{c z+d}{|c z+d|}\right)^{2 k} \Phi(z)
$$

For example if $f \in \mathcal{M}_{2 k}$ then $y^{k} f(z) \in C^{\infty}(\Gamma \backslash \mathfrak{H}, 2 k)$. For elements $\Phi_{1}, \Phi_{2} \in C^{\infty}(\Gamma \backslash \mathfrak{H}, 2 k)$ that do not grow large too quickly we have the inner product

$$
\begin{equation*}
\left\langle\Phi_{1}, \Phi_{2}\right\rangle=\int_{\Gamma \backslash \mathfrak{H}} \Phi_{1}(z) \overline{\Phi_{2}(z)} d \mu z \tag{2.2}
\end{equation*}
$$

where $d \mu z=\frac{d x d y}{y^{2}}$. Also available are the Maass raising and lowering operators $R_{2 k}=2 i y \frac{d}{d z}+k$ and $L_{2 k}=-2 i y \frac{d}{d \bar{z}}-k$ where

$$
\begin{aligned}
R_{2 k}: C^{\infty}(\Gamma \backslash \mathfrak{H}, 2 k) & \rightarrow C^{\infty}(\Gamma \backslash \mathfrak{H}, 2 k+2), \\
L_{2 k} & : C^{\infty}(\Gamma \backslash \mathfrak{H}, 2 k)
\end{aligned} \rightarrow C^{\infty}(\Gamma \backslash \mathfrak{H}, 2 k-2) .
$$

Finally we may also define the weight $2 k$ hyperbolic Laplacian $\Delta_{2 k}=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+2 i k y \frac{\partial}{\partial x}$. It is related to the raising and lowering operators as follows,

$$
\begin{align*}
\Delta_{2 k} & =-L_{2 k+2} R_{2 k}-k(1+k), \tag{2.3}\\
& =-R_{2 k-2} L_{2 k}+k(1-k) \tag{2.4}
\end{align*}
$$

See $[\mathrm{Bu}]$ chapter 2 for more details.

3. Holomorphic projection.

To construct identities we need to project our results into the finite dimensional space $\mathcal{M}_{2 k}$. Define the Poincare series

$$
\begin{equation*}
\left.P_{m}(z, 2 k)=\sum_{\substack{a b \\ c \\ c \\ d}}\right) \in \Gamma_{\infty} \backslash \Gamma . \tag{3.1}
\end{equation*}
$$

for $k \geq 2$ and $\Gamma_{\infty}=\{\gamma \in \Gamma: \gamma \infty=\infty\}$. It is a cusp form in $\mathcal{S}_{2 k}$ for $m \geq 1$ and for any other $f \in \mathcal{S}_{2 k}$ we have

$$
\left\langle y^{k} f(z), y^{k} P_{m}(z, 2 k)\right\rangle=a_{m} \frac{(2 k-2)!}{(4 \pi m)^{2 k-1}}
$$

with a_{m} the m th Fourier coefficient of $f(z)$. We may use this feature of the Poincare series to define a projection map $\pi_{h o l}: C^{\infty}(\Gamma \backslash \mathfrak{H}, 2 k) \rightarrow \mathcal{M}_{2 k}$.
Lemma 3.1. For $\Phi \in C^{\infty}(\Gamma \backslash \mathfrak{H}, 2 k)$ satisfying $\frac{1}{y^{k}} \Phi(z)=c_{0}+O\left(y^{-\varepsilon}\right)$ as $y \rightarrow \infty$ with $k \geq 2$ and $\varepsilon>0$ set

$$
\pi_{h o l}(\Phi(z))=c_{0}+\sum_{m=1}^{\infty}\left\langle\Phi(z), y^{k} P_{m}(z, 2 k)\right\rangle \frac{(4 \pi m)^{2 k-1}}{(2 k-2)!} q^{m}
$$

Then $\pi_{\text {hol }}(\Phi(z)) \in \mathcal{M}_{2 k}$ and $\left\langle y^{k} f(z), \Phi\right\rangle=\left\langle y^{k} f(z), y^{k} \pi_{h o l} \Phi\right\rangle$ for every $f \in \mathcal{S}_{2 k}$.
Note that if $g(z)$ is already an element of $\mathcal{M}_{2 k}$ then $\pi_{h o l}\left(y^{k} g(z)\right)=g(z)$ and in that sense it is a projection. This idea originated in [St]. See [Za1] for a proof of the above lemma.

So we are led to the following question. What kinds of identities are possible using
(i) Multiplication : $M_{2 k}(\Gamma) \times M_{2 l}(\Gamma) \rightarrow M_{2 k+2 l}(\Gamma)$,
(ii) $R_{2 k}: C^{\infty}(\Gamma \backslash \mathfrak{H}, 2 k) \rightarrow C^{\infty}(\Gamma \backslash \mathfrak{H}, 2 k+2)$,
(iii) $L_{2 k}: C^{\infty}(\Gamma \backslash \mathfrak{H}, 2 k) \rightarrow C^{\infty}(\Gamma \backslash \mathfrak{H}, 2 k-2)$ and
(iv) $\pi_{h o l}: C^{\infty}(\Gamma \backslash \mathfrak{H}, 2 k) \rightarrow M_{2 k}(\Gamma)$?

4. Repeatedly raising and lowering holomorphic modular forms.

To see what happens when we repeatedly apply the Maass raising operator it is useful to re-express things in terms of the simpler operator $D_{R}=2 i y^{2} \frac{d}{d z}$. We obtain

$$
\begin{equation*}
R_{2(k+n-1)} R_{2(k+n-2)} \ldots R_{2 k}=\sum_{j=0}^{n}\binom{n}{j} \frac{(j+k-1)!}{(k-1)!} y^{j-n} D_{R}^{n-j} \tag{4.1}
\end{equation*}
$$

for $k>0$ and $R_{2(n-1)} \ldots R_{0}=y^{-n} D_{R}^{n}$.
Similarly for the lowering operator we have

$$
\begin{equation*}
L_{2(k-n+1)} L_{2(k-n+2)} \ldots L_{2 k}=(-1)^{n} \sum_{j=0}^{n}\binom{n}{j} \frac{k!}{(k-j)!} y^{j-n} D_{L}^{n-j} \tag{4.2}
\end{equation*}
$$

for $k \geq n+1$ and $D_{L}=2 i y^{2} \frac{d}{d \bar{z}}$. Formulas (4.1) and (4.2) may be verified by induction. For convenience, when it is clear that we are dealing with an element of $C^{\infty}(\Gamma \backslash \mathfrak{H}, 2 k)$, we shall write R^{n} instead of $R_{2(k+n-1)} R_{2(k+n-2)} \ldots R_{2 k}$ and L^{n} for $L_{2(k-n+1)} L_{2(k-n+2)} \ldots L_{2 k}$.

4.1. Lowering modular forms.

For $f(z)=\sum_{m=0}^{\infty} a_{m} q^{m} \in \mathcal{M}_{2 k}$ we compute $L^{n} y^{k} f(z)$. Actually the answer is rather easy because

$$
\begin{aligned}
L_{2 k} y^{k} f(z) & =\left(-2 i y \frac{d}{d \bar{z}}-k\right) y^{k} f(z) \\
& =-2 i y\left(\frac{d}{d \bar{z}} y^{k}\right) f(z)-2 i y^{k+1} \frac{d}{d \bar{z}} f(z)-k y^{k} f(z)=0
\end{aligned}
$$

Therefore $L^{n} y^{k} f(z)=0$ for any $n>0$. On the level of the Fourier coefficients we have the following.

$$
\begin{aligned}
L^{n} y^{k} f(z) & =\sum_{m=0}^{\infty} a_{m}\left((-1)^{n} \sum_{j=0}^{n}\binom{n}{j} \frac{k!}{(k-j)!} y^{j-n} D_{L}^{n-j}\left(y^{k} q^{m}\right)\right) \\
& =\sum_{m=0}^{\infty} a_{m} q^{m}\left((-1)^{n} \sum_{j=0}^{n}\binom{n}{j} \frac{k!}{(k-j)!} y^{j-n} y^{k+n-j}(-1)^{n-j} \frac{(k+n-j-1)!}{(k-1)!}\right)
\end{aligned}
$$

since $D_{L}^{n}\left(y^{k} q^{m}\right)=y^{k+n}(-1)^{n} \frac{(k+n-1)!}{(k-1)!} q^{m}$. On simplifying we see that we must have the identity

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}(k-j+1)_{n-1}=0 \tag{4.3}
\end{equation*}
$$

for $n \geq 1$ where we define

$$
(a)_{m}=\frac{\Gamma(a+m)}{\Gamma(a)}= \begin{cases}1 & \text { if } m=0 \tag{4.4}\\ (a)(a+1) \ldots(a+m-1) & \text { if } m>0\end{cases}
$$

We can prove this more directly. One method is to consider $\frac{d^{m}}{d x^{m}}(1+x)^{n} x^{r}$ at $x=-1$. This may be evaluated in two ways. First use the binomial expansion of $(1+x)^{n}$ to get

$$
\sum_{i=0}^{n}\binom{n}{i}(r-m+i+1)_{m}(-1)^{i+r-m}
$$

Secondly use Leibnitz' formula to show that

$$
\frac{d^{m}}{d x^{m}}(1+x)^{n} x^{r}=\sum_{i=0}^{m}\binom{m}{i}(n-i+1)_{i}(1+x)^{n-i}(r-m+i+1)_{m-i} x^{r-m+i}
$$

At $x=-1$ the only non-zero term is when $i=n$ (provided $m \geq n$) and so we obtain

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(r-m+i+1)_{m}= \begin{cases}(-1)^{n} \frac{m!}{(m-n)!}(r-m+n+1)_{m-n} & m \geq n \tag{4.5}\\ 0 & m<n\end{cases}
$$

Replace i by $n-i$ and set $m=n-1, k=r+1$ to see (4.3).

4.2. Raising modular forms.

As in the previous example apply (4.1) and the formula

$$
\begin{equation*}
D_{R}^{n}\left(y^{k} q^{m}\right)=y^{k+n} \sum_{l=0}^{n}(-1)^{l}\binom{n}{l} \frac{(k+n-1)!}{(k+l-1)!} y^{l}(4 \pi m)^{l} q^{m} \tag{4.6}
\end{equation*}
$$

to get

$$
R^{n} y^{k} f(z)=\sum_{m=1}^{\infty} a_{m} q^{m} \sum_{l=0}^{n} M_{l}(n, k)(4 \pi m)^{l} y^{k+l}
$$

for $f(z)=\sum_{m=1}^{\infty} a_{m} q^{m}$ with

$$
M_{l}(n, k)=(-1)^{l} \frac{n!}{l!} \sum_{j=0}^{n-l}\binom{j+k-1}{j}\binom{k+n-j-1}{k+l-1}
$$

Now for $p, l \geq 0$ we have the identity

$$
\begin{equation*}
\sum_{j=0}^{m}\binom{p+j}{p}\binom{p+l+m-j}{p+l}=\binom{2 p+l+m+1}{2 p+l+1} \tag{4.7}
\end{equation*}
$$

To see this note that $\sum_{j=0}^{\infty}\binom{p+j}{p} x^{j}=\frac{1}{(1-x)^{p+1}}$ for $|x|<1$. Consequently

$$
\sum_{i=0}^{\infty}\binom{p+i}{p} x^{i} \sum_{j=0}^{\infty}\binom{p+l+j}{p+l} x^{j}=\frac{1}{(1-x)^{p+1+p+l+1}}=\sum_{j=0}^{\infty}\binom{2 p+l+1+j}{2 p+l+1} x^{j}
$$

and comparing the coefficients of x^{m} on the above line yields (4.7). Thus $M_{l}(n, k)=(-1)^{l} \frac{n!}{l!}\binom{2 k-1+n}{2 k-1+l}$ and

$$
\begin{equation*}
R^{n} y^{k} f(z)=\sum_{m=1}^{\infty} a_{m} q^{m} \sum_{l=0}^{n} \frac{n!}{l!}\binom{2 k-1+n}{2 k-1+l}(-4 \pi m)^{l} y^{k+l} \tag{4.8}
\end{equation*}
$$

If $f(z)=\sum_{m=0}^{\infty} a_{m} q^{m} \in \mathcal{M}_{2 k}$ then the above formula remains true with a small alteration. Define

$$
E(m, l)= \begin{cases}m^{l} & \text { if } m>0 \text { or } l>0 \tag{4.9}\\ 1 & \text { if } m=0 \text { and } l=0\end{cases}
$$

Then

$$
\begin{equation*}
R^{n} y^{k} f(z)=\sum_{m=0}^{\infty} a_{m} q^{m} \sum_{l=0}^{n}(-4 \pi)^{l} \frac{n!}{l!}\binom{2 k-1+n}{2 k-1+l} E(m, l) y^{k+l} \tag{4.10}
\end{equation*}
$$

To work out the holomorphic projection of $R^{n} y^{k} f(z)$ and similar functions we use the next result.
Lemma 4.1. For $\Phi \in C^{\infty}(\Gamma \backslash \mathfrak{H}, 2 k)$ with

$$
\Phi(z)=\sum_{m=0}^{\infty} u_{m}(y) q^{m}, \quad u_{m}(y)=\sum_{i=0}^{r_{m}} v_{m}(i) y^{l_{m}(i)}
$$

and $l_{0}(i) \leq k$ then $\pi_{h o l} \Phi(z)=\sum_{m=0}^{\infty} c_{m} q^{m}$ where c_{0} is the constant part of $\frac{1}{y^{k}} u_{0}(y)$ and for $m \geq 1$

$$
c_{m}=\sum_{i=0}^{r_{m}} v_{m}(i) \frac{\Gamma\left(l_{m}(i)+k-1\right)}{(2 k-2)!}(4 \pi m)^{k-l_{m}(i)} .
$$

Proof. To compute the c_{m} we evaluate $\left\langle\Phi, y^{k} P_{m}\right\rangle$ by unfolding it.

$$
\left.\begin{array}{rl}
\left\langle\Phi(z), y^{k} P_{m}(z, 2 k)\right\rangle & =\int_{\Gamma \backslash \mathfrak{H}} \Phi(z) y^{k} \overline{P_{m}(z, 2 k)} d \mu z \\
& =\int_{\Gamma \backslash \mathfrak{H}} \Phi(z) y^{k} \sum_{\binom{a}{c} \in \Gamma_{\infty} \backslash \Gamma} \overline{(c z+d)^{-2 k}} e^{2 \pi i m \gamma z} d \mu z \\
& =\int_{\Gamma \backslash \mathfrak{H}} \sum_{\binom{a}{c}} \Phi(\gamma z) \operatorname{Im}(\gamma z)^{k} \overline{(c z+d)^{-2 k}} e^{2 \pi i m \gamma z}
\end{array}\right] \mu z .
$$

The result follows by applying lemma 3.1.
Set $\Phi(z)=R^{n} y^{k} f(z)$ for $f(z)=\sum_{m=1}^{\infty} a_{m} q^{m} \in \mathcal{S}_{2 k}$. Then $\Phi \in C^{\infty}(\Gamma, 2(n+k))$ and we have by (4.8) that $\Phi(z)=\sum_{m=1}^{\infty} u_{m}(y) q^{m}$ with $u_{m}(y)=\sum_{i=0}^{r_{m}} v_{m}(i) y^{l_{m}(i)}$ where $r_{m}=n, v_{m}(i)=a_{m} \frac{n!}{i!}\binom{2 k-1+n}{2 k-1+i}(-4 \pi m)^{i}$ and $l_{m}(i)=k+i$. Thus $\pi_{h o l}\left(R^{n} y^{k} f(z)\right)=\pi_{h o l}(\Phi(z))=\sum_{m=1}^{\infty} c_{m} q^{m}$ with

$$
\begin{equation*}
c_{m}=a_{m}(4 \pi m)^{n} \sum_{i=0}^{n}(-1)^{i} \frac{n!}{i!}\binom{2 k-1+n}{2 k-1+i} \frac{(2 k+n+i-2)!}{(2 k+2 n-2)!} . \tag{4.11}
\end{equation*}
$$

As with the previous example we must have $\pi_{h o l}\left(R^{n} y^{k} f(z)\right)=0$. This time the reason is that

$$
\begin{align*}
\left\langle R_{2 k} \Phi(z), y^{k} P_{m}(z, 2 k+2)\right\rangle & =\left\langle\Phi(z),-L_{2 k+2} y^{k} P_{m}(z, 2 k+2)\right\rangle \tag{4.12}\\
& =\langle\Phi(z), 0\rangle=0 .
\end{align*}
$$

This shows that $\pi_{\text {hol }}$ composed with the raising operator is identically zero. (See [Bu] Prop. 2.1.3 for the above relation between $R_{2 k}$ and $-L_{2 k+2}$.) Therefore each $c_{m}=0$ and we obtain the identity

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(2 k+i)_{n-1}=0
$$

which may be verified for $n \geq 1$ with (4.5).

5. Raising Maass forms.

A Maass form is an element $\eta(z, s)$ of $C^{\infty}(\Gamma \backslash \mathfrak{H}, 2 k)$ that is an eigenfunction of the Laplacian $\Delta_{2 k}$ so that

$$
\begin{equation*}
\Delta_{2 k} \eta=\lambda \eta=s(1-s) \eta \tag{5.1}
\end{equation*}
$$

Maass cusp forms have zero constant terms in their Fourier expansions and are non holomorphic analogs of the elements of $\mathcal{S}_{2 k}$. From (5.1) it may be shown that a Maass cusp form of weight $2 k=0$ has Fourier expansion

$$
\begin{equation*}
\eta(z, s)=\sum_{m \neq 0} b_{m} \sqrt{|m| y} K_{s-1 / 2}(2 \pi|m| y) e^{2 \pi i m x} \tag{5.2}
\end{equation*}
$$

where K is the K Bessel function and we are summing over all non zero integers. See [Bu], [Iw] for example. To find $R^{n} \eta(z, s)$ we first need to compute $D_{R}^{n}\left(y^{1 / 2} K_{v}(2 \pi|m| y) e(m x)\right)$ for $v=s-1 / 2$. Use the fact that $\frac{d}{d y} K_{v}(y)=-1 / 2\left(K_{v-1}(y)+K_{v+1}(y)\right)$ to show that

$$
D_{R}^{n}\left(y^{1 / 2} K_{v}(2 \pi|m| y) e(m x)\right)=\sum_{i=0}^{n} \sum_{j=-i}^{i} \alpha_{j}^{n}(i) y^{1 / 2+n+i} K_{v+j}(2 \pi|m| y) e(m x)
$$

The numbers $\alpha_{j}^{n}(i)$ depend on m and may be defined recursively. (Note that the superscript n is an index not an exponent.) For $n=0$ we have $\alpha_{j}^{0}(i)=0$ unless $i=j=0$ in which case $\alpha_{0}^{0}(0)=1$. For $n \geq 0$ and $\delta=|m| m^{-1}$ we have

$$
\alpha_{j}^{n+1}(i)=-\pi m\left(\delta \alpha_{j-1}^{n}(i-1)+2 \alpha_{j}^{n}(i-1)+\delta \alpha_{j+1}^{n}(i-1)\right)+(i+n+1 / 2) \alpha_{j}^{n}(i) .
$$

Setting $\beta_{j}^{n}(i)=\frac{(-2)^{n} \delta^{j}}{(2 \pi m)^{i}} \alpha_{j}^{n}(i)$ removes the m dependance and

$$
\beta_{j}^{n+1}(i)=\beta_{j-1}^{n}(i-1)+2 \beta_{j}^{n}(i-1)+\beta_{j+1}^{n}(i-1)-(2 i+2 n+1) \beta_{j}^{n}(i)
$$

To isolate the dependance on j set $\beta_{j}^{n}(i)=(-1)^{n+i} \gamma_{i}^{n}\binom{2 i}{j+i}$ to obtain the relation

$$
\begin{equation*}
\gamma_{i}^{n+1}=\gamma_{i-1}^{n}+(2 i+2 n+1) \gamma_{i}^{n} \tag{5.3}
\end{equation*}
$$

We may solve the recurrence (5.3) with the initial conditions $\gamma_{0}^{0}=1$ and $\gamma_{i}^{0}=0$ for $i \neq 0$ to get

$$
\gamma_{i}^{n}=\frac{(2 n)!}{(n+i)!(2 i)!2^{n-i}} \quad \text { for } n \geqslant 1,0 \leqslant i \leqslant n
$$

Therefore

$$
\begin{equation*}
\alpha_{j}^{n}(i)=(-4 \pi m)^{i} \frac{(2 n)!\delta^{j}}{(i+j)!(i-j)!(n-i)!} \tag{5.4}
\end{equation*}
$$

and

$$
\begin{align*}
R^{n} \eta(z, s) & =y^{-n} D_{R}^{n} \eta(z, s)=\sum_{m \neq 0} b_{m} \sqrt{|m|} y^{-n} D_{R}^{n}\left(K_{v}(2 \pi|m| y) e(m x)\right) \\
& =\sum_{m \neq 0} b_{m} \sqrt{|m|} \sum_{i=0}^{n} \frac{(-4 \pi m)^{i}}{(n-i)!} y^{i+\frac{1}{2}} \sum_{j=-i}^{i} \frac{(2 n)!\left(|m| m^{-1}\right)^{j}}{(i+j)!(i-j)!} K_{v+j}(2 \pi|m| y) e(m x) \tag{5.5}
\end{align*}
$$

Incidentally, with (2.3) and (2.4) we can show that $R^{n} \eta$ is an eigenfunction of $\Delta_{2 n}$ if and only if η is an eigenfunction of Δ_{0}. This means that every Maass cusp form of weight $2 n$ and eigenvalue $1 / 4-v^{2}$ has the Fourier expansion (5.5).

6. Holomorphic projection of raised Maass forms.

As we have seen (4.12) forces $\pi_{h o l}\left(R^{n} \eta(z, s)\right)$ to be zero. To see how the Fourier coefficients vanish we calculate $\left\langle R^{n} \eta(z, s), y^{n} P_{m}(z, 2 n)\right\rangle$. Use the fact that

$$
\begin{equation*}
\int_{0}^{\infty} x^{r-1} K_{v}(x) e^{-x} d x=2^{-r} \pi^{1 / 2} \Gamma(r+1 / 2)^{-1} \Gamma(r+v) \Gamma(r-v) \tag{6.1}
\end{equation*}
$$

for $\operatorname{Re}(r)>|\operatorname{Re}(v)|$ to get $\left\langle R^{n} \eta(z, s), y^{n} P_{m}(z, 2 n)\right\rangle$ equaling

$$
\frac{b_{m}}{2}(4 \pi m)^{1-n} \sum_{i=0}^{n} \frac{(-1)^{i}(2 n)!}{(n-i)!} \sum_{j=-i}^{i} \frac{\Gamma\left(n+v+i+j-\frac{1}{2}\right) \Gamma\left(n-v+i-j-\frac{1}{2}\right)}{(i+j)!(i-j)!\Gamma(n+i)}
$$

Consequently $\pi_{h o l}\left(R^{n} \eta(z, s)\right)=\sum_{m=1}^{\infty} c_{m} q^{m}$ with c_{m} given by

$$
\frac{b_{m}}{2}(4 \pi m)^{n} \sum_{i=0}^{n} \frac{(-1)^{i} 2 n(2 n-1)}{(n+i-1)(n-i)!} \sum_{j=-i}^{i} \frac{\Gamma\left(n+v+i+j-\frac{1}{2}\right) \Gamma\left(n-v+i-j-\frac{1}{2}\right)}{(i+j)!(i-j)!}
$$

To check that this is indeed zero we'll prove it by hand.

Lemma 6.1. For $n \geq 1, v \in \mathbb{C}$

$$
\sum_{i=0}^{n} \frac{(-1)^{i}}{(n+i-1)!(n-i)!} \sum_{j=-i}^{i} \frac{\Gamma\left(n+v+i+j-\frac{1}{2}\right) \Gamma\left(n-v+i-j-\frac{1}{2}\right)}{(i+j)!(i-j)!}=0
$$

Proof. Note that $(1+x)^{s}=\sum_{l=0}^{\infty}\binom{s}{l} x^{l}$ is valid for all $-1<x<1$ and $s \in \mathbb{C}$ if we set $\binom{s}{l}=\frac{\Gamma(s+1)}{\Gamma(s-l+1) \Gamma(l+1)}$ and use the usual conventions for defining x^{s}. With the formula $\frac{\Gamma(l-s)}{l!}=\Gamma(-s)(-1)^{l}\binom{s}{l}$ for $l \in \mathbb{N}$ we see that

$$
\sum_{l=0}^{2 i} \frac{\Gamma(n+s+l-1) \Gamma(n+2 i-l-s)}{l!(2 i-l)!}=\Gamma(n+s-1) \Gamma(n-s) \sum_{l=0} 2 i\binom{-n-s+1}{l}\binom{-n+s}{2 i-l}
$$

Also, since $\sum_{l=0}^{\infty}\binom{-n-s+1}{l} x^{l}=(1+x)^{-n-s+1}$ and $\sum_{l=0}^{\infty}\binom{-n+s}{l} x^{l}=(1+x)^{-n+s}$ their product is $(1+x)^{1-2 n}$ implying that the coefficient of $x^{2 i}$ in the above is

$$
\sum_{l=0}^{2 i}\binom{-n-s+1}{l}\binom{-n+s}{2 i-l}=\binom{1-2 n}{2 i}=\binom{2 n+2 i-2}{2 i}
$$

Therefore, to finish the proof, it suffices to show that

$$
\begin{equation*}
S=\sum_{i=0}^{n}(-1)^{i}\binom{2 n-1}{n-i}\binom{2 n+2 i-2}{2 i}=0 \tag{6.2}
\end{equation*}
$$

By adapting the identity following (4.7) we have that

$$
\sum_{l=0}^{\infty}\binom{2 n-2+2 l}{2 l} x^{l}=\frac{1}{2}\left((1-\sqrt{x})^{-2 n+1}+(1+\sqrt{x})^{-2 n+1}\right)
$$

Also $\sum_{l=0}^{\infty}\binom{2 n-1}{l}(-x)^{l}=(1-x)^{2 n-1}$ so that S is the coefficient of x^{n} in the product

$$
\begin{aligned}
& \frac{1}{2}\left((1-\sqrt{x})^{-2 n+1}+(1+\sqrt{x})^{-2 n+1}\right)(1-x)^{2 n-1} \\
& \quad=\frac{1}{2}\left((1+\sqrt{x})^{2 n-1}+(1-\sqrt{x})^{2 n-1}\right) \\
& \quad=\sum_{i=0}^{n-1}\binom{2 n-1}{2 i} x^{i}
\end{aligned}
$$

Thus $S=0$ completing the proof.
The identity (6.2) also appears as a special case of the identity on p 37 of [Ri].

7. Projecting products of raised modular forms.

In order to get a non zero projection we try the following. For $f=\sum a_{m} q^{m} \in \mathcal{M}_{2 k_{1}}, g=\sum b_{m} q^{m} \in \mathcal{M}_{2 k_{2}}$ we examine

$$
\pi_{h o l}\left(R^{n_{1}} y^{k_{1}} f(z) \cdot R^{n_{2}} y^{k_{2}} g(z)\right)
$$

Clearly it is an element of $\mathcal{M}_{2(K+N)}$ for $K=\sum_{i} k_{i}, N=\sum_{i} n_{i}$. From (4.10) we derive

$$
R^{n_{1}} y^{k_{1}} f(z) \cdot R^{n_{2}} y^{k_{2}} g(z)=\sum_{m=0}^{\infty} u_{m}(y) q^{m}
$$

with

$$
\begin{gather*}
u_{m}(y)=\sum_{l_{1}=0}^{n_{1}} \sum_{l_{2}=0}^{n_{2}}(4 \pi)^{L}(-1)^{L} \frac{n_{1}!n_{2}!}{l_{1}!l_{2}!}\binom{2 k_{1}-1+n_{1}}{n_{1}-l_{1}}\binom{2 k_{2}-1+n_{2}}{n_{2}-l_{2}} \\
\times y^{K+L} \sum_{j=0}^{m} a_{j} b_{m-j} E\left(j, l_{1}\right) E\left(m-j, l_{2}\right) \tag{7.1}
\end{gather*}
$$

where $L=\sum_{i} l_{i}$. (This convention for N, K and L will be in place from now on.) If we label the inner sum $T_{m}^{*}\left(l_{1}, l_{2} ; f, g\right)$ then

$$
\begin{equation*}
T_{m}^{*}\left(l_{1}, l_{2} ; f, g\right)=T_{m}\left(l_{1}, l_{2} ; f, g\right)+a_{0} b_{m} E\left(0, l_{1}\right) E\left(m, l_{2}\right)+a_{m} b_{0} E\left(m, l_{1}\right) E\left(0, l_{2}\right) \tag{7.2}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{m}\left(l_{1}, l_{2} ; f, g\right)=\sum_{j=1}^{m-1} a_{j} b_{m-j} j^{l_{1}}(m-j)^{l_{2}} \tag{7.3}
\end{equation*}
$$

Finally, applying lemma 4.1, we have that $\pi_{h o l}\left(R^{n_{1}} y^{k_{1}} f(z) \cdot R^{n_{2}} y^{k_{2}} g(z)\right)=\sum_{m=0}^{\infty} c_{m} q^{m}$ with

$$
\begin{align*}
& c_{m}=(4 \pi)^{N} \sum_{l_{1}=0}^{n_{1}} \sum_{l_{2}=0}^{n_{2}}(-1)^{L} \frac{n_{1}!n_{2}!}{l_{1}!l_{2}!}\binom{2 k_{1}-1+n_{1}}{n_{1}-l_{1}}\binom{2 k_{2}-1+n_{2}}{n_{2}-l_{2}} \\
& \quad \times \frac{(2 K+N+L-2)!}{(2 K+2 N-2)!} m^{N-L} T_{m}^{*}\left(l_{1}, l_{2} ; f, g\right) \tag{7.4}
\end{align*}
$$

for $m \geq 1$ and $c_{0}=(-4 \pi)^{N} a_{0} b_{0} E\left(0, n_{1}\right) E\left(0, n_{2}\right)$. Hence $c_{0}=0$ unless $n_{1}=n_{2}=0$ and in that case $c_{0}=a_{0} b_{0}$. So we see that the differential operator $\mathcal{P}_{n_{1}, n_{2}}$ defined by

$$
\begin{equation*}
\mathcal{P}_{n_{1}, n_{2}}(f, g)=(4 \pi)^{-N} \pi_{h o l}\left(R^{n_{1}} y^{k_{1}} f(z) \cdot R^{n_{2}} y^{k_{2}} g(z)\right) \tag{7.5}
\end{equation*}
$$

gives a map $\mathcal{P}_{n_{1}, n_{2}}: \mathcal{M}_{2 k_{1}} \times \mathcal{M}_{2 k_{2}} \rightarrow \mathcal{S}_{2(N+K)}$ for $\left(n_{1}, n_{2}\right) \neq(0,0)$. For $n_{1}=n_{2}=0$ we have $\mathcal{P}_{0,0}(f, g)=f g$. Examples in section 9 show that this map is not identically zero.

8. Rankin-Cohen differential operators.

The map \mathcal{P} above is similar to a construction of Cohen in [Co]. For $f \in \mathcal{M}_{2 k_{1}}, g \in \mathcal{M}_{2 k_{2}}$ he shows that

$$
\begin{equation*}
\mathcal{F}_{N}(f, g)=(2 \pi i)^{-N} \sum_{i=0}^{N}(-1)^{i}\binom{2 k_{1}-1+N}{N-i}\binom{2 k_{2}-1+N}{i} \partial_{z}^{i} f \partial_{z}^{N-i} g \tag{8.1}
\end{equation*}
$$

is an element of $\mathcal{M}_{2(K+N)}$ where ∂_{z}^{i} means $\frac{d^{i}}{d z^{i}}$.
How are \mathcal{F} and \mathcal{P} related? In fact it's not hard to show that \mathcal{F}_{N} is a certain average of the $\mathcal{P}_{n_{1}, n_{2}} \mathrm{~s}$.
Proposition 8.1. For every $f \in \mathcal{M}_{2 k_{1}}, g \in \mathcal{M}_{2 k_{2}}$

$$
\begin{equation*}
(-1)^{N} \sum_{i=0}^{N}(-1)^{i}\binom{2 k_{1}-1+N}{N-i}\binom{2 k_{2}-1+N}{i} \mathcal{P}_{i, N-i}(f, g)=\mathcal{F}_{N}(f, g) \tag{8.2}
\end{equation*}
$$

Proof. If $N=0$ then the proposition is true. For $N \geq 1$ we may write the left hand side of (8.2) as $\sum_{m=1}^{\infty} d_{m} q^{m}$ with, after simplifying,

$$
d_{m}=\sum_{i=0}^{N}(-1)^{i}\binom{2 k_{1}-1+N}{N-i}\binom{2 k_{2}-1+N}{i} T_{m}^{*}(i, N-i ; f, g)
$$

The Fourier coefficients of the right hand side are identical.
As with \mathcal{F}, \mathcal{P} may be expressed in terms of the derivatives of the modular forms.

Proposition 8.2. For every $f \in \mathcal{M}_{2 k_{1}}, g \in \mathcal{M}_{2 k_{2}}$

$$
\begin{gather*}
\mathcal{P}_{n_{1}, n_{2}}(f, g)=(2 \pi i)^{-N} \sum_{l_{1}=0}^{n_{1}} \sum_{l_{2}=0}^{n_{2}}(-1)^{L} \frac{n_{1}!n_{2}!}{l_{1}!l_{2}!}\binom{2 k_{1}-1+n_{1}}{n_{1}-l_{1}}\binom{2 k_{2}-1+n_{2}}{n_{2}-l_{2}} \\
\times \frac{(2 K+N+L-2)!}{(2 K+2 N-2)!} \partial_{z}^{N-l_{1}-l_{2}}\left(\partial_{z}^{l_{1}} f \partial_{z}^{l_{2}} g\right) \tag{8.3}
\end{gather*}
$$

Proof. Compare Fourier coefficients.
Rankin in [Ran1],[Ran2] considers the general question of which polynomials in the derivatives of modular forms are again modular forms. His operator in [Ran3] includes \mathcal{F} as a special case. It is formulated as follows. Set $r \geqslant 2$ and label r modular forms $f_{i} \in \mathcal{M}_{2 k_{i}}$ for $1 \leqslant i \leqslant r$. Also define

$$
\begin{aligned}
V(r, N) & =\left\{\left(v_{1}, v_{2}, \ldots, v_{r}\right): v_{i} \in \mathbb{N}, \sum_{i} v_{i}=N\right\} \\
U(r) & =\left\{\left(u_{1}, u_{2}, \ldots, u_{r}\right): u_{i} \in \mathbb{C}, \sum_{i} u_{i}=0\right\}
\end{aligned}
$$

then, for a fixed $u \in U(r)$,

$$
\begin{equation*}
(2 \pi i)^{-N} \sum_{v \in V(r, N)} \frac{\partial^{v_{1}} f_{1}}{\left(2 k_{1}-1+v_{1}\right)!v_{1}!} \cdots \frac{\partial^{v_{r}} f_{r}}{\left(2 k_{r}-1+v_{r}\right)!v_{r}!} u_{1}^{v_{1}} \ldots u_{r}^{v_{r}} \tag{8.4}
\end{equation*}
$$

which we'll denote by $\mathcal{G}_{N}\left(f_{1}, f_{2}, \ldots, f_{r}\right)$ is an element of $\mathcal{M}_{2(K+N)}$. This operator may also be expressed as an average, this time of

$$
\begin{equation*}
\mathcal{P}_{n_{1}, \ldots, n_{r}}\left(f_{1}, \ldots f_{r}\right)=(4 \pi)^{-N} \pi_{h o l}\left(R^{n_{1}} y^{k_{1}} f_{1}(z) \cdots R^{n_{r}} y^{k_{r}} f_{r}(z)\right) \tag{8.5}
\end{equation*}
$$

Proposition 8.3. With the above notation $\mathcal{G}_{N}\left(f_{1}, \cdots, f_{r}\right)$ equals

$$
(-1)^{N} \sum_{v \in V(r, N)} \frac{u_{1}^{v_{1}}}{\left(2 k_{1}-1+v_{1}\right)!v_{1}!} \cdots \frac{u_{r}^{v_{r}}}{\left(2 k_{r}-1+v_{r}\right)!v_{r}!} \mathcal{P}_{v_{1}, \ldots, v_{r}}\left(f_{1}, \ldots, f_{r}\right) .
$$

Proof. Same as proposition 8.1.
For more information on Rankin-Cohen differential operators see [Za1], [Za2]. Similar operators for Siegel modular forms are constructed in [Eh-Ib].

9. Convolution sums involving the divisor function.

We give a straightforward application of this material to finding explicit formulas for the sums

$$
\begin{equation*}
S_{m}\left(n_{1}, n_{2} ; r_{1}, r_{2}\right)=\sum_{j=1}^{m-1} j^{n_{1}}(m-j)^{n_{2}} \sigma_{r_{1}}(j) \sigma_{r_{2}}(m-j) \tag{9.1}
\end{equation*}
$$

Glaisher [Gl], Ramanujan [Ram] (pp 136-162) and Lahiri [La] were the first to systematically evaluate S_{m} for small values of $n_{1}, n_{2}, r_{1}, r_{2}$. Ramanujan manipulated the expressions

$$
\begin{equation*}
P=1-24 \sum_{m=1}^{\infty} \frac{m q^{m}}{1-q^{m}}, Q=1+240 \sum_{m=1}^{\infty} \frac{m^{3} q^{m}}{1-q^{m}}, R=1-504 \sum_{m=1}^{\infty} \frac{m^{5} q^{m}}{1-q^{m}} \tag{9.2}
\end{equation*}
$$

to obtain his identities and this work was extended in [La]. Ramanujan's series P, Q, R are none other than E_{2}, E_{4}, E_{6}, see [Be]. Also go to [H-O-S-W] in this volume for an interesting elementary method employing a generalization of Liouville's identity to find explicit formulas for S_{m} and other sums.

Set

$$
\begin{equation*}
G_{2 k}=\frac{-B_{2 k}}{4 k} E_{2 k}=\frac{-B_{2 k}}{4 k}+\sum_{m=1}^{\infty} \sigma_{2 k-1}(m) q^{m} . \tag{9.3}
\end{equation*}
$$

While $G_{2 k}$ is in $\mathcal{M}_{2 k}$ for $k \geq 2$ the series G_{2} is not in the zero space \mathcal{M}_{2}. If we let $G_{2}^{*}(z)=G_{2}(z)+(8 \pi y)^{-1}$ then G_{2}^{*} does transform correctly under the action of Γ and it has weight 2. Although it is no longer holomorphic we do have $y G_{2}^{*}(z) \in C^{\infty}(\Gamma \backslash \mathfrak{H}, 2)$.

Set

$$
\begin{align*}
S_{m}^{*}\left(l_{1}, l_{2} ; r_{1}, r_{2}\right)= & T_{m}^{*}\left(l_{1}, l_{2} ; G_{r_{1}+1}, G_{r_{2}+1}\right) \\
= & S_{m}\left(l_{1}, l_{2} ; r_{1}, r_{2}\right)-\frac{B_{r_{1}+1}}{2\left(r_{1}+1\right)} \sigma_{r_{2}}(m) E\left(0, l_{1}\right) E\left(m, l_{2}\right) \\
& \quad-\frac{B_{r_{2}+1}}{2\left(r_{2}+1\right)} \sigma_{r_{1}}(m) E\left(0, l_{2}\right) E\left(m, l_{1}\right) . \tag{9.4}
\end{align*}
$$

Thus the sum we are interested in, (9.1), arises naturally in the Fourier coefficients of $\mathcal{P}_{l_{1}, l_{2}}\left(G_{r_{1}+1}, G_{r_{2}+1}\right)$. Then it can be seen that (7.4) implies that the expressions S_{m}^{*} satisfy the relation

$$
\begin{gather*}
\sum_{l_{1}=0}^{n_{1}} \sum_{l_{2}=0}^{n_{2}}(-1)^{L} \frac{n_{1}!n_{2}!}{l_{1}!l_{2}!}\binom{r_{1}+n_{1}}{r_{1}+l_{1}}\binom{r_{2}+n_{2}}{r_{2}+l_{2}} \frac{\left(r_{1}+r_{2}+N+L\right)!}{\left(r_{1}+r_{2}+2 N\right)!} m^{N-L} S_{m}^{*}\left(l_{1}, l_{2} ; r_{1}, r_{2}\right) \\
=\alpha_{m} \quad \text { for } r_{1}, r_{2} \geq 3 \text { and odd } \tag{9.5a}
\end{gather*}
$$

where $\sum_{m=1}^{\infty} \alpha_{m} q^{m}$ is in $\mathcal{S}_{2 N+2+r_{1}+r_{2}}$ if $\left(n_{1}, n_{2}\right) \neq(0,0)$. If $\left(n_{1}, n_{2}\right)=(0,0)$ then $\sum_{m=0}^{\infty} \alpha_{m} q^{m}$ is in $\mathcal{M}_{2 N+2+r_{1}+r_{2}}$ and $\alpha_{0}=B_{r_{1}+1} B_{r_{2}+1}\left(4\left(r_{1}+1\right)\left(r_{2}+1\right)\right)^{-1}$.

This means that we can express $S_{m}^{*}\left(n_{1}, n_{2} ; r_{1}, r_{2}\right)$ (and hence $S_{m}\left(n_{1}, n_{2} ; r_{1}, r_{2}\right)$ by (9.4)) in terms of the sums $S_{m}^{*}\left(l_{1}, l_{2} ; r_{1}, r_{2}\right)$ for $0 \leq l_{1}<n_{1}$ and $0 \leq l_{2}<n_{2}$ and the coefficients of a cusp form in $\mathcal{S}_{r_{1}+r_{2}+2+2 N}$. This cusp form may be identified by calculating its first few terms.

If $r_{1}=1$ or $r_{2}=1$ then the recurrence relation is slightly different to take into account the extra factor in the constant term of G_{2}^{*}. We have (each for $m \geq 1$)

$$
\begin{align*}
& S_{m}^{*}(0,0 ; 1,1)=\frac{-m}{2} \sigma_{1}(m)+\frac{5}{12} \sigma_{3}(m), \tag{9.5b}\\
& \sum_{l_{1}=0}^{n_{1}} \sum_{l_{2}=0}^{n_{2}}(-1)^{L} \frac{n_{1}!n_{2}!}{l_{1}!l_{2}!}\binom{1+n_{1}}{1+l_{1}}\binom{1+n_{2}}{1+l_{2}} \frac{(2+N+L)!}{(2+2 N)!} m^{N-L} S_{m}^{*}\left(l_{1}, l_{2} ; 1,1\right) \\
& \quad+\left((-1)^{n_{1}}+(-1)^{n_{2}}\right) \frac{\sigma_{1}(m)}{2} m^{N+1} \frac{N!(N+1)!}{(2 N+2)!}=\beta_{m} \quad \text { for }\left(n_{1}, n_{2}\right) \neq(0,0), \tag{9.5c}\\
& \quad \sum_{l_{1}=0}^{n_{1}} \sum_{l_{2}=0}^{n_{2}}(-1)^{L} \frac{n_{1}!n_{2}!}{l_{1}!l_{2}!}\binom{1+n_{1}}{1+l_{1}}\binom{r+n_{2}}{r+l_{2}} \frac{(1+r+N+L)!}{(1+r+2 N)!} m^{N-L} S_{m}^{*}\left(l_{1}, l_{2} ; 1, r\right) \\
& \quad+(-1)^{n_{2}} \frac{\sigma_{r}(m)}{2} m^{N+1} \frac{N!(N+r)!}{(2 N+r+1)!}=\gamma_{m} \quad \text { for } r \geq 3 \text { odd }, \tag{9.5d}
\end{align*}
$$

where $\sum_{m=1}^{\infty} \beta_{m} q^{m}$ is in $\mathcal{S}_{2 N+4}$. Also $\sum_{m=1}^{\infty} \gamma_{m} q^{m}$ is in $\mathcal{S}_{2 N+r+3}$ if $\left(n_{1}, n_{2}\right) \neq(0,0)$. If $\left(n_{1}, n_{2}\right)=(0,0)$ then $\sum_{m=0}^{\infty} \gamma_{m} q^{m}$ is in \mathcal{M}_{r+3} and $\gamma_{0}=B_{r+1}(48(r+1))^{-1}$.

Recall that $S_{m}^{*}\left(n_{1}, n_{2} ; r_{1}, r_{2}\right)=S_{m}\left(n_{1}, n_{2} ; r_{1}, r_{2}\right)$ unless $n_{1} n_{2}=0$ and in that case S_{m}^{*} has the two extra terms given by (9.4). Note that (9.5b) appears in [Za1] where it is proved by finding $\pi_{h o l}\left(\left(y G_{2}^{*}\right)^{2}\right)$. The relations $(9.5 a),(9.5 c)$ and $(9.5 d)$ generalize this idea to cover all the other cases.

9.1 Examples.

To illustrate these ideas (and check the equations) we'll give some examples. For $S_{m}^{*}(0,0 ; 3,3)$ use relation (9.5a) with $n_{1}=n_{2}=0$ to see that $S_{m}^{*}(0,0 ; 3,3)=\alpha_{m}$ with $\sum_{m=0}^{\infty} \alpha_{m} q^{m}$ in \mathcal{M}_{8} and $\alpha_{0}=B_{4}^{2} / 64=$ $1 /(64 \cdot 900)$. Thus $\alpha_{m}=\sigma_{7}(m) / 120$ and

$$
\begin{equation*}
S_{m}^{*}(0,0 ; 3,3)=\frac{1}{120} \sigma_{7}(m) \tag{9.1.1}
\end{equation*}
$$

When $n_{1}=1$ and $n_{2}=0(9.5 a)$ implies that

$$
\frac{m}{2} S_{m}^{*}(0,0 ; 3,3)-S_{m}^{*}(1,0 ; 3,3)=\alpha_{m}
$$

with $\sum_{m=1}^{\infty} \alpha_{m} q^{m}$ in \mathcal{S}_{10}. Consequently

$$
\begin{equation*}
S_{m}^{*}(1,0 ; 3,3)=S_{m}^{*}(0,1 ; 3,3)=\frac{m}{2} S_{m}^{*}(0,0 ; 3,3)=\frac{1}{240} m \sigma_{7}(m) \tag{9.1.2}
\end{equation*}
$$

When $n_{1}=1$ and $n_{2}=1(9.5 a)$ implies that

$$
\frac{8}{45} m^{2} S_{m}^{*}(0,0 ; 3,3)-\frac{4}{5} m S_{m}^{*}(1,0 ; 3,3)+S_{m}^{*}(1,1 ; 3,3)=\alpha_{m}
$$

with $\sum_{m=1}^{\infty} \alpha_{m} q^{m}$ in \mathcal{S}_{12}. The one dimensional space \mathcal{S}_{12} contains the discriminant function $\sum_{m=1}^{\infty} \tau(m) q^{m}$. Since $\tau(1)=1$ and $S_{1}^{*}(1,1 ; 3,3)=0$ we have $\alpha_{m}=-\tau(m) / 540$ and

$$
\begin{equation*}
S_{m}^{*}(1,1 ; 3,3)=\frac{1}{540}\left(\tau(m)+m^{2} \sigma_{7}(m)\right) \tag{9.1.3}
\end{equation*}
$$

From (9.1.1), (9.1.2) and (9.1.3) we get

$$
\begin{align*}
& S_{m}(0,0 ; 3,3)=\frac{1}{120}\left(\sigma_{7}(m)-\sigma_{3}(m)\right) \tag{9.1.4}\\
& S_{m}(1,0 ; 3,3)=S_{m}(0,1 ; 3,3)=\frac{1}{240} m\left(\sigma_{7}(m)-\sigma_{3}(m)\right) \tag{9.1.5}\\
& S_{m}(1,1 ; 3,3)=\frac{1}{540}\left(\tau(m)+m^{2} \sigma_{7}(m)\right) \tag{9.1.6}
\end{align*}
$$

Continuing this procedure we obtain.

$$
\begin{align*}
& S_{m}(2,0 ; 3,3)=\frac{1}{2160}\left(4 \tau(m)+5 m^{2} \sigma_{7}(m)-9 m^{2} \sigma_{3}(m)\right) \tag{9.1.7}\\
& S_{m}(2,1 ; 3,3)=\frac{1}{1080}\left(m^{3} \sigma_{7}(m)-m \tau(m)\right) \tag{9.1.8}\\
& S_{m}(2,2 ; 3,3)=\frac{1}{30888}\left(13 m^{4} \sigma_{7}(m)-22 m^{2} \tau(m)+9 \tau(m)+2160 r(m)\right) \tag{9.1.9}
\end{align*}
$$

where $r(m)=\sum_{j=1}^{m-1} \sigma_{3}(m) \tau(m-j)$ comes from the cuspform $G_{4} \Delta \in \mathcal{S}_{16}$.
With $r_{1}=r_{2}=1$ we have $S_{m}^{*}(0,0 ; 1,1)=-m / 2 \sigma_{1}(m)+5 / 12 \sigma_{3}(m)$ by ($9.5 b$). By ($\left.9.5 c\right)$

$$
\begin{equation*}
S_{m}^{*}(1,0 ; 1,1)=\frac{m}{2} S_{m}^{*}(0,0 ; 1,1)=\frac{1}{24}\left(-6 m^{2} \sigma_{1}(m)+5 m \sigma_{3}(m)\right) \tag{9.1.10}
\end{equation*}
$$

Also

$$
\frac{4}{30} m^{2} S_{m}^{*}(0,0 ; 1,1)-\frac{2}{3} m S_{m}^{*}(1,0 ; 1,1)+S_{m}^{*}(1,1 ; 1,1)-\frac{1}{60} m^{3} \sigma_{1}(m)=0
$$

so that

$$
\begin{equation*}
S_{m}^{*}(1,1 ; 1,1)=\frac{1}{12}\left(m^{2} \sigma_{3}(m)-m^{3} \sigma_{1}(m)\right) \tag{9.1.11}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& S_{m}(0,0 ; 1,1)=\frac{1}{12}\left(\sigma_{1}(m)-6 m \sigma_{1}(m)+5 \sigma_{3}(m)\right), \tag{9.1.12}\\
& S_{m}(1,0 ; 1,1)=\frac{1}{24}\left(m \sigma_{1}(m)-6 m^{2} \sigma_{1}(m)+5 m \sigma_{3}(m)\right), \tag{9.1.13}\\
& S_{m}(1,1 ; 1,1)=\frac{1}{12}\left(m^{2} \sigma_{3}(m)-m^{3} \sigma_{1}(m)\right) . \tag{9.1.14}
\end{align*}
$$

Finally we consider the case $r_{1}=1, r_{2}=3$. By (9.5d) we have $S_{m}^{*}(0,0 ; 1,3)+\frac{1}{8} \sigma_{3}(m) m=\gamma_{m}$ with $\sum \gamma_{m} q^{m}$ in \mathcal{M}_{6} and $\gamma_{0}=-1 / 5760$. Hence $\gamma_{m}=7 \sigma_{5}(m) / 80$ for $m \geq 1$ and

$$
\begin{equation*}
S_{m}^{*}(0,0 ; 1,3)=\frac{1}{80}\left(7 \sigma_{5}(m)-10 m \sigma_{3}(m)\right) \tag{9.1.15}
\end{equation*}
$$

Similarly

$$
\frac{m}{3} S_{m}^{*}(0,0 ; 1,3)-S_{m}^{*}(1,0 ; 1,3)+\frac{1}{60} m^{2} \sigma_{3}(m)=\gamma_{m}
$$

with $\sum \gamma_{m} q^{m}$ in \mathcal{S}_{8}. This implies that

$$
\begin{equation*}
S_{m}^{*}(1,0 ; 1,3)=\frac{1}{240}\left(7 m \sigma_{5}(m)-6 m^{2} \sigma_{3}(m)\right) \tag{9.1.16}
\end{equation*}
$$

We also have

$$
\begin{equation*}
S_{m}^{*}(0,1 ; 1,3)=\frac{1}{120}\left(7 m \sigma_{5}(m)-3 m^{2} \sigma_{3}(m)\right) \tag{9.1.17}
\end{equation*}
$$

For the last calculation (9.5d) gives

$$
\frac{m^{2}}{7} S_{m}^{*}(0,0 ; 1,3)-\frac{m}{4} S_{m}^{*}(0,1 ; 1,3)-\frac{m}{2} S_{m}^{*}(1,0 ; 1,3)+S_{m}^{*}(1,1 ; 1,3)-\frac{1}{336} m^{3} \sigma_{3}(m)=\gamma_{m}
$$

with $\sum \gamma_{m} q^{m}$ in \mathcal{S}_{10}. Thus, as before, $\gamma_{m}=0$ and

$$
\begin{equation*}
S_{m}^{*}(1,1 ; 1,3)=\frac{1}{60}\left(m^{2} \sigma_{5}(m)-m^{3} \sigma_{3}(m)\right) \tag{9.1.18}
\end{equation*}
$$

Equations (9.1.15), (9.1.16), (9.1.17) and (9.1.18) imply that

$$
\begin{align*}
& S_{m}(0,0 ; 1,3)=\frac{1}{240}\left(21 \sigma_{5}(m)-30 m \sigma_{3}(m)+10 \sigma_{3}(m)-\sigma_{1}(m)\right) \tag{9.1.19}\\
& S_{m}(1,0 ; 1,3)=\frac{1}{240}\left(7 m \sigma_{5}(m)-6 m \sigma_{3}(m)-m \sigma_{1}(m)\right) \tag{9.1.20}\\
& S_{m}(0,1 ; 1,3)=\frac{1}{120}\left(7 m \sigma_{5}(m)-12 m^{2} \sigma_{3}(m)+5 m \sigma_{3}(m)\right) \tag{9.1.21}\\
& S_{m}(1,1 ; 1,3)=\frac{1}{60}\left(m^{2} \sigma_{5}(m)-m^{3} \sigma_{3}(m)\right) \tag{9.1.22}
\end{align*}
$$

The equations $(9.1 .4),(9.1 .5),(9.1 .12),(9.1 .13),(9.1 .14),(9.1 .19),(9.1 .20),(9.1 .21)$ and $(9.1 .22)$ appear in [La] and [H-O-S-W].

References

[Be] Berndt, B.C., Ramanujan's Notebooks Part II, Springer-Verlag, New York, 1989.
[Bu] Bump, D., Automorphic Forms and Representations, Cambridge studies in Advanced Math. 55, Camb. Univ. Press, 1997.
[Co] Cohen, H., Sums involving the values at negative integers of L functions of quadratic characters, Math. Ann. 217 (1975), 271-285.
[Eh-Ib] Eholzer, E., Ibukiyama, T., Rankin-Cohen type differential operators for Siegel modular forms, Internat. J. Math 9 (1998), 443-463.
[Gl] Glaisher, J., Expressions for the first five powers of the series in which the coefficients are the sums of the divisors of the exponents, Mess. Math. 15 (1885), 33-36.
[H-O-S-W] Huard, J., Ou, Z., Spearman, B., Williams, K., Elementary evaluation of certain convolution sums involving divisor functions, Proceedings of the Millennial Conference on Number Theory.
[Iw] Iwaniec, H., Introduction to the spectral theory of automorphic forms, Bibl. Rev. Mat. Iber., Madrid, 1995.
[La] Lahiri, D., On Ramanujan's function $\tau(n)$ and the divisor function $\sigma(n)$ - I, Bull. Calcutta Math. Soc. 38 (1946), 193-206.
[Ram] Ramanujan, S., Collected Papers, Chelsea, New York, 1962.
[Ran1] Rankin, R., The construction of automorphic forms from the derivatives of a given form, J. Indian Math. Soc. 20 (1956), 103-116.
[Ran2] Rankin, R., The construction of automorphic forms from the derivatives of given forms, Michigan Math. J. 4 (1957), 181-186.
[Ran3] Rankin, R., The construction of automorphic forms from the derivatives of a given form II, Canad. Math. Bull. 28 (1985), 306-316.
[Ri] Riordan, J., Combinatorial Identities, John Wiley \& Sons, New York, 1968.
[St] Sturm, J., Projections of C^{∞} automorphic forms, Bull. AMS 2 (1980).
[Za1] Zagier, D., Introduction to modular forms in From number theory to physics (Les Houches, 1989), Springer, Berlin, 1992, pp. 238-291.
[Za2] Zagier, D., Modular forms and differential operators, Proc. Indian Acad. Sci. (Math. Sci.) 104 (1994), 57-75.

[^0]: ${ }^{1}$ Appeared in Number theory for the Millennium, Vol. 3, (2002), 87-106, publisher A. K. Peters.

