IDENTITIES FROM THE HOLOMORPHIC PROJECTION OF MODULAR FORMS¹

CORMAC O'SULLIVAN

1. Introduction.

Set $\mathfrak{H} = \{z = x + iy \in \mathbb{C} : y > 0\}$ and let Γ be the modular group

$$PSL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\} / \pm 1.$$

The complex vector space of modular forms for Γ of weight 2k, denoted $\mathcal{M}_{2k}(\Gamma) = \mathcal{M}_{2k}$, consists of functions $f : \mathfrak{H} \to \mathbb{C}$ that satisfy

$$f(\begin{pmatrix} a & b \\ c & d \end{pmatrix}z) = f(\frac{az+b}{cz+d}) = (cz+d)^{2k}f(z)$$
(1.1)

for each $\binom{a \ b}{c \ d} \in \Gamma$ and are holomorphic on \mathfrak{H} . We also require them to be holomorphic at infinity. In other words f has the Fourier expansion $f(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}$. If $a_0 = 0$ then f(z) has exponential decay as $y \to \infty$. We term the space of such forms S_{2k} , the cusp forms. The spaces \mathcal{M}_{2k} , \mathcal{S}_{2k} with $k \in \mathbb{N}$ are finite dimensional with

$$\dim \mathcal{M}_{2k} = \left[\frac{2k}{12}\right] + 1 \text{ (or } \left[\frac{2k}{12}\right] \text{ if } 2k \equiv 2 \mod 12),$$
$$\dim \mathcal{S}_{2k} = \dim \mathcal{M}_{2k} - 1 \text{ (or } 0 \text{ if } 2k \leq 10).$$

For example an element of \mathcal{M}_{2k} is the Eisenstein series

$$E_{2k}(z) = 1 - \frac{4k}{B_{2k}} \sum_{m=1}^{\infty} \sigma_{2k-1}(m) q^m$$
(1.2)

where $k \ge 2$, B_k is the *k*th Bernoulli number, $(B_2 = \frac{1}{6}, B_4 = \frac{-1}{30}, B_6 = \frac{1}{42}, B_8 = \frac{-1}{30}, \dots)$, $q = e^{2\pi i z}$ and the divisor sum $\sigma_k(n) = \sum_{d|n} d^k$.

If $f \in \mathcal{M}_k$ and $g \in \mathcal{M}_l$ then $fg \in \mathcal{M}_{k+l}$ so we get the well known result $E_4(z)E_4(z) = cE_8(z)$ since dim $\mathcal{M}_8 = 1$. Comparing Fourier expansions we obtain the identity

$$\sigma_3(n) + 120 \sum_{i=1}^{n-1} \sigma_3(i) \sigma_3(n-i) = \sigma_7(n)$$
(1.3)

for all $n \ge 1$. What kinds of identities of this type are possible in more general settings?

Acknowledgements. I would like to express my thanks to Professor K.S. Williams for sending me his preprint and to the Millennial Conference on Number Theory organizers for a very enjoyable week.

¹Appeared in Number theory for the Millennium, Vol. 3, (2002), 87 - 106, publisher A. K. Peters.

2. The space $C^{\infty}(\Gamma \setminus \mathfrak{H}, 2k)$.

This is the space of smooth functions Φ that transform as follows

$$\Phi(\begin{pmatrix} a & b \\ c & d \end{pmatrix}z) = \left(\frac{cz+d}{|cz+d|}\right)^{2k} \Phi(z).$$
(2.1)

For example if $f \in \mathcal{M}_{2k}$ then $y^k f(z) \in C^{\infty}(\Gamma \setminus \mathfrak{H}, 2k)$. For elements $\Phi_1, \Phi_2 \in C^{\infty}(\Gamma \setminus \mathfrak{H}, 2k)$ that do not grow large too quickly we have the inner product

$$\langle \Phi_1, \Phi_2 \rangle = \int_{\Gamma \setminus \mathfrak{H}} \Phi_1(z) \overline{\Phi_2(z)} \, d\mu z,$$
 (2.2)

where $d\mu z = \frac{dxdy}{y^2}$. Also available are the Maass raising and lowering operators $R_{2k} = 2iy\frac{d}{dz} + k$ and $L_{2k} = -2iy \frac{d}{d\overline{z}} - k$ where

$$\begin{aligned} R_{2k} : & C^{\infty}(\Gamma \backslash \mathfrak{H}, 2k) \to C^{\infty}(\Gamma \backslash \mathfrak{H}, 2k+2), \\ & L_{2k} : & C^{\infty}(\Gamma \backslash \mathfrak{H}, 2k) \to C^{\infty}(\Gamma \backslash \mathfrak{H}, 2k-2). \end{aligned}$$

Finally we may also define the weight 2k hyperbolic Laplacian $\Delta_{2k} = -y^2(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}) + 2iky\frac{\partial}{\partial x}$. It is related to the raising and lowering operators as follows,

$$\Delta_{2k} = -L_{2k+2}R_{2k} - k(1+k), \qquad (2.3)$$

$$= -R_{2k-2}L_{2k} + k(1-k). (2.4)$$

See [Bu] chapter 2 for more details.

3. Holomorphic projection.

To construct identities we need to project our results into the finite dimensional space \mathcal{M}_{2k} . Define the Poincare series

$$P_m(z,2k) = \sum_{\substack{(a \ b \ c \ d}) \in \Gamma_\infty \setminus \Gamma} (cz+d)^{-2k} e^{2\pi i m \frac{az+b}{cz+d}}$$
(3.1)

for $k \ge 2$ and $\Gamma_{\infty} = \{\gamma \in \Gamma : \gamma \infty = \infty\}$. It is a cusp form in \mathcal{S}_{2k} for $m \ge 1$ and for any other $f \in \mathcal{S}_{2k}$ we have

$$\langle y^k f(z), y^k P_m(z, 2k) \rangle = a_m \frac{(2k-2)!}{(4\pi m)^{2k-1}}$$

with a_m the mth Fourier coefficient of f(z). We may use this feature of the Poincare series to define a projection map $\pi_{hol}: C^{\infty}(\Gamma \backslash \mathfrak{H}, 2k) \to \mathcal{M}_{2k}.$

Lemma 3.1. For $\Phi \in C^{\infty}(\Gamma \setminus \mathfrak{H}, 2k)$ satisfying $\frac{1}{y^k} \Phi(z) = c_0 + O(y^{-\varepsilon})$ as $y \to \infty$ with $k \ge 2$ and $\varepsilon > 0$ set

$$\pi_{hol}(\Phi(z)) = c_0 + \sum_{m=1}^{\infty} \langle \Phi(z), y^k P_m(z, 2k) \rangle \frac{(4\pi m)^{2k-1}}{(2k-2)!} q^m$$

Then $\pi_{hol}(\Phi(z)) \in \mathcal{M}_{2k}$ and $\langle y^k f(z), \Phi \rangle = \langle y^k f(z), y^k \pi_{hol} \Phi \rangle$ for every $f \in \mathcal{S}_{2k}$.

Note that if g(z) is already an element of \mathcal{M}_{2k} then $\pi_{hol}(y^k g(z)) = g(z)$ and in that sense it is a projection. This idea originated in [St]. See [Za1] for a proof of the above lemma.

So we are led to the following question. What kinds of identities are possible using

- (i) Multiplication : $M_{2k}(\Gamma) \times M_{2l}(\Gamma) \to M_{2k+2l}(\Gamma)$,
- (ii) $R_{2k}: C^{\infty}(\Gamma \backslash \mathfrak{H}, 2k) \to C^{\infty}(\Gamma \backslash \mathfrak{H}, 2k+2),$ (iii) $L_{2k}: C^{\infty}(\Gamma \backslash \mathfrak{H}, 2k) \to C^{\infty}(\Gamma \backslash \mathfrak{H}, 2k-2)$ and
- (iv) $\pi_{hol}: C^{\infty}(\Gamma \setminus \mathfrak{H}, 2k) \to M_{2k}(\Gamma)$?

4. Repeatedly raising and lowering holomorphic modular forms.

To see what happens when we repeatedly apply the Maass raising operator it is useful to re-express things in terms of the simpler operator $D_R = 2iy^2 \frac{d}{dz}$. We obtain

$$R_{2(k+n-1)}R_{2(k+n-2)}\dots R_{2k} = \sum_{j=0}^{n} \binom{n}{j} \frac{(j+k-1)!}{(k-1)!} y^{j-n} D_R^{n-j}$$
(4.1)

for k > 0 and $R_{2(n-1)} \dots R_0 = y^{-n} D_R^n$.

Similarly for the lowering operator we have

$$L_{2(k-n+1)}L_{2(k-n+2)}\dots L_{2k} = (-1)^n \sum_{j=0}^n \binom{n}{j} \frac{k!}{(k-j)!} y^{j-n} D_L^{n-j}$$
(4.2)

for $k \ge n+1$ and $D_L = 2iy^2 \frac{d}{d\overline{z}}$. Formulas (4.1) and (4.2) may be verified by induction. For convenience, when it is clear that we are dealing with an element of $C^{\infty}(\Gamma \setminus \mathfrak{H}, 2k)$, we shall write \mathbb{R}^n instead of $R_{2(k+n-1)}R_{2(k+n-2)}\ldots R_{2k}$ and \mathbb{L}^n for $L_{2(k-n+1)}L_{2(k-n+2)}\ldots L_{2k}$.

4.1. Lowering modular forms.

For $f(z) = \sum_{m=0}^{\infty} a_m q^m \in \mathcal{M}_{2k}$ we compute $L^n y^k f(z)$. Actually the answer is rather easy because

$$L_{2k}y^k f(z) = (-2iy\frac{d}{d\overline{z}} - k)y^k f(z)$$

= $-2iy(\frac{d}{d\overline{z}}y^k)f(z) - 2iy^{k+1}\frac{d}{d\overline{z}}f(z) - ky^k f(z) = 0.$

Therefore $L^n y^k f(z) = 0$ for any n > 0. On the level of the Fourier coefficients we have the following.

$$L^{n}y^{k}f(z) = \sum_{m=0}^{\infty} a_{m} \left((-1)^{n} \sum_{j=0}^{n} \binom{n}{j} \frac{k!}{(k-j)!} y^{j-n} D_{L}^{n-j}(y^{k}q^{m}) \right)$$
$$= \sum_{m=0}^{\infty} a_{m}q^{m} \left((-1)^{n} \sum_{j=0}^{n} \binom{n}{j} \frac{k!}{(k-j)!} y^{j-n} y^{k+n-j} (-1)^{n-j} \frac{(k+n-j-1)!}{(k-1)!} \right)$$

since $D_L^n(y^kq^m) = y^{k+n}(-1)^n \frac{(k+n-1)!}{(k-1)!}q^m$. On simplifying we see that we must have the identity

$$\sum_{j=0}^{n} (-1)^{j} \binom{n}{j} (k-j+1)_{n-1} = 0,$$
(4.3)

for $n \ge 1$ where we define

$$(a)_m = \frac{\Gamma(a+m)}{\Gamma(a)} = \begin{cases} 1 & \text{if } m = 0, \\ (a)(a+1)\dots(a+m-1) & \text{if } m > 0. \end{cases}$$
(4.4)

We can prove this more directly. One method is to consider $\frac{d^m}{dx^m}(1+x)^n x^r$ at x = -1. This may be evaluated in two ways. First use the binomial expansion of $(1+x)^n$ to get

$$\sum_{i=0}^{n} \binom{n}{i} (r-m+i+1)_m (-1)^{i+r-m}$$

Secondly use Leibniz' formula to show that

$$\frac{d^m}{dx^m}(1+x)^n x^r = \sum_{i=0}^m \binom{m}{i}(n-i+1)_i(1+x)^{n-i}(r-m+i+1)_{m-i}x^{r-m+i}$$

At x = -1 the only non-zero term is when i = n (provided $m \ge n$) and so we obtain

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (r-m+i+1)_{m} = \begin{cases} (-1)^{n} \frac{m!}{(m-n)!} (r-m+n+1)_{m-n} & m \ge n, \\ 0 & m < n. \end{cases}$$
(4.5)

Replace i by n - i and set m = n - 1, k = r + 1 to see (4.3).

4.2. Raising modular forms.

As in the previous example apply (4.1) and the formula

$$D_R^n(y^k q^m) = y^{k+n} \sum_{l=0}^n (-1)^l \binom{n}{l} \frac{(k+n-1)!}{(k+l-1)!} y^l (4\pi m)^l q^m,$$
(4.6)

to get

$$R^{n}y^{k}f(z) = \sum_{m=1}^{\infty} a_{m}q^{m} \sum_{l=0}^{n} M_{l}(n,k)(4\pi m)^{l}y^{k+l},$$

for $f(z) = \sum_{m=1}^{\infty} a_m q^m$ with

$$M_{l}(n,k) = (-1)^{l} \frac{n!}{l!} \sum_{j=0}^{n-l} {j+k-1 \choose j} {k+n-j-1 \choose k+l-1}$$

Now for $p, l \ge 0$ we have the identity

$$\sum_{j=0}^{m} \binom{p+j}{p} \binom{p+l+m-j}{p+l} = \binom{2p+l+m+1}{2p+l+1}.$$
(4.7)

To see this note that $\sum_{j=0}^{\infty} {p+j \choose p} x^j = \frac{1}{(1-x)^{p+1}}$ for |x| < 1. Consequently

$$\sum_{i=0}^{\infty} \binom{p+i}{p} x^i \sum_{j=0}^{\infty} \binom{p+l+j}{p+l} x^j = \frac{1}{(1-x)^{p+1+p+l+1}} = \sum_{j=0}^{\infty} \binom{2p+l+1+j}{2p+l+1} x^j$$

and comparing the coefficients of x^m on the above line yields (4.7). Thus $M_l(n,k) = (-1)^l \frac{n!}{l!} \begin{pmatrix} 2k-1+n\\ 2k-1+l \end{pmatrix}$ and

$$R^{n}y^{k}f(z) = \sum_{m=1}^{\infty} a_{m}q^{m} \sum_{l=0}^{n} \frac{n!}{l!} \binom{2k-1+n}{2k-1+l} (-4\pi m)^{l}y^{k+l}.$$
(4.8)

If $f(z) = \sum_{m=0}^{\infty} a_m q^m \in \mathcal{M}_{2k}$ then the above formula remains true with a small alteration. Define

$$E(m,l) = \begin{cases} m^{l} & \text{if } m > 0 \text{ or } l > 0\\ 1 & \text{if } m = 0 \text{ and } l = 0. \end{cases}$$
(4.9)

Then

$$R^{n}y^{k}f(z) = \sum_{m=0}^{\infty} a_{m}q^{m}\sum_{l=0}^{n} (-4\pi)^{l} \frac{n!}{l!} \left(\frac{2k-1+n}{2k-1+l}\right) E(m,l)y^{k+l}.$$
(4.10)

To work out the holomorphic projection of $R^n y^k f(z)$ and similar functions we use the next result. Lemma 4.1. For $\Phi \in C^{\infty}(\Gamma \setminus \mathfrak{H}, 2k)$ with

$$\Phi(z) = \sum_{m=0}^{\infty} u_m(y)q^m, \quad u_m(y) = \sum_{i=0}^{r_m} v_m(i)y^{l_m(i)}$$

and $l_0(i) \leq k$ then $\pi_{hol}\Phi(z) = \sum_{m=0}^{\infty} c_m q^m$ where c_0 is the constant part of $\frac{1}{y^k}u_0(y)$ and for $m \geq 1$

$$c_m = \sum_{i=0}^{r_m} v_m(i) \frac{\Gamma(l_m(i) + k - 1)}{(2k - 2)!} (4\pi m)^{k - l_m(i)}.$$

Proof. To compute the c_m we evaluate $\langle \Phi, y^k P_m \rangle$ by unfolding it.

$$\begin{split} \langle \Phi(z), y^k P_m(z, 2k) \rangle &= \int_{\Gamma \setminus \mathfrak{H}} \Phi(z) y^k \overline{P_m(z, 2k)} \, d\mu z \\ &= \int_{\Gamma \setminus \mathfrak{H}} \Phi(z) y^k \sum_{\substack{\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \Gamma_\infty \setminus \Gamma}} \overline{(cz+d)^{-2k}} e^{\overline{2\pi i m \gamma z}} \, d\mu z \\ &= \int_{\Gamma \setminus \mathfrak{H}} \sum_{\substack{\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \Gamma_\infty \setminus \Gamma}} \Phi(\gamma z) \mathrm{Im}(\gamma z)^k \overline{(cz+d)^{-2k}} e^{\overline{2\pi i m \gamma z}} \, d\mu z \\ &= \int_0^\infty \int_0^1 \Phi(z) y^k e^{-2\pi i m \overline{z}} \frac{dx dy}{y^2} \\ &= \int_0^\infty u_m(y) y^{k-2} e^{-4\pi m y} \, dy \\ &= \sum_{i=0}^{r_m} v_m(i) \Gamma(l_m(i) + k - 1) (-4\pi m)^{-l_m(i) - k + 1}. \end{split}$$

The result follows by applying lemma 3.1. \blacklozenge

Set $\Phi(z) = R^n y^k f(z)$ for $f(z) = \sum_{m=1}^{\infty} a_m q^m \in S_{2k}$. Then $\Phi \in C^{\infty}(\Gamma, 2(n+k))$ and we have by (4.8) that $\Phi(z) = \sum_{m=1}^{\infty} u_m(y)q^m$ with $u_m(y) = \sum_{i=0}^{r_m} v_m(i)y^{l_m(i)}$ where $r_m = n$, $v_m(i) = a_m \frac{n!}{i!} \begin{pmatrix} 2k - 1 + n \\ 2k - 1 + i \end{pmatrix} (-4\pi m)^i$ and $l_m(i) = k + i$. Thus $\pi_{hol}(R^n y^k f(z)) = \pi_{hol}(\Phi(z)) = \sum_{m=1}^{\infty} c_m q^m$ with

$$c_m = a_m (4\pi m)^n \sum_{i=0}^n (-1)^i \frac{n!}{i!} \binom{2k-1+n}{2k-1+i} \frac{(2k+n+i-2)!}{(2k+2n-2)!}.$$
(4.11)

As with the previous example we must have $\pi_{hol}(R^n y^k f(z)) = 0$. This time the reason is that

$$\langle R_{2k}\Phi(z), y^k P_m(z, 2k+2) \rangle = \langle \Phi(z), -L_{2k+2}y^k P_m(z, 2k+2) \rangle$$

$$= \langle \Phi(z), 0 \rangle = 0.$$

$$(4.12)$$

This shows that π_{hol} composed with the raising operator is identically zero. (See [Bu] Prop. 2.1.3 for the above relation between R_{2k} and $-L_{2k+2}$.) Therefore each $c_m = 0$ and we obtain the identity

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (2k+i)_{n-1} = 0,$$

which may be verified for $n \ge 1$ with (4.5).

5. Raising Maass forms.

A Maass form is an element $\eta(z,s)$ of $C^{\infty}(\Gamma \setminus \mathfrak{H}, 2k)$ that is an eigenfunction of the Laplacian Δ_{2k} so that

$$\Delta_{2k}\eta = \lambda\eta = s(1-s)\eta. \tag{5.1}$$

Maass cusp forms have zero constant terms in their Fourier expansions and are non holomorphic analogs of the elements of S_{2k} . From (5.1) it may be shown that a Maass cusp form of weight 2k = 0 has Fourier expansion

$$\eta(z,s) = \sum_{m \neq 0} b_m \sqrt{|m|y} K_{s-1/2} (2\pi |m|y) e^{2\pi i m x}$$
(5.2)

where K is the K Bessel function and we are summing over all non zero integers. See [Bu], [Iw] for example. To find $R^n \eta(z, s)$ we first need to compute $D^n_R(y^{1/2}K_v(2\pi|m|y)e(mx))$ for v = s - 1/2. Use the fact that $\frac{d}{dy}K_v(y) = -1/2(K_{v-1}(y) + K_{v+1}(y))$ to show that

$$D_R^n(y^{1/2}K_v(2\pi|m|y)e(mx)) = \sum_{i=0}^n \sum_{j=-i}^i \alpha_j^n(i)y^{1/2+n+i}K_{v+j}(2\pi|m|y)e(mx).$$

The numbers $\alpha_j^n(i)$ depend on m and may be defined recursively. (Note that the superscript n is an index not an exponent.) For n = 0 we have $\alpha_j^0(i) = 0$ unless i = j = 0 in which case $\alpha_0^0(0) = 1$. For $n \ge 0$ and $\delta = |m|m^{-1}$ we have

$$\alpha_j^{n+1}(i) = -\pi m \left(\delta \alpha_{j-1}^n (i-1) + 2\alpha_j^n (i-1) + \delta \alpha_{j+1}^n (i-1) \right) + (i+n+1/2)\alpha_j^n(i).$$

Setting $\beta_j^n(i) = \frac{(-2)^n \delta^j}{(2\pi m)^i} \alpha_j^n(i)$ removes the *m* dependance and

$$\beta_j^{n+1}(i) = \beta_{j-1}^n(i-1) + 2\beta_j^n(i-1) + \beta_{j+1}^n(i-1) - (2i+2n+1)\beta_j^n(i)$$

To isolate the dependance on j set $\beta_j^n(i) = (-1)^{n+i} \gamma_i^n {2i \choose j+i}$ to obtain the relation

$$\gamma_i^{n+1} = \gamma_{i-1}^n + (2i+2n+1)\gamma_i^n.$$
(5.3)

We may solve the recurrence (5.3) with the initial conditions $\gamma_0^0 = 1$ and $\gamma_i^0 = 0$ for $i \neq 0$ to get

$$\gamma_i^n = \frac{(2n)!}{(n+i)!(2i)!2^{n-i}} \quad \text{for} \ n \ge 1, \ 0 \le i \le n.$$

Therefore

$$\alpha_j^n(i) = (-4\pi m)^i \frac{(2n)!\delta^j}{(i+j)!(i-j)!(n-i)!}$$
(5.4)

and

$$R^{n}\eta(z,s) = y^{-n}D_{R}^{n}\eta(z,s) = \sum_{m\neq 0} b_{m}\sqrt{|m|}y^{-n}D_{R}^{n}(K_{v}(2\pi|m|y)e(mx))$$
$$= \sum_{m\neq 0} b_{m}\sqrt{|m|}\sum_{i=0}^{n} \frac{(-4\pi m)^{i}}{(n-i)!}y^{i+\frac{1}{2}}\sum_{j=-i}^{i} \frac{(2n)!(|m|m^{-1})^{j}}{(i+j)!(i-j)!}K_{v+j}(2\pi|m|y)e(mx).$$
(5.5)

Incidentally, with (2.3) and (2.4) we can show that $R^n \eta$ is an eigenfunction of Δ_{2n} if and only if η is an eigenfunction of Δ_0 . This means that every Maass cusp form of weight 2n and eigenvalue $1/4 - v^2$ has the Fourier expansion (5.5).

6. Holomorphic projection of raised Maass forms.

As we have seen (4.12) forces $\pi_{hol}(R^n\eta(z,s))$ to be zero. To see how the Fourier coefficients vanish we calculate $\langle R^n\eta(z,s), y^n P_m(z,2n) \rangle$. Use the fact that

$$\int_0^\infty x^{r-1} K_v(x) e^{-x} \, dx = 2^{-r} \pi^{1/2} \Gamma(r+1/2)^{-1} \Gamma(r+v) \Gamma(r-v), \tag{6.1}$$

for $\operatorname{Re}(r) > |\operatorname{Re}(v)|$ to get $\langle R^n \eta(z,s), y^n P_m(z,2n) \rangle$ equaling

$$\frac{b_m}{2} (4\pi m)^{1-n} \sum_{i=0}^n \frac{(-1)^i (2n)!}{(n-i)!} \sum_{j=-i}^i \frac{\Gamma(n+v+i+j-\frac{1}{2})\Gamma(n-v+i-j-\frac{1}{2})}{(i+j)!(i-j)!\Gamma(n+i)}.$$

Consequently $\pi_{hol}(R^n\eta(z,s)) = \sum_{m=1}^{\infty} c_m q^m$ with c_m given by

$$\frac{b_m}{2} (4\pi m)^n \sum_{i=0}^n \frac{(-1)^i 2n(2n-1)}{(n+i-1)(n-i)!} \sum_{j=-i}^i \frac{\Gamma(n+v+i+j-\frac{1}{2})\Gamma(n-v+i-j-\frac{1}{2})}{(i+j)!(i-j)!}$$

To check that this is indeed zero we'll prove it by hand.

Lemma 6.1. For $n \ge 1, v \in \mathbb{C}$

$$\sum_{i=0}^{n} \frac{(-1)^{i}}{(n+i-1)!(n-i)!} \sum_{j=-i}^{i} \frac{\Gamma(n+v+i+j-\frac{1}{2})\Gamma(n-v+i-j-\frac{1}{2})}{(i+j)!(i-j)!} = 0.$$

Proof. Note that $(1+x)^s = \sum_{l=0}^{\infty} {s \choose l} x^l$ is valid for all -1 < x < 1 and $s \in \mathbb{C}$ if we set ${s \choose l} = \frac{\Gamma(s+1)}{\Gamma(s-l+1)\Gamma(l+1)}$ and use the usual conventions for defining x^s . With the formula $\frac{\Gamma(l-s)}{l!} = \Gamma(-s)(-1)^l {s \choose l}$ for $l \in \mathbb{N}$ we see that

$$\sum_{l=0}^{2i} \frac{\Gamma(n+s+l-1)\Gamma(n+2i-l-s)}{l!(2i-l)!} = \Gamma(n+s-1)\Gamma(n-s)\sum_{l=0}^{2i} \binom{-n-s+1}{l} \binom{-n+s}{2i-l}$$

Also, since $\sum_{l=0}^{\infty} {\binom{-n-s+1}{l}x^l} = (1+x)^{-n-s+1}$ and $\sum_{l=0}^{\infty} {\binom{-n+s}{l}x^l} = (1+x)^{-n+s}$ their product is $(1+x)^{1-2n}$ implying that the coefficient of x^{2i} in the above is

$$\sum_{l=0}^{2i} \binom{-n-s+1}{l} \binom{-n+s}{2i-l} = \binom{1-2n}{2i} = \binom{2n+2i-2}{2i}.$$

Therefore, to finish the proof, it suffices to show that

$$S = \sum_{i=0}^{n} (-1)^{i} \binom{2n-1}{n-i} \binom{2n+2i-2}{2i} = 0.$$
 (6.2)

By adapting the identity following (4.7) we have that

$$\sum_{l=0}^{\infty} \binom{2n-2+2l}{2l} x^l = \frac{1}{2} \left((1-\sqrt{x})^{-2n+1} + (1+\sqrt{x})^{-2n+1} \right).$$

Also $\sum_{l=0}^{\infty} \binom{2n-1}{l} (-x)^l = (1-x)^{2n-1}$ so that S is the coefficient of x^n in the product

$$\frac{1}{2} \left((1 - \sqrt{x})^{-2n+1} + (1 + \sqrt{x})^{-2n+1} \right) (1 - x)^{2n-1}$$
$$= \frac{1}{2} \left((1 + \sqrt{x})^{2n-1} + (1 - \sqrt{x})^{2n-1} \right)$$
$$= \sum_{i=0}^{n-1} \binom{2n-1}{2i} x^i$$

Thus S = 0 completing the proof. \blacklozenge

The identity (6.2) also appears as a special case of the identity on p37 of [Ri].

7. Projecting products of raised modular forms.

In order to get a non zero projection we try the following. For $f = \sum a_m q^m \in \mathcal{M}_{2k_1}, g = \sum b_m q^m \in \mathcal{M}_{2k_2}$ we examine

$$\pi_{hol}(R^{n_1}y^{k_1}f(z) \cdot R^{n_2}y^{k_2}g(z))$$

Clearly it is an element of $\mathcal{M}_{2(K+N)}$ for $K = \sum_{i} k_i$, $N = \sum_{i} n_i$. From (4.10) we derive

$$R^{n_1}y^{k_1}f(z) \cdot R^{n_2}y^{k_2}g(z) = \sum_{m=0}^{\infty} u_m(y)q^m$$

with

$$u_{m}(y) = \sum_{l_{1}=0}^{n_{1}} \sum_{l_{2}=0}^{n_{2}} (4\pi)^{L} (-1)^{L} \frac{n_{1}!n_{2}!}{l_{1}!l_{2}!} \binom{2k_{1}-1+n_{1}}{n_{1}-l_{1}} \binom{2k_{2}-1+n_{2}}{n_{2}-l_{2}} \times y^{K+L} \sum_{j=0}^{m} a_{j}b_{m-j}E(j,l_{1})E(m-j,l_{2})$$
(7.1)

where $L = \sum_{i} l_i$. (This convention for N, K and L will be in place from now on.) If we label the inner sum $T_m^*(l_1, l_2; f, g)$ then

$$T_m^*(l_1, l_2; f, g) = T_m(l_1, l_2; f, g) + a_0 b_m E(0, l_1) E(m, l_2) + a_m b_0 E(m, l_1) E(0, l_2)$$
(7.2)

where

$$T_m(l_1, l_2; f, g) = \sum_{j=1}^{m-1} a_j b_{m-j} j^{l_1} (m-j)^{l_2}.$$
(7.3)

Finally, applying lemma 4.1, we have that $\pi_{hol}(R^{n_1}y^{k_1}f(z)\cdot R^{n_2}y^{k_2}g(z)) = \sum_{m=0}^{\infty} c_m q^m$ with

$$c_m = (4\pi)^N \sum_{l_1=0}^{n_1} \sum_{l_2=0}^{n_2} (-1)^L \frac{n_1! n_2!}{l_1! l_2!} \binom{2k_1 - 1 + n_1}{n_1 - l_1} \binom{2k_2 - 1 + n_2}{n_2 - l_2} \times \frac{(2K + N + L - 2)!}{(2K + 2N - 2)!} m^{N-L} T_m^*(l_1, l_2; f, g),$$
(7.4)

for $m \ge 1$ and $c_0 = (-4\pi)^N a_0 b_0 E(0, n_1) E(0, n_2)$. Hence $c_0 = 0$ unless $n_1 = n_2 = 0$ and in that case $c_0 = a_0 b_0$. So we see that the differential operator \mathcal{P}_{n_1,n_2} defined by

$$\mathcal{P}_{n_1,n_2}(f,g) = (4\pi)^{-N} \pi_{hol}(R^{n_1} y^{k_1} f(z) \cdot R^{n_2} y^{k_2} g(z))$$
(7.5)

gives a map $\mathcal{P}_{n_1,n_2} : \mathcal{M}_{2k_1} \times \mathcal{M}_{2k_2} \to \mathcal{S}_{2(N+K)}$ for $(n_1, n_2) \neq (0, 0)$. For $n_1 = n_2 = 0$ we have $\mathcal{P}_{0,0}(f, g) = fg$. Examples in section 9 show that this map is not identically zero.

8. Rankin-Cohen differential operators.

The map \mathcal{P} above is similar to a construction of Cohen in [Co]. For $f \in \mathcal{M}_{2k_1}, g \in \mathcal{M}_{2k_2}$ he shows that

$$\mathcal{F}_{N}(f,g) = (2\pi i)^{-N} \sum_{i=0}^{N} (-1)^{i} \binom{2k_{1}-1+N}{N-i} \binom{2k_{2}-1+N}{i} \partial_{z}^{i} f \partial_{z}^{N-i} g$$
(8.1)

is an element of $\mathcal{M}_{2(K+N)}$ where ∂_z^i means $\frac{d^i}{dz^i}$. How are \mathcal{F} and \mathcal{P} related? In fact it's not hard to show that \mathcal{F}_N is a certain average of the \mathcal{P}_{n_1,n_2} s.

Proposition 8.1. For every $f \in \mathcal{M}_{2k_1}, g \in \mathcal{M}_{2k_2}$

$$(-1)^{N} \sum_{i=0}^{N} (-1)^{i} \binom{2k_{1}-1+N}{N-i} \binom{2k_{2}-1+N}{i} \mathcal{P}_{i,N-i}(f,g) = \mathcal{F}_{N}(f,g).$$
(8.2)

Proof. If N = 0 then the proposition is true. For $N \ge 1$ we may write the left hand side of (8.2) as $\sum_{m=1}^{\infty} d_m q^m$ with, after simplifying,

$$d_m = \sum_{i=0}^{N} (-1)^i \binom{2k_1 - 1 + N}{N - i} \binom{2k_2 - 1 + N}{i} T_m^*(i, N - i; f, g).$$

The Fourier coefficients of the right hand side are identical.

As with \mathcal{F}, \mathcal{P} may be expressed in terms of the derivatives of the modular forms.

Proposition 8.2. For every $f \in \mathcal{M}_{2k_1}$, $g \in \mathcal{M}_{2k_2}$

$$\mathcal{P}_{n_1,n_2}(f,g) = (2\pi i)^{-N} \sum_{l_1=0}^{n_1} \sum_{l_2=0}^{n_2} (-1)^L \frac{n_1! n_2!}{l_1! l_2!} \binom{2k_1 - 1 + n_1}{n_1 - l_1} \binom{2k_2 - 1 + n_2}{n_2 - l_2} \times \frac{(2K + N + L - 2)!}{(2K + 2N - 2)!} \partial_z^{N - l_1 - l_2} (\partial_z^{l_1} f \, \partial_z^{l_2} g).$$
(8.3)

Proof. Compare Fourier coefficients.

Rankin in [Ran1], [Ran2] considers the general question of which polynomials in the derivatives of modular forms are again modular forms. His operator in [Ran3] includes \mathcal{F} as a special case. It is formulated as follows. Set $r \ge 2$ and label r modular forms $f_i \in \mathcal{M}_{2k_i}$ for $1 \le i \le r$. Also define

$$V(r, N) = \{(v_1, v_2, \dots, v_r) : v_i \in \mathbb{N}, \sum_i v_i = N\},\$$
$$U(r) = \{(u_1, u_2, \dots, u_r) : u_i \in \mathbb{C}, \sum_i u_i = 0\}$$

then, for a fixed $u \in U(r)$,

$$(2\pi i)^{-N} \sum_{v \in V(r,N)} \frac{\partial^{v_1} f_1}{(2k_1 - 1 + v_1)! v_1!} \cdots \frac{\partial^{v_r} f_r}{(2k_r - 1 + v_r)! v_r!} u_1^{v_1} \dots u_r^{v_r}$$
(8.4)

which we'll denote by $\mathcal{G}_N(f_1, f_2, \ldots, f_r)$ is an element of $\mathcal{M}_{2(K+N)}$. This operator may also be expressed as an average, this time of

$$\mathcal{P}_{n_1,\dots,n_r}(f_1,\dots,f_r) = (4\pi)^{-N} \pi_{hol}(R^{n_1}y^{k_1}f_1(z)\cdots R^{n_r}y^{k_r}f_r(z)).$$
(8.5)

Proposition 8.3. With the above notation $\mathcal{G}_N(f_1, \cdots, f_r)$ equals

$$(-1)^{N} \sum_{v \in V(r,N)} \frac{u_{1}^{v_{1}}}{(2k_{1}-1+v_{1})!v_{1}!} \cdots \frac{u_{r}^{v_{r}}}{(2k_{r}-1+v_{r})!v_{r}!} \mathcal{P}_{v_{1},\ldots,v_{r}}(f_{1},\ldots,f_{r}).$$

Proof. Same as proposition 8.1. \blacklozenge

For more information on Rankin-Cohen differential operators see [Za1], [Za2]. Similar operators for Siegel modular forms are constructed in [Eh-Ib].

9. Convolution sums involving the divisor function.

We give a straightforward application of this material to finding explicit formulas for the sums

$$S_m(n_1, n_2; r_1, r_2) = \sum_{j=1}^{m-1} j^{n_1} (m-j)^{n_2} \sigma_{r_1}(j) \sigma_{r_2}(m-j).$$
(9.1)

Glaisher [Gl], Ramanujan [Ram] (pp 136-162) and Lahiri [La] were the first to systematically evaluate S_m for small values of n_1, n_2, r_1, r_2 . Ramanujan manipulated the expressions

$$P = 1 - 24 \sum_{m=1}^{\infty} \frac{mq^m}{1 - q^m}, \ Q = 1 + 240 \sum_{\substack{m=1\\9}}^{\infty} \frac{m^3 q^m}{1 - q^m}, \ R = 1 - 504 \sum_{m=1}^{\infty} \frac{m^5 q^m}{1 - q^m},$$
(9.2)

to obtain his identities and this work was extended in [La]. Ramanujan's series P, Q, R are none other than E_2, E_4, E_6 , see [Be]. Also go to [H-O-S-W] in this volume for an interesting elementary method employing a generalization of Liouville's identity to find explicit formulas for S_m and other sums.

Set

$$G_{2k} = \frac{-B_{2k}}{4k} E_{2k} = \frac{-B_{2k}}{4k} + \sum_{m=1}^{\infty} \sigma_{2k-1}(m)q^m.$$
(9.3)

While G_{2k} is in \mathcal{M}_{2k} for $k \geq 2$ the series G_2 is not in the zero space \mathcal{M}_2 . If we let $G_2^*(z) = G_2(z) + (8\pi y)^{-1}$ then G_2^* does transform correctly under the action of Γ and it has weight 2. Although it is no longer holomorphic we do have $yG_2^*(z) \in C^{\infty}(\Gamma \setminus \mathfrak{H}, 2)$.

Set

$$S_m^*(l_1, l_2; r_1, r_2) = T_m^*(l_1, l_2; G_{r_1+1}, G_{r_2+1})$$

= $S_m(l_1, l_2; r_1, r_2) - \frac{B_{r_1+1}}{2(r_1+1)} \sigma_{r_2}(m) E(0, l_1) E(m, l_2)$
 $- \frac{B_{r_2+1}}{2(r_2+1)} \sigma_{r_1}(m) E(0, l_2) E(m, l_1).$ (9.4)

Thus the sum we are interested in, (9.1), arises naturally in the Fourier coefficients of $\mathcal{P}_{l_1,l_2}(G_{r_1+1},G_{r_2+1})$. Then it can be seen that (7.4) implies that the expressions S_m^* satisfy the relation

$$\sum_{l_1=0}^{n_1} \sum_{l_2=0}^{n_2} (-1)^L \frac{n_1! n_2!}{l_1! l_2!} \binom{r_1+n_1}{r_1+l_1} \binom{r_2+n_2}{r_2+l_2} \frac{(r_1+r_2+N+L)!}{(r_1+r_2+2N)!} m^{N-L} S_m^*(l_1,l_2;r_1,r_2)$$

$$= \alpha_m \quad \text{for } r_1, r_2 \ge 3 \text{ and odd}$$
(9.5a)

where $\sum_{m=1}^{\infty} \alpha_m q^m$ is in $S_{2N+2+r_1+r_2}$ if $(n_1, n_2) \neq (0, 0)$. If $(n_1, n_2) = (0, 0)$ then $\sum_{m=0}^{\infty} \alpha_m q^m$ is in $\mathcal{M}_{2N+2+r_1+r_2}$ and $\alpha_0 = B_{r_1+1}B_{r_2+1}(4(r_1+1)(r_2+1))^{-1}$.

This means that we can express $S_m^*(n_1, n_2; r_1, r_2)$ (and hence $S_m(n_1, n_2; r_1, r_2)$ by (9.4)) in terms of the sums $S_m^*(l_1, l_2; r_1, r_2)$ for $0 \le l_1 < n_1$ and $0 \le l_2 < n_2$ and the coefficients of a cusp form in $S_{r_1+r_2+2+2N}$. This cusp form may be identified by calculating its first few terms.

If $r_1 = 1$ or $r_2 = 1$ then the recurrence relation is slightly different to take into account the extra factor in the constant term of G_2^* . We have (each for $m \ge 1$)

$$S_{m}^{*}(0,0;1,1) = \frac{-m}{2}\sigma_{1}(m) + \frac{5}{12}\sigma_{3}(m),$$

$$\sum_{l_{1}=0}^{n_{1}}\sum_{l_{2}=0}^{n_{2}}(-1)^{L}\frac{n_{1}!n_{2}!}{l_{1}!l_{2}!}\binom{1+n_{1}}{1+l_{1}}\binom{1+n_{2}}{1+l_{2}}\frac{(2+N+L)!}{(2+2N)!}m^{N-L}S_{m}^{*}(l_{1},l_{2};1,1)$$

$$+\left((-1)^{n_{1}}+(-1)^{n_{2}}\right)\frac{\sigma_{1}(m)}{2}m^{N+1}\frac{N!(N+1)!}{(2N+2)!} = \beta_{m} \quad \text{for } (n_{1},n_{2}) \neq (0,0),$$

$$(9.5c)$$

$$\sum_{l_1=0}^{n_1} \sum_{l_2=0}^{n_2} (-1)^L \frac{n_1! n_2!}{l_1! l_2!} \binom{1+n_1}{1+l_1} \binom{r+n_2}{r+l_2} \frac{(1+r+N+L)!}{(1+r+2N)!} m^{N-L} S_m^*(l_1, l_2; 1, r)$$
$$+ (-1)^{n_2} \frac{\sigma_r(m)}{2} m^{N+1} \frac{N! (N+r)!}{(2N+r+1)!} = \gamma_m \quad \text{for } r \ge 3 \text{ odd},$$
(9.5d)

where $\sum_{m=1}^{\infty} \beta_m q^m$ is in S_{2N+4} . Also $\sum_{m=1}^{\infty} \gamma_m q^m$ is in S_{2N+r+3} if $(n_1, n_2) \neq (0, 0)$. If $(n_1, n_2) = (0, 0)$ then $\sum_{m=0}^{\infty} \gamma_m q^m$ is in \mathcal{M}_{r+3} and $\gamma_0 = B_{r+1}(48(r+1))^{-1}$.

Recall that $S_m^*(n_1, n_2; r_1, r_2) = S_m(n_1, n_2; r_1, r_2)$ unless $n_1 n_2 = 0$ and in that case S_m^* has the two extra terms given by (9.4). Note that (9.5b) appears in [Za1] where it is proved by finding $\pi_{hol}((yG_2^*)^2)$. The relations (9.5a), (9.5c) and (9.5d) generalize this idea to cover all the other cases.

9.1 Examples.

To illustrate these ideas (and check the equations) we'll give some examples. For $S_m^*(0,0;3,3)$ use relation (9.5*a*) with $n_1 = n_2 = 0$ to see that $S_m^*(0,0;3,3) = \alpha_m$ with $\sum_{m=0}^{\infty} \alpha_m q^m$ in \mathcal{M}_8 and $\alpha_0 = B_4^2/64 = 1/(64 \cdot 900)$. Thus $\alpha_m = \sigma_7(m)/120$ and

$$S_m^*(0,0;3,3) = \frac{1}{120}\sigma_7(m).$$
(9.1.1)

When $n_1 = 1$ and $n_2 = 0$ (9.5*a*) implies that

$$\frac{m}{2}S_m^*(0,0;3,3) - S_m^*(1,0;3,3) = \alpha_m$$

with $\sum_{m=1}^{\infty} \alpha_m q^m$ in \mathcal{S}_{10} . Consequently

$$S_m^*(1,0;3,3) = S_m^*(0,1;3,3) = \frac{m}{2} S_m^*(0,0;3,3) = \frac{1}{240} m \sigma_7(m).$$
(9.1.2)

When $n_1 = 1$ and $n_2 = 1$ (9.5*a*) implies that

$$\frac{8}{45}m^2 S_m^*(0,0;3,3) - \frac{4}{5}m S_m^*(1,0;3,3) + S_m^*(1,1;3,3) = \alpha_m$$

with $\sum_{m=1}^{\infty} \alpha_m q^m$ in S_{12} . The one dimensional space S_{12} contains the discriminant function $\sum_{m=1}^{\infty} \tau(m)q^m$. Since $\tau(1) = 1$ and $S_1^*(1, 1; 3, 3) = 0$ we have $\alpha_m = -\tau(m)/540$ and

$$S_m^*(1,1;3,3) = \frac{1}{540}(\tau(m) + m^2\sigma_7(m)).$$
(9.1.3)

From (9.1.1), (9.1.2) and (9.1.3) we get

$$S_m(0,0;3,3) = \frac{1}{120}(\sigma_7(m) - \sigma_3(m))$$
(9.1.4)

$$S_m(1,0;3,3) = S_m(0,1;3,3) = \frac{1}{240}m(\sigma_7(m) - \sigma_3(m)), \qquad (9.1.5)$$

$$S_m(1,1;3,3) = \frac{1}{540} (\tau(m) + m^2 \sigma_7(m)).$$
(9.1.6)

Continuing this procedure we obtain.

$$S_m(2,0;3,3) = \frac{1}{2160} (4\tau(m) + 5m^2 \sigma_7(m) - 9m^2 \sigma_3(m)), \qquad (9.1.7)$$

$$S_m(2,1;3,3) = \frac{1}{1080} (m^3 \sigma_7(m) - m\tau(m)), \qquad (9.1.8)$$

$$S_m(2,2;3,3) = \frac{1}{30888} (13m^4 \sigma_7(m) - 22m^2 \tau(m) + 9\tau(m) + 2160r(m)), \qquad (9.1.9)$$

where $r(m) = \sum_{j=1}^{m-1} \sigma_3(m) \tau(m-j)$ comes from the cuspform $G_4 \Delta \in S_{16}$. With $r_1 = r_2 = 1$ we have $S_m^*(0, 0; 1, 1) = -m/2\sigma_1(m) + 5/12\sigma_3(m)$ by (9.5b). By (9.5c)

$$S_m^*(1,0;1,1) = \frac{m}{2} S_m^*(0,0;1,1) = \frac{1}{24} (-6m^2 \sigma_1(m) + 5m\sigma_3(m)).$$
(9.1.10)

Also

$$\frac{4}{30}m^2 S_m^*(0,0;1,1) - \frac{2}{3}m S_m^*(1,0;1,1) + S_m^*(1,1;1,1) - \frac{1}{60}m^3\sigma_1(m) = 0$$
11

so that

$$S_m^*(1,1;1,1) = \frac{1}{12}(m^2\sigma_3(m) - m^3\sigma_1(m)).$$
(9.1.11)

Therefore

$$S_m(0,0;1,1) = \frac{1}{12}(\sigma_1(m) - 6m\sigma_1(m) + 5\sigma_3(m)), \qquad (9.1.12)$$

$$S_m(1,0;1,1) = \frac{1}{24} (m\sigma_1(m) - 6m^2\sigma_1(m) + 5m\sigma_3(m)), \qquad (9.1.13)$$

$$S_m(1,1;1,1) = \frac{1}{12}(m^2\sigma_3(m) - m^3\sigma_1(m)).$$
(9.1.14)

Finally we consider the case $r_1 = 1, r_2 = 3$. By (9.5d) we have $S_m^*(0,0;1,3) + \frac{1}{8}\sigma_3(m)m = \gamma_m$ with $\sum \gamma_m q^m$ in \mathcal{M}_6 and $\gamma_0 = -1/5760$. Hence $\gamma_m = 7\sigma_5(m)/80$ for $m \ge 1$ and

$$S_m^*(0,0;1,3) = \frac{1}{80} (7\sigma_5(m) - 10m\sigma_3(m)).$$
(9.1.15)

Similarly

$$\frac{m}{3}S_m^*(0,0;1,3) - S_m^*(1,0;1,3) + \frac{1}{60}m^2\sigma_3(m) = \gamma_m$$

with $\sum \gamma_m q^m$ in \mathcal{S}_8 . This implies that

$$S_m^*(1,0;1,3) = \frac{1}{240} (7m\sigma_5(m) - 6m^2\sigma_3(m)).$$
(9.1.16)

We also have

$$S_m^*(0,1;1,3) = \frac{1}{120} (7m\sigma_5(m) - 3m^2\sigma_3(m)).$$
(9.1.17)

For the last calculation (9.5d) gives

$$\frac{m^2}{7}S_m^*(0,0;1,3) - \frac{m}{4}S_m^*(0,1;1,3) - \frac{m}{2}S_m^*(1,0;1,3) + S_m^*(1,1;1,3) - \frac{1}{336}m^3\sigma_3(m) = \gamma_m$$

with $\sum \gamma_m q^m$ in \mathcal{S}_{10} . Thus, as before, $\gamma_m = 0$ and

$$S_m^*(1,1;1,3) = \frac{1}{60} (m^2 \sigma_5(m) - m^3 \sigma_3(m)).$$
(9.1.18)

Equations (9.1.15), (9.1.16), (9.1.17) and (9.1.18) imply that

$$S_m(0,0;1,3) = \frac{1}{240} (21\sigma_5(m) - 30m\sigma_3(m) + 10\sigma_3(m) - \sigma_1(m)), \qquad (9.1.19)$$

$$S_m(1,0;1,3) = \frac{1}{240} (7m\sigma_5(m) - 6m\sigma_3(m) - m\sigma_1(m)), \qquad (9.1.20)$$

$$S_m(0,1;1,3) = \frac{1}{120} (7m\sigma_5(m) - 12m^2\sigma_3(m) + 5m\sigma_3(m)), \qquad (9.1.21)$$

$$S_m(1,1;1,3) = \frac{1}{60} (m^2 \sigma_5(m) - m^3 \sigma_3(m)).$$
(9.1.22)

The equations (9.1.4), (9.1.5), (9.1.12), (9.1.13), (9.1.14), (9.1.19), (9.1.20), (9.1.21) and (9.1.22) appear in [La] and [H-O-S-W].

References

- [Be] Berndt, B.C., Ramanujan's Notebooks Part II, Springer-Verlag, New York, 1989.
- [Bu] Bump, D., Automorphic Forms and Representations, Cambridge studies in Advanced Math. 55, Camb. Univ. Press, 1997.
- [Co] Cohen, H., Sums involving the values at negative integers of L functions of quadratic characters, Math. Ann. 217 (1975), 271-285.
- [Eh-Ib] Eholzer, E., Ibukiyama, T., Rankin-Cohen type differential operators for Siegel modular forms, Internat. J. Math **9** (1998), 443-463.
- [GI] Glaisher, J., Expressions for the first five powers of the series in which the coefficients are the sums of the divisors of the exponents, Mess. Math. 15 (1885), 33-36.
- [H-O-S-W] Huard, J., Ou, Z., Spearman, B., Williams, K., Elementary evaluation of certain convolution sums involving divisor functions, Proceedings of the Millennial Conference on Number Theory.
- [Iw] Iwaniec, H., Introduction to the spectral theory of automorphic forms, Bibl. Rev. Mat. Iber., Madrid, 1995.
- [La] Lahiri, D., On Ramanujan's function $\tau(n)$ and the divisor function $\sigma(n)$ I, Bull. Calcutta Math. Soc. **38** (1946), 193-206.
- [Ram] Ramanujan, S., Collected Papers, Chelsea, New York, 1962.
- [Ran1] Rankin, R., The construction of automorphic forms from the derivatives of a given form, J. Indian Math. Soc. 20 (1956), 103-116.
- [Ran2] Rankin, R., The construction of automorphic forms from the derivatives of given forms, Michigan Math. J. 4 (1957), 181-186.
- [Ran3] Rankin, R., The construction of automorphic forms from the derivatives of a given form II, Canad. Math. Bull. 28 (1985), 306-316.
- [Ri] Riordan, J., Combinatorial Identities, John Wiley & Sons, New York, 1968.
- [St] Sturm, J., Projections of C^{∞} automorphic forms, Bull. AMS 2 (1980).
- [Za1] Zagier, D., Introduction to modular forms in From number theory to physics (Les Houches, 1989), Springer, Berlin, 1992, pp. 238-291.
- [Za2] Zagier, D., Modular forms and differential operators, Proc. Indian Acad. Sci. (Math. Sci.) 104 (1994), 57-75.