
IDENTITIES FROM THE HOLOMORPHIC PROJECTION OF MODULAR FORMS1

Cormac O’Sullivan

1. Introduction.

Set H = {z = x + iy ∈ C : y > 0} and let Γ be the modular group

PSL2(Z) =
{

( a b

c d
) : a, b, c, d ∈ Z, ad− bc = 1

}
/± 1.

The complex vector space of modular forms for Γ of weight 2k, denoted M2k(Γ) = M2k, consists of
functions f : H → C that satisfy

f(( a b

c d
)z) = f(

az + b

cz + d
) = (cz + d)2kf(z) (1.1)

for each ( a b

c d
) ∈ Γ and are holomorphic on H. We also require them to be holomorphic at infinity. In other

words f has the Fourier expansion f(z) =
∑∞

n=0 ane2πinz. If a0 = 0 then f(z) has exponential decay as
y → ∞. We term the space of such forms S2k, the cusp forms. The spaces M2k, S2k with k ∈ N are finite
dimensional with

dimM2k =
[2k

12
]
+ 1 (or

[2k

12
]

if 2k ≡ 2 mod 12),

dimS2k = dimM2k − 1 (or 0 if 2k 6 10).

For example an element of M2k is the Eisenstein series

E2k(z) = 1− 4k

B2k

∞∑
m=1

σ2k−1(m)qm (1.2)

where k ≥ 2, Bk is the kth Bernoulli number, (B2 = 1
6 , B4 = −1

30 , B6 = 1
42 , B8 = −1

30 , . . . ), q = e2πiz and
the divisor sum σk(n) =

∑
d|n dk.

If f ∈ Mk and g ∈ Ml then fg ∈ Mk+l so we get the well known result E4(z)E4(z) = cE8(z) since
dimM8 = 1. Comparing Fourier expansions we obtain the identity

σ3(n) + 120
n−1∑

i=1

σ3(i)σ3(n− i) = σ7(n) (1.3)

for all n ≥ 1. What kinds of identities of this type are possible in more general settings?
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2. The space C∞(Γ\H, 2k).

This is the space of smooth functions Φ that transform as follows

Φ(( a b

c d
)z) =

(
cz + d

|cz + d|
)2k

Φ(z). (2.1)

For example if f ∈M2k then ykf(z) ∈ C∞(Γ\H, 2k). For elements Φ1,Φ2 ∈ C∞(Γ\H, 2k) that do not grow
large too quickly we have the inner product

〈Φ1,Φ2 〉 =
∫

Γ\H
Φ1(z)Φ2(z) dµz, (2.2)

where dµz = dxdy
y2 . Also available are the Maass raising and lowering operators R2k = 2iy d

dz + k and
L2k = −2iy d

dz − k where

R2k :C∞(Γ\H, 2k) → C∞(Γ\H, 2k + 2),

L2k :C∞(Γ\H, 2k) → C∞(Γ\H, 2k − 2).

Finally we may also define the weight 2k hyperbolic Laplacian ∆2k = −y2( ∂2

∂x2 + ∂2

∂y2 )+2iky ∂
∂x . It is related

to the raising and lowering operators as follows,

∆2k = −L2k+2R2k − k(1 + k), (2.3)

= −R2k−2L2k + k(1− k). (2.4)

See [Bu] chapter 2 for more details.

3. Holomorphic projection.

To construct identities we need to project our results into the finite dimensional space M2k. Define the
Poincare series

Pm(z, 2k) =
∑

(
a b

c d
)∈Γ∞\Γ

(cz + d)−2ke2πim az+b
cz+d (3.1)

for k ≥ 2 and Γ∞ = {γ ∈ Γ : γ∞ = ∞}. It is a cusp form in S2k for m ≥ 1 and for any other f ∈ S2k we
have

〈 ykf(z), ykPm(z, 2k) 〉 = am
(2k − 2)!

(4πm)2k−1

with am the mth Fourier coefficient of f(z). We may use this feature of the Poincare series to define a
projection map πhol : C∞(Γ\H, 2k) →M2k.

Lemma 3.1. For Φ ∈ C∞(Γ\H, 2k) satisfying 1
yk Φ(z) = c0 + O(y−ε) as y →∞ with k ≥ 2 and ε > 0 set

πhol(Φ(z)) = c0 +
∞∑

m=1

〈Φ(z), ykPm(z, 2k) 〉 (4πm)2k−1

(2k − 2)!
qm.

Then πhol(Φ(z)) ∈M2k and 〈 ykf(z),Φ 〉 = 〈 ykf(z), ykπholΦ 〉 for every f ∈ S2k.

Note that if g(z) is already an element ofM2k then πhol(ykg(z)) = g(z) and in that sense it is a projection.
This idea originated in [St]. See [Za1] for a proof of the above lemma.

So we are led to the following question. What kinds of identities are possible using
(i) Multiplication : M2k(Γ)×M2l(Γ) → M2k+2l(Γ),
(ii) R2k : C∞(Γ\H, 2k) → C∞(Γ\H, 2k + 2),
(iii) L2k : C∞(Γ\H, 2k) → C∞(Γ\H, 2k − 2) and
(iv) πhol : C∞(Γ\H, 2k) → M2k(Γ)?
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4. Repeatedly raising and lowering holomorphic modular forms.

To see what happens when we repeatedly apply the Maass raising operator it is useful to re-express things
in terms of the simpler operator DR = 2iy2 d

dz . We obtain

R2(k+n−1)R2(k+n−2) . . . R2k =
n∑

j=0

(
n
j

)
(j + k − 1)!

(k − 1)!
yj−nDn−j

R (4.1)

for k > 0 and R2(n−1) . . . R0 = y−nDn
R.

Similarly for the lowering operator we have

L2(k−n+1)L2(k−n+2) . . . L2k = (−1)n
n∑

j=0

(
n
j

)
k!

(k − j)!
yj−nDn−j

L (4.2)

for k ≥ n + 1 and DL = 2iy2 d
dz . Formulas (4.1) and (4.2) may be verified by induction. For conve-

nience, when it is clear that we are dealing with an element of C∞(Γ\H, 2k), we shall write Rn instead of
R2(k+n−1)R2(k+n−2) . . . R2k and Ln for L2(k−n+1)L2(k−n+2) . . . L2k.

4.1. Lowering modular forms.

For f(z) =
∑∞

m=0 amqm ∈M2k we compute Lnykf(z). Actually the answer is rather easy because

L2kykf(z) = (−2iy
d

dz
− k)ykf(z)

= − 2iy(
d

dz
yk)f(z)− 2iyk+1 d

dz
f(z)− kykf(z) = 0.

Therefore Lnykf(z) = 0 for any n > 0. On the level of the Fourier coefficients we have the following.

Lnykf(z) =
∞∑

m=0

am


(−1)n

n∑

j=0

(
n
j

)
k!

(k − j)!
yj−nDn−j

L (ykqm)




=
∞∑

m=0

amqm


(−1)n

n∑

j=0

(
n
j

)
k!

(k − j)!
yj−nyk+n−j(−1)n−j (k + n− j − 1)!

(k − 1)!




since Dn
L(ykqm) = yk+n(−1)n (k+n−1)!

(k−1)! qm. On simplifying we see that we must have the identity
n∑

j=0

(−1)j

(
n
j

)
(k − j + 1)n−1 = 0, (4.3)

for n ≥ 1 where we define

(a)m =
Γ(a + m)

Γ(a)
=

{
1 if m = 0,

(a)(a + 1) . . . (a + m− 1) if m > 0.
(4.4)

We can prove this more directly. One method is to consider dm

dxm (1+x)nxr at x = −1. This may be evaluated
in two ways. First use the binomial expansion of (1 + x)n to get

n∑

i=0

(
n

i

)
(r −m + i + 1)m(−1)i+r−m.

Secondly use Leibnitz’ formula to show that

dm

dxm
(1 + x)nxr =

m∑

i=0

(
m

i

)
(n− i + 1)i(1 + x)n−i(r −m + i + 1)m−ix

r−m+i.

At x = −1 the only non-zero term is when i = n (provided m ≥ n) and so we obtain
n∑

i=0

(−1)i

(
n

i

)
(r −m + i + 1)m =

{
(−1)n m!

(m−n)! (r −m + n + 1)m−n m ≥ n,

0 m < n.
(4.5)

Replace i by n− i and set m = n− 1, k = r + 1 to see (4.3).
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4.2. Raising modular forms.

As in the previous example apply (4.1) and the formula

Dn
R(ykqm) = yk+n

n∑

l=0

(−1)l

(
n
l

)
(k + n− 1)!
(k + l − 1)!

yl(4πm)lqm, (4.6)

to get

Rnykf(z) =
∞∑

m=1

amqm
n∑

l=0

Ml(n, k)(4πm)lyk+l,

for f(z) =
∑∞

m=1 amqm with

Ml(n, k) = (−1)l n!
l!

n−l∑

j=0

(
j + k − 1

j

)(
k + n− j − 1

k + l − 1

)
.

Now for p, l ≥ 0 we have the identity

m∑

j=0

(
p + j

p

)(
p + l + m− j

p + l

)
=

(
2p + l + m + 1

2p + l + 1

)
. (4.7)

To see this note that
∑∞

j=0

(
p + j

p

)
xj = 1

(1−x)p+1 for |x| < 1. Consequently

∞∑

i=0

(
p + i

p

)
xi

∞∑

j=0

(
p + l + j

p + l

)
xj =

1
(1− x)p+1+p+l+1

=
∞∑

j=0

(
2p + l + 1 + j

2p + l + 1

)
xj

and comparing the coefficients of xm on the above line yields (4.7). Thus Ml(n, k) = (−1)l n!
l!

(
2k − 1 + n
2k − 1 + l

)

and

Rnykf(z) =
∞∑

m=1

amqm
n∑

l=0

n!
l!

(
2k − 1 + n
2k − 1 + l

)
(−4πm)lyk+l. (4.8)

If f(z) =
∑∞

m=0 amqm ∈M2k then the above formula remains true with a small alteration. Define

E(m, l) =
{

ml if m > 0 or l > 0
1 if m = 0 and l = 0.

(4.9)

Then

Rnykf(z) =
∞∑

m=0

amqm
n∑

l=0

(−4π)l n!
l!

(
2k − 1 + n
2k − 1 + l

)
E(m, l)yk+l. (4.10)

To work out the holomorphic projection of Rnykf(z) and similar functions we use the next result.

Lemma 4.1. For Φ ∈ C∞(Γ\H, 2k) with

Φ(z) =
∞∑

m=0

um(y)qm, um(y) =
rm∑

i=0

vm(i)ylm(i)

and l0(i) ≤ k then πholΦ(z) =
∑∞

m=0 cmqm where c0 is the constant part of 1
yk u0(y) and for m ≥ 1

cm =
rm∑

i=0

vm(i)
Γ(lm(i) + k − 1)

(2k − 2)!
(4πm)k−lm(i).
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Proof. To compute the cm we evaluate 〈Φ, ykPm 〉 by unfolding it.

〈Φ(z), ykPm(z, 2k) 〉 =
∫

Γ\H
Φ(z)ykPm(z, 2k) dµz

=
∫

Γ\H
Φ(z)yk

∑

(
a b

c d
)∈Γ∞\Γ

(cz + d)−2ke2πimγz dµz

=
∫

Γ\H

∑

(
a b

c d
)∈Γ∞\Γ

Φ(γz)Im(γz)k(cz + d)−2ke2πimγz dµz

=
∫ ∞

0

∫ 1

0

Φ(z)yke−2πimz dxdy

y2

=
∫ ∞

0

um(y)yk−2e−4πmy dy

=
rm∑

i=0

vm(i)Γ(lm(i) + k − 1)(−4πm)−lm(i)−k+1.

The result follows by applying lemma 3.1. ¨

Set Φ(z) = Rnykf(z) for f(z) =
∑∞

m=1 amqm ∈ S2k. Then Φ ∈ C∞(Γ, 2(n+k)) and we have by (4.8) that

Φ(z) =
∑∞

m=1 um(y)qm with um(y) =
∑rm

i=0 vm(i)ylm(i) where rm = n, vm(i) = am
n!
i!

(
2k − 1 + n
2k − 1 + i

)
(−4πm)i

and lm(i) = k + i. Thus πhol(Rnykf(z)) = πhol(Φ(z)) =
∑∞

m=1 cmqm with

cm = am(4πm)n
n∑

i=0

(−1)i n!
i!

(
2k − 1 + n

2k − 1 + i

)
(2k + n + i− 2)!
(2k + 2n− 2)!

. (4.11)

As with the previous example we must have πhol(Rnykf(z)) = 0. This time the reason is that

〈R2kΦ(z), ykPm(z, 2k + 2) 〉 = 〈Φ(z),−L2k+2y
kPm(z, 2k + 2) 〉 (4.12)

= 〈Φ(z), 0 〉 = 0.

This shows that πhol composed with the raising operator is identically zero. (See [Bu] Prop. 2.1.3 for the
above relation between R2k and −L2k+2.) Therefore each cm = 0 and we obtain the identity

n∑

i=0

(−1)i

(
n

i

)
(2k + i)n−1 = 0,

which may be verified for n ≥ 1 with (4.5).

5. Raising Maass forms.

A Maass form is an element η(z, s) of C∞(Γ\H, 2k) that is an eigenfunction of the Laplacian ∆2k so that

∆2kη = λη = s(1− s)η. (5.1)

Maass cusp forms have zero constant terms in their Fourier expansions and are non holomorphic analogs
of the elements of S2k. From (5.1) it may be shown that a Maass cusp form of weight 2k = 0 has Fourier
expansion

η(z, s) =
∑

m 6=0

bm

√
|m|yKs−1/2(2π|m|y)e2πimx (5.2)
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where K is the K Bessel function and we are summing over all non zero integers. See [Bu], [Iw] for example.
To find Rnη(z, s) we first need to compute Dn

R(y1/2Kv(2π|m|y)e(mx)) for v = s − 1/2. Use the fact that
d
dy Kv(y) = −1/2(Kv−1(y) + Kv+1(y)) to show that

Dn
R(y1/2Kv(2π|m|y)e(mx)) =

n∑

i=0

i∑

j=−i

αn
j (i)y1/2+n+iKv+j(2π|m|y)e(mx).

The numbers αn
j (i) depend on m and may be defined recursively. (Note that the superscript n is an index

not an exponent.) For n = 0 we have α0
j (i) = 0 unless i = j = 0 in which case α0

0(0) = 1. For n ≥ 0 and
δ = |m|m−1 we have

αn+1
j (i) = −πm

(
δαn

j−1(i− 1) + 2αn
j (i− 1) + δαn

j+1(i− 1)
)

+ (i + n + 1/2)αn
j (i).

Setting βn
j (i) = (−2)nδj

(2πm)i αn
j (i) removes the m dependance and

βn+1
j (i) = βn

j−1(i− 1) + 2βn
j (i− 1) + βn

j+1(i− 1)− (2i + 2n + 1)βn
j (i).

To isolate the dependance on j set βn
j (i) = (−1)n+iγn

i

(
2i

j+i

)
to obtain the relation

γn+1
i = γn

i−1 + (2i + 2n + 1)γn
i . (5.3)

We may solve the recurrence (5.3) with the initial conditions γ0
0 = 1 and γ0

i = 0 for i 6= 0 to get

γn
i =

(2n)!
(n + i)!(2i)!2n−i

for n > 1, 0 6 i 6 n.

Therefore

αn
j (i) = (−4πm)i (2n)!δj

(i + j)!(i− j)!(n− i)!
(5.4)

and

Rnη(z, s) = y−nDn
Rη(z, s) =

∑

m6=0

bm

√
|m|y−nDn

R(Kv(2π|m|y)e(mx))

=
∑

m6=0

bm

√
|m|

n∑

i=0

(−4πm)i

(n− i)!
yi+ 1

2

i∑

j=−i

(2n)!(|m|m−1)j

(i + j)!(i− j)!
Kv+j(2π|m|y)e(mx). (5.5)

Incidentally, with (2.3) and (2.4) we can show that Rnη is an eigenfunction of ∆2n if and only if η is an
eigenfunction of ∆0. This means that every Maass cusp form of weight 2n and eigenvalue 1/4− v2 has the
Fourier expansion (5.5).

6. Holomorphic projection of raised Maass forms.

As we have seen (4.12) forces πhol(Rnη(z, s)) to be zero. To see how the Fourier coefficients vanish we
calculate 〈Rnη(z, s), ynPm(z, 2n) 〉. Use the fact that

∫ ∞

0

xr−1Kv(x)e−x dx = 2−rπ1/2Γ(r + 1/2)−1Γ(r + v)Γ(r − v), (6.1)

for Re(r) > |Re(v)| to get 〈Rnη(z, s), ynPm(z, 2n) 〉 equaling

bm

2
(4πm)1−n

n∑

i=0

(−1)i(2n)!
(n− i)!

i∑

j=−i

Γ(n + v + i + j − 1
2 )Γ(n− v + i− j − 1

2 )
(i + j)!(i− j)!Γ(n + i)

.

Consequently πhol(Rnη(z, s)) =
∑∞

m=1 cmqm with cm given by

bm

2
(4πm)n

n∑

i=0

(−1)i2n(2n− 1)
(n + i− 1)(n− i)!

i∑

j=−i

Γ(n + v + i + j − 1
2 )Γ(n− v + i− j − 1

2 )
(i + j)!(i− j)!

.

To check that this is indeed zero we’ll prove it by hand.
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Lemma 6.1. For n ≥ 1, v ∈ C
n∑

i=0

(−1)i

(n + i− 1)!(n− i)!

i∑

j=−i

Γ(n + v + i + j − 1
2 )Γ(n− v + i− j − 1

2 )
(i + j)!(i− j)!

= 0.

Proof. Note that (1+x)s =
∑∞

l=0

(
s
l

)
xl is valid for all −1 < x < 1 and s ∈ C if we set

(
s
l

)
= Γ(s+1)

Γ(s−l+1)Γ(l+1)

and use the usual conventions for defining xs. With the formula Γ(l−s)
l! = Γ(−s)(−1)l

(
s
l

)
for l ∈ N we see

that

2i∑

l=0

Γ(n + s + l − 1)Γ(n + 2i− l − s)
l!(2i− l)!

= Γ(n + s− 1)Γ(n− s)
∑

l=0

2i

(−n− s + 1
l

)(−n + s

2i− l

)
.

Also, since
∑∞

l=0

(−n−s+1
l

)
xl = (1+x)−n−s+1 and

∑∞
l=0

(−n+s
l

)
xl = (1+x)−n+s their product is (1+x)1−2n

implying that the coefficient of x2i in the above is

2i∑

l=0

(−n− s + 1
l

)(−n + s

2i− l

)
=

(
1− 2n

2i

)
=

(
2n + 2i− 2

2i

)
.

Therefore, to finish the proof, it suffices to show that

S =
n∑

i=0

(−1)i

(
2n− 1
n− i

)(
2n + 2i− 2

2i

)
= 0. (6.2)

By adapting the identity following (4.7) we have that

∞∑

l=0

(
2n− 2 + 2l

2l

)
xl =

1
2

(
(1−√x)−2n+1 + (1 +

√
x)−2n+1

)
.

Also
∑∞

l=0

(
2n−1

l

)
(−x)l = (1− x)2n−1 so that S is the coefficient of xn in the product

1
2

(
(1−√x)−2n+1 + (1 +

√
x)−2n+1

)
(1− x)2n−1

=
1
2

(
(1 +

√
x)2n−1 + (1−√x)2n−1

)

=
n−1∑

i=0

(
2n− 1

2i

)
xi

Thus S = 0 completing the proof. ¨

The identity (6.2) also appears as a special case of the identity on p37 of [Ri].

7. Projecting products of raised modular forms.

In order to get a non zero projection we try the following. For f =
∑

amqm ∈M2k1 , g =
∑

bmqm ∈M2k2

we examine
πhol(Rn1yk1f(z) ·Rn2yk2g(z)).

Clearly it is an element of M2(K+N) for K =
∑

i ki, N =
∑

i ni. From (4.10) we derive

Rn1yk1f(z) ·Rn2yk2g(z) =
∞∑

m=0

um(y)qm

7



with

um(y) =
n1∑

l1=0

n2∑

l2=0

(4π)L(−1)L n1!n2!
l1!l2!

(
2k1 − 1 + n1

n1 − l1

)(
2k2 − 1 + n2

n2 − l2

)

× yK+L
m∑

j=0

ajbm−jE(j, l1)E(m− j, l2) (7.1)

where L =
∑

i li. (This convention for N , K and L will be in place from now on.) If we label the inner sum
T ∗m(l1, l2; f, g) then

T ∗m(l1, l2; f, g) = Tm(l1, l2; f, g) + a0bmE(0, l1)E(m, l2) + amb0E(m, l1)E(0, l2) (7.2)

where

Tm(l1, l2; f, g) =
m−1∑

j=1

ajbm−jj
l1(m− j)l2 . (7.3)

Finally, applying lemma 4.1, we have that πhol(Rn1yk1f(z) ·Rn2yk2g(z)) =
∑∞

m=0 cmqm with

cm = (4π)N
n1∑

l1=0

n2∑

l2=0

(−1)L n1!n2!
l1!l2!

(
2k1 − 1 + n1

n1 − l1

)(
2k2 − 1 + n2

n2 − l2

)

× (2K + N + L− 2)!
(2K + 2N − 2)!

mN−LT ∗m(l1, l2; f, g), (7.4)

for m ≥ 1 and c0 = (−4π)Na0b0E(0, n1)E(0, n2). Hence c0 = 0 unless n1 = n2 = 0 and in that case
c0 = a0b0. So we see that the differential operator Pn1,n2 defined by

Pn1,n2(f, g) = (4π)−Nπhol(Rn1yk1f(z) ·Rn2yk2g(z)) (7.5)

gives a map Pn1,n2 : M2k1×M2k2 → S2(N+K) for (n1, n2) 6= (0, 0). For n1 = n2 = 0 we have P0,0(f, g) = fg.
Examples in section 9 show that this map is not identically zero.

8. Rankin-Cohen differential operators.

The map P above is similar to a construction of Cohen in [Co]. For f ∈M2k1 , g ∈M2k2 he shows that

FN (f, g) = (2πi)−N
N∑

i=0

(−1)i

(
2k1 − 1 + N

N − i

)(
2k2 − 1 + N

i

)
∂i

zf∂N−i
z g (8.1)

is an element of M2(K+N) where ∂i
z means di

dzi .
How are F and P related? In fact it’s not hard to show that FN is a certain average of the Pn1,n2s.

Proposition 8.1. For every f ∈M2k1 , g ∈M2k2

(−1)N
N∑

i=0

(−1)i

(
2k1 − 1 + N

N − i

)(
2k2 − 1 + N

i

)
Pi,N−i(f, g) = FN (f, g). (8.2)

Proof. If N = 0 then the proposition is true. For N ≥ 1 we may write the left hand side of (8.2) as∑∞
m=1 dmqm with, after simplifying,

dm =
N∑

i=0

(−1)i

(
2k1 − 1 + N

N − i

)(
2k2 − 1 + N

i

)
T ∗m(i, N − i; f, g).

The Fourier coefficients of the right hand side are identical. ¨

As with F , P may be expressed in terms of the derivatives of the modular forms.
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Proposition 8.2. For every f ∈M2k1 , g ∈M2k2

Pn1,n2(f, g) = (2πi)−N
n1∑

l1=0

n2∑

l2=0

(−1)L n1!n2!
l1!l2!

(
2k1 − 1 + n1

n1 − l1

)(
2k2 − 1 + n2

n2 − l2

)

× (2K + N + L− 2)!
(2K + 2N − 2)!

∂N−l1−l2
z

(
∂l1

z f ∂l2
z g

)
. (8.3)

Proof. Compare Fourier coefficients. ¨

Rankin in [Ran1],[Ran2] considers the general question of which polynomials in the derivatives of modular
forms are again modular forms. His operator in [Ran3] includes F as a special case. It is formulated as
follows. Set r > 2 and label r modular forms fi ∈M2ki

for 1 6 i 6 r. Also define

V (r,N) = {(v1, v2, . . . , vr) : vi ∈ N,
∑

i

vi = N},

U(r) = {(u1, u2, . . . , ur) : ui ∈ C,
∑

i

ui = 0}

then, for a fixed u ∈ U(r),

(2πi)−N
∑

v∈V (r,N)

∂v1f1

(2k1 − 1 + v1)!v1!
· · · ∂vrfr

(2kr − 1 + vr)!vr!
uv1

1 . . . uvr
r (8.4)

which we’ll denote by GN (f1, f2, . . . , fr) is an element of M2(K+N). This operator may also be expressed as
an average, this time of

Pn1,...,nr (f1, . . . fr) = (4π)−Nπhol(Rn1yk1f1(z) · · ·Rnrykrfr(z)). (8.5)

Proposition 8.3. With the above notation GN (f1, · · · , fr) equals

(−1)N
∑

v∈V (r,N)

uv1
1

(2k1 − 1 + v1)!v1!
· · · uvr

r

(2kr − 1 + vr)!vr!
Pv1,...,vr (f1, . . . , fr).

Proof. Same as proposition 8.1. ¨

For more information on Rankin-Cohen differential operators see [Za1], [Za2]. Similar operators for Siegel
modular forms are constructed in [Eh-Ib].

9. Convolution sums involving the divisor function.

We give a straightforward application of this material to finding explicit formulas for the sums

Sm(n1, n2; r1, r2) =
m−1∑

j=1

jn1(m− j)n2σr1(j)σr2(m− j). (9.1)

Glaisher [Gl], Ramanujan [Ram] (pp 136-162) and Lahiri [La] were the first to systematically evaluate Sm

for small values of n1, n2, r1, r2. Ramanujan manipulated the expressions

P = 1− 24
∞∑

m=1

mqm

1− qm
, Q = 1 + 240

∞∑
m=1

m3qm

1− qm
, R = 1− 504

∞∑
m=1

m5qm

1− qm
, (9.2)
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to obtain his identities and this work was extended in [La]. Ramanujan’s series P, Q,R are none other than
E2, E4, E6, see [Be]. Also go to [H-O-S-W] in this volume for an interesting elementary method employing
a generalization of Liouville’s identity to find explicit formulas for Sm and other sums.

Set

G2k =
−B2k

4k
E2k =

−B2k

4k
+

∞∑
m=1

σ2k−1(m)qm. (9.3)

While G2k is in M2k for k ≥ 2 the series G2 is not in the zero space M2. If we let G∗2(z) = G2(z) + (8πy)−1

then G∗2 does transform correctly under the action of Γ and it has weight 2. Although it is no longer
holomorphic we do have yG∗2(z) ∈ C∞(Γ\H, 2).

Set

S∗m(l1, l2; r1, r2) = T ∗m(l1, l2; Gr1+1, Gr2+1)

= Sm(l1, l2; r1, r2)− Br1+1

2(r1 + 1)
σr2(m)E(0, l1)E(m, l2)

− Br2+1

2(r2 + 1)
σr1(m)E(0, l2)E(m, l1). (9.4)

Thus the sum we are interested in, (9.1), arises naturally in the Fourier coefficients of Pl1,l2(Gr1+1, Gr2+1).
Then it can be seen that (7.4) implies that the expressions S∗m satisfy the relation

n1∑

l1=0

n2∑

l2=0

(−1)L n1!n2!
l1!l2!

(
r1 + n1

r1 + l1

)(
r2 + n2

r2 + l2

)
(r1 + r2 + N + L)!

(r1 + r2 + 2N)!
mN−LS∗m(l1, l2; r1, r2)

= αm for r1, r2 ≥ 3 and odd (9.5a)

where
∑∞

m=1 αmqm is in S2N+2+r1+r2 if (n1, n2) 6= (0, 0). If (n1, n2) = (0, 0) then
∑∞

m=0 αmqm is in
M2N+2+r1+r2 and α0 = Br1+1Br2+1(4(r1 + 1)(r2 + 1))−1.

This means that we can express S∗m(n1, n2; r1, r2) (and hence Sm(n1, n2; r1, r2) by (9.4)) in terms of the
sums S∗m(l1, l2; r1, r2) for 0 ≤ l1 < n1 and 0 ≤ l2 < n2 and the coefficients of a cusp form in Sr1+r2+2+2N .
This cusp form may be identified by calculating its first few terms.

If r1 = 1 or r2 = 1 then the recurrence relation is slightly different to take into account the extra factor
in the constant term of G∗2. We have (each for m ≥ 1)

S∗m(0, 0; 1, 1) =
−m

2
σ1(m) +

5
12

σ3(m), (9.5b)
n1∑

l1=0

n2∑

l2=0

(−1)L n1!n2!
l1!l2!

(
1 + n1

1 + l1

)(
1 + n2

1 + l2

)
(2 + N + L)!

(2 + 2N)!
mN−LS∗m(l1, l2; 1, 1)

+
(
(−1)n1 + (−1)n2

)σ1(m)
2

mN+1 N !(N + 1)!
(2N + 2)!

= βm for (n1, n2) 6= (0, 0),
(9.5c)

n1∑

l1=0

n2∑

l2=0

(−1)L n1!n2!
l1!l2!

(
1 + n1

1 + l1

)(
r + n2

r + l2

)
(1 + r + N + L)!

(1 + r + 2N)!
mN−LS∗m(l1, l2; 1, r)

+ (−1)n2
σr(m)

2
mN+1 N !(N + r)!

(2N + r + 1)!
= γm for r ≥ 3 odd, (9.5d)

where
∑∞

m=1 βmqm is in S2N+4. Also
∑∞

m=1 γmqm is in S2N+r+3 if (n1, n2) 6= (0, 0). If (n1, n2) = (0, 0) then∑∞
m=0 γmqm is in Mr+3 and γ0 = Br+1(48(r + 1))−1.
Recall that S∗m(n1, n2; r1, r2) = Sm(n1, n2; r1, r2) unless n1n2 = 0 and in that case S∗m has the two extra

terms given by (9.4). Note that (9.5b) appears in [Za1] where it is proved by finding πhol((yG∗2)
2). The

relations (9.5a), (9.5c) and (9.5d) generalize this idea to cover all the other cases.
10



9.1 Examples.

To illustrate these ideas (and check the equations) we’ll give some examples. For S∗m(0, 0; 3, 3) use relation
(9.5a) with n1 = n2 = 0 to see that S∗m(0, 0; 3, 3) = αm with

∑∞
m=0 αmqm in M8 and α0 = B2

4/64 =
1/(64 · 900). Thus αm = σ7(m)/120 and

S∗m(0, 0; 3, 3) =
1

120
σ7(m). (9.1.1)

When n1 = 1 and n2 = 0 (9.5a) implies that

m

2
S∗m(0, 0; 3, 3)− S∗m(1, 0; 3, 3) = αm

with
∑∞

m=1 αmqm in S10. Consequently

S∗m(1, 0; 3, 3) = S∗m(0, 1; 3, 3) =
m

2
S∗m(0, 0; 3, 3) =

1
240

mσ7(m). (9.1.2)

When n1 = 1 and n2 = 1 (9.5a) implies that

8
45

m2S∗m(0, 0; 3, 3)− 4
5
mS∗m(1, 0; 3, 3) + S∗m(1, 1; 3, 3) = αm

with
∑∞

m=1 αmqm in S12. The one dimensional space S12 contains the discriminant function
∑∞

m=1 τ(m)qm.
Since τ(1) = 1 and S∗1 (1, 1; 3, 3) = 0 we have αm = −τ(m)/540 and

S∗m(1, 1; 3, 3) =
1

540
(τ(m) + m2σ7(m)). (9.1.3)

From (9.1.1), (9.1.2) and (9.1.3) we get

Sm(0, 0; 3, 3) =
1

120
(σ7(m)− σ3(m)) (9.1.4)

Sm(1, 0; 3, 3) = Sm(0, 1; 3, 3) =
1

240
m(σ7(m)− σ3(m)), (9.1.5)

Sm(1, 1; 3, 3) =
1

540
(τ(m) + m2σ7(m)). (9.1.6)

Continuing this procedure we obtain.

Sm(2, 0; 3, 3) =
1

2160
(4τ(m) + 5m2σ7(m)− 9m2σ3(m)), (9.1.7)

Sm(2, 1; 3, 3) =
1

1080
(m3σ7(m)−mτ(m)), (9.1.8)

Sm(2, 2; 3, 3) =
1

30888
(13m4σ7(m)− 22m2τ(m) + 9τ(m) + 2160r(m)), (9.1.9)

where r(m) =
∑m−1

j=1 σ3(m)τ(m− j) comes from the cuspform G4∆ ∈ S16.
With r1 = r2 = 1 we have S∗m(0, 0; 1, 1) = −m/2σ1(m) + 5/12σ3(m) by (9.5b). By (9.5c)

S∗m(1, 0; 1, 1) =
m

2
S∗m(0, 0; 1, 1) =

1
24

(−6m2σ1(m) + 5mσ3(m)). (9.1.10)

Also
4
30

m2S∗m(0, 0; 1, 1)− 2
3
mS∗m(1, 0; 1, 1) + S∗m(1, 1; 1, 1)− 1

60
m3σ1(m) = 0
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so that

S∗m(1, 1; 1, 1) =
1
12

(m2σ3(m)−m3σ1(m)). (9.1.11)

Therefore

Sm(0, 0; 1, 1) =
1
12

(σ1(m)− 6mσ1(m) + 5σ3(m)), (9.1.12)

Sm(1, 0; 1, 1) =
1
24

(mσ1(m)− 6m2σ1(m) + 5mσ3(m)), (9.1.13)

Sm(1, 1; 1, 1) =
1
12

(m2σ3(m)−m3σ1(m)). (9.1.14)

Finally we consider the case r1 = 1, r2 = 3. By (9.5d) we have S∗m(0, 0; 1, 3) + 1
8σ3(m)m = γm with∑

γmqm in M6 and γ0 = −1/5760. Hence γm = 7σ5(m)/80 for m ≥ 1 and

S∗m(0, 0; 1, 3) =
1
80

(7σ5(m)− 10mσ3(m)). (9.1.15)

Similarly
m

3
S∗m(0, 0; 1, 3)− S∗m(1, 0; 1, 3) +

1
60

m2σ3(m) = γm

with
∑

γmqm in S8. This implies that

S∗m(1, 0; 1, 3) =
1

240
(7mσ5(m)− 6m2σ3(m)). (9.1.16)

We also have

S∗m(0, 1; 1, 3) =
1

120
(7mσ5(m)− 3m2σ3(m)). (9.1.17)

For the last calculation (9.5d) gives

m2

7
S∗m(0, 0; 1, 3)− m

4
S∗m(0, 1; 1, 3)− m

2
S∗m(1, 0; 1, 3) + S∗m(1, 1; 1, 3)− 1

336
m3σ3(m) = γm

with
∑

γmqm in S10. Thus, as before, γm = 0 and

S∗m(1, 1; 1, 3) =
1
60

(m2σ5(m)−m3σ3(m)). (9.1.18)

Equations (9.1.15), (9.1.16), (9.1.17) and (9.1.18) imply that

Sm(0, 0; 1, 3) =
1

240
(21σ5(m)− 30mσ3(m) + 10σ3(m)− σ1(m)), (9.1.19)

Sm(1, 0; 1, 3) =
1

240
(7mσ5(m)− 6mσ3(m)−mσ1(m)), (9.1.20)

Sm(0, 1; 1, 3) =
1

120
(7mσ5(m)− 12m2σ3(m) + 5mσ3(m)), (9.1.21)

Sm(1, 1; 1, 3) =
1
60

(m2σ5(m)−m3σ3(m)). (9.1.22)

The equations (9.1.4), (9.1.5), (9.1.12), (9.1.13), (9.1.14), (9.1.19), (9.1.20), (9.1.21) and (9.1.22) appear in
[La] and [H-O-S-W].
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