IDENTITIES FROM THE HOLOMORPHIC PROJECTION OF MODULAR FORMS!

CORMAC O’SULLIVAN

1. Introduction.

Set  ={z=xz+iyeC : y >0} and let T be the modular group

PSLy(Z) = {(jg):a,b,c,dez,ad—bc= 1}/i1.

The complex vector space of modular forms for ' of weight 2k, denoted Moy (T') = Moy, consists of
functions f : $§ — C that satisfy

az+b
cz+d

F((*0)z) = £( ) = (cz + d)** f(2) (1.1)

for each (’Z Z) € I' and are holomorphic on §. We also require them to be holomorphic at infinity. In other
words f has the Fourier expansion f(z) = > oo a,e?™*. If ay = 0 then f(z) has exponential decay as
y — 0o0. We term the space of such forms S, the cusp forms. The spaces Moy, Sor with k € N are finite
dimensional with

dimMy;, = [%] +1 (or [%] if 2k =2 mod 12),

dimSQk = dim./\/lgk —1 (OI‘ 0 if 2k < 10)

For example an element of Mo, is the Eisenstein series

4k
Ey(z)=1-— Bor mZ:l ook—1(m)q™ (1.2)
where k > 2, By, is the kth Bernoulli number, (Bs = %, B, = 5—01, Bg 4—12, Bg = 5—01, ), ¢ = €*™* and

the divisor sum oy (n) =3y, d*.
If f e My and g € M, then fg € My so we get the well known result Fy(z)Es(z) = cEg(z) since
dimMg = 1. Comparing Fourier expansions we obtain the identity

n—1

o3(n) +120 Y o3(i)os(n — i) = o7(n) (1.3)
i=1

for all n > 1. What kinds of identities of this type are possible in more general settings?
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2. The space C*(T'\$, 2k).

This is the space of smooth functions ® that transform as follows

2k
w159 = (E25) o) (21)

lez + d|

For example if f € Mgy, then y* f(z) € C>(I'\$, 2k). For elements ®;, 5 € C>(I'\$, 2k) that do not grow
large too quickly we have the inner product

<(I>1,(I>2> = / @1(2)@2(2) duz, (22)
\$
where duz = dzgly. Also available are the Maass raising and lowering operators Ro, = Qiyd% + k and
Lo = —2iy% — k where

Ry :C°(T\$, 2k) — C(T'\H, 2k + 2),
Loy :C*®(T\$, 2k) — C(T'\$, 2k — 2).
Finally we may also define the weight 2k hyperbolic Laplacian Ag, = fyz(aa—; + 80722) + Qikya%. It is related
to the raising and lowering operators as follows,
Aoy = —L2k+2R2k — k(l + k), (2.3)
= —Rop—o Lok + k(1 — k).

See [Bu] chapter 2 for more details.

3. Holomorphic projection.

To construct identities we need to project our results into the finite dimensional space Mog. Define the
Poincare series N

P (z,2k) = Z (cz + d)~2ke?mim cta (3.1)

ab
(* Yyera\r

for k> 2and 'y, = {7y €T : yo0 = o0}. It is a cusp form in Soi for m > 1 and for any other f € S we

have
(2k —2)!

(47Tm)2k*1

with a,, the mth Fourier coefficient of f(z). We may use this feature of the Poincare series to define a
projection map o : C°°(T\$, 2k) — May.

Lemma 3.1. For ® € C*(T'\9, 2k) satisfying yikq)(z) =c+O(y¢) asy — oo with k > 2 and e > 0 set

(Y f(2), ¥ Po(2,2k)) = am

Thot(®(2)) = co+ > _(®(2),y* Pu(2,2k))

Then Tho(®(2)) € May, and (y*f(2), @) = (y* f(2), y*Thoa® ) for every f € Sax.

Note that if g(2) is already an element of My, then 7,0 (y*g(2)) = g(2) and in that sense it is a projection.
This idea originated in [St]. See [Zal] for a proof of the above lemma.
So we are led to the following question. What kinds of identities are possible using
(i) Multiplication : Moy (T') x Moy (T') — Moy y0(T),
(ii) Rop : C=(T\§,2k) — C=(T'\9, 2k + 2),
(iii) Lok : C°(T\9,2k) — C>°(T\9, 2k — 2) and
(iv) Thot : C°(T\H, 2k) — My (I')?



4. Repeatedly raising and lowering holomorphic modular forms.

To see what happens when we repeatedly apply the Maass raising operator it is useful to re-express things
in terms of the simpler operator Dg = 2iy2d%. We obtain

- n (]+k—1)' i—n -J
Ro(k4n—1)Ro(kyn—2) - Rok = jz:(:) <j) Wy] Dy (4.1)
for k > 0 and Ry(,—1)...Ro =y "Dj.
Similarly for the lowering operator we have
. n n k' i
Lotk—nt+1)Logk—nt2) - - - Lok = (=1) j;) <y> = j)!yj D} (4.2)

for kK > n+1 and Dy = Zind%. Formulas (4.1) and (4.2) may be verified by induction. For conve-
nience, when it is clear that we are dealing with an element of C*°(I'\$), 2k), we shall write R™ instead of
Ro(kyn—1)Ro(kn—2) - - - Rop and L™ for Loy_p1yLo(k—nt2) - - - Lok

4.1. Lowering modular forms.

For f(z) = Y.0°_ amq™ € Moy, we compute L"y* f(z). Actually the answer is rather easy because

Lot/ £(2) = (20— Ky £()
= 2y () 2T — keI () =

Therefore L™y* f(z) = 0 for any n > 0. On the level of the Fourier coefficients we have the following.

PRSI (1) e DE )

L'y* f(2) :
=0 -/

S m BN k! Jen ktn—j nej(k+n—j-—1)
2 e (Y () gy e

j=0
since D} (yFq™) = y*+(—1)" (k(:ﬁ;)ll)lqm. On simplifying we see that we must have the identity

> (1) (;‘) (k=j+1)n_1=0, (4.3)

=0

for n > 1 where we define

F(a -+ m) 1 ifm= 0,
(@)m = —F—~— = . (4.4)
I'(a) (a)(a+1)...(a+m—1) ifm>0.
We can prove this more directly. One method is to consider %(1 +z)"z" at ¢ = —1. This may be evaluated
in two ways. First use the binomial expansion of (1 + z)" to get
> (n> (r—m4i+1)p,(=1)+ ™,
i
i=0
Secondly use Leibnitz’ formula to show that
dm " Sm ) .
n,ro__ s . n—1i _ - T mtt
dzm(l—i-x)x —;(z)(n i+1);Q+2)" " (r—m+i+ 1)y .
At z = —1 the only non-zero term is when ¢ = n (provided m > n) and so we obtain
n , )" (r—mAn+ Dmen m>n,
> (=1 (n) (r—m+i+1), = { D" G ) - (4.5)
i=0 ! 0 m < n.

Replace ¢ by n —i and set m =n — 1,k =r 4+ 1 to see (4.3).
3



4.2. Raising modular forms.

As in the previous example apply (4.1) and the formula

o komy  hin S (n) (k+n-=1 g™
DR = S0 () G e (1.6)

to get

Rnykf Z amquMl n, k)(47rm)l k+l
m=1 =0

for f(z) = °_, amq™ with

n—I
= (k=1 (ktn—j—1
Mi(n,k) = (1) “j_o( : )( pnoicty),

Now for p,l > 0 we have the identity
zm: p+i\ (p+i+m—3\ _(2p+l+m+1 (47)
o\ P p+1 2p+1+1 ' '

To see this note that Z?io (p—;)—y) 2 = W for |z| < 1. Consequently

—(p+i\ i~ (P15 1 & (2 Hi+145)
Z( D )952( D+l )x _(1fx)p+1+p+l+1_zo w+l+1 )"
=

i=0 7=0
and comparing the coefficients of ™ on the above line yields (4.7). Thus M;(n, k) = (—1)"}; o — 141
and
n k m 2k —1 +n . 1 k+l
R"y"f(z Zamq Z <2k1+l (—4mm)'y™ . (4.8)

If f(2) => " o amq™ € My, then the above formula remains true with a small alteration. Define

m! ifm>0o0rl>0
E(m,l) = . (4.9)
1 ifm=0and!=0.
Then
n m 2k —14+n
Rk f(2) Zamq Z —47)! T <2k_1+l)E(m,l)yk+l. (4.10)

To work out the holomorphic projection of R"y* f(z) and similar functions we use the next result.

Lemma 4.1. For & € C>(I'\, 2k) with
= um@)q", Um(y) =Y vm(i)y'?
m=0 X

and lo(i) < k then mha®(2) = Y0 cmq™ where cq is the constant part of yikuo(y) and for m > 1

m=0

) + k - 1) ke—lpn (i)
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Proof. To compute the c,, we evaluate ( ®,y*P,, ) by unfolding it.

(8.4 Po(20) = [ BB %)

- / @(z)yk Z (cz + d)—2ke2™™7% gz
r
\ ¢ Z)eroo\l“

®(y2)Im(v2)*(cz + d)~2*e2™™% dpz
1NN a b
c d

k 727rim2d$dy

y2

_ / m )yk 2 —47rmy dy
0
T'm

= 0om(OT (U (i) + k — 1)(—dmm)~tmO=FHL
=0

)ED\T

The result follows by applying lemma 3.1. ¢
Set ®(2) = R"y* f(z) for f(2) =Y 0"_| @nq™ € Sox. Then ® € C°(T',2(n+k)) and we have by (4.8) that

m=1
. . : . 2k—14+n .
— o0 m — Tm l?n(") — — m — g
D(z) = >0 U (y)g™ with um, (y) 2o vm (1)y where 7, = n, v (i) = am < ok — 14 i ) (—4mm)
and U, (1) = k +i. Thus mpe(R"Y" f(2)) = Tha(P(2)) = Yoo _; cmg@™ with

= n! 2k —1+n\ (2k+n+i—2)
= apm(4mm)® Y (—1)' = : 411
am (47m) z;( ) (2k—1+i> (2k + 2n — 2)! (4-11)

=
As with the previous example we must have 7,0 (R"y* f(2)) = 0. This time the reason is that

(Rop®(2),y" P (2,2k +2)) = (®(2), —Log 429" P (2, 2k +2) ) (4.12)
= (9(2),0) =0.

This shows that 7, composed with the raising operator is identically zero. (See [Bu] Prop. 2.1.3 for the
above relation between Rog and —Logy2.) Therefore each ¢, = 0 and we obtain the identity

> -1 (7) 2k 4 idaa =0,
i=0 !
which may be verified for n > 1 with (4.5).

5. Raising Maass forms.

A Maass form is an element n(z, s) of C>°(T'\$), 2k) that is an eigenfunction of the Laplacian Ay so that
Ao = Anp=s(1— s)n. (5.1)

Maass cusp forms have zero constant terms in their Fourier expansions and are non holomorphic analogs
of the elements of Syi. From (5.1) it may be shown that a Maass cusp form of weight 2k = 0 has Fourier

expansion
$) =3 bm/ImlyK,_1a(2n[mly)e’™ ™ (5.2)

m#0
)



where K is the K Bessel function and we are summing over all non zero integers. See [Bu], [Iw] for example.
To find R™1(z,s) we first need to compute D} (y'/2 K, (27|m|y)e(ma)) for v = s — 1/2. Use the fact that
d%KU(y) = —1/2(Ky-1(y) + Kyp+1(y)) to show that

D (yY 2K, (2n|mly)e( Z Z YA L ;(2mimly)e(mz).
1=0 j=—1
The numbers a}l(') depend on m and may be defined recursively. (Note that the superscript n is an index
not an exponent.) For n = 0 we have a3(i) = 0 unless i = j = 0 in which case ag(0) = 1. For n > 0 and
§ = |m|m~! we have

ot (i) = —mm (801 (i — 1) + 20 (i — 1) + 6y, (i — 1)) + (i + 1+ 1/2)0f (i).

Setting 3} (i) = ((5723;;5: (i) removes the m dependance and

BiTH(E) = By (i = 1) + 267 (i = 1) + B4y (i — 1) — (20 + 20+ 1) 7 (D).

To isolate the dependance on j set (37 (i) = (—1)" "7 ( to obtain the relation

]+2)
AL — P (204 204 D) (5:3)

We may solve the recurrence (5.3) with the initial conditions 7 = 1 and 7Y = 0 for i # 0 to get

(2n)!

’Y?ZW for n>1, 0<i<n.
Therefore @ )l5i
o) = (Amm) G i) (54)
and
R'y(z,s) =y "Din(z,8) = > b/ |mly " DH(K, (2n|mly)e(ma))
m#Q0
B 47rm it : (2n)!(|m|m=1)7 (arlmlelma
,;Jb FZ j;i—uw(i—j)! K,y @nimly)e(ma).  (5.5)

Incidentally, with (2.3) and (2.4) we can show that R™n is an eigenfunction of Ag, if and only if 1 is an
eigenfunction of Ag. This means that every Maass cusp form of weight 2n and eigenvalue 1/4 — v? has the
Fourier expansion (5.5).

6. Holomorphic projection of raised Maass forms.

As we have seen (4.12) forces mpoi(R"1(2,s)) to be zero. To see how the Fourier coefficients vanish we
calculate ( R"n(z,s),y" Pm(z,2n)). Use the fact that

/OO 2" UK (@)e ™ de = 27w 20 (r + 1/2) I (r + 0)T(r — ), (6.1)
0

for Re(r) > |Re(v)| to get ( R"n(z,s),y™ Pm(z,2n)) equaling

n—1)!

o gy 3~ CD/ @) Kt vt i = T —v+i=j = §)
2(4 ) ; ( )1 Z (+j) (Z—j)'l—‘(n—f—z) .

——i
Consequently 7,0 (R"1(2,5)) =Y o _; ¢mq™ with ¢, given by

i

bin " (=1)*2n(2n —1) Fn+v+i+j—3)(n—v+i—j—1)
R (G- 7

i= j=—1

To check that this is indeed zero we’ll prove it by hand.
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Lemma 6.1. Forn>1,veC

z”: (=1) iF(n+v+i+j—l)l“(n—v+i—j—%)_0
2 nri— Dln— 1) i)\ — )] =0
Proof. Note that (14+)* = >"77 ()2 is valid for all -1 < z < 1 and s € C if we set () = %

and use the usual conventions for defining *. With the formula "4 9 = T(—s)(~1)! (7) for I € N we see
that

e N9 gy () (27),

=0 =0

Also, since 375, (7" )2l = (1 A+:B)*"’SJr1 and >, (T"F*)a! = (142) "¢ their product is (1+z)1~2"
implying that the coefficient of 2% in the above is

i —n—s+1\[—n+s\  (1-2n\ [(2n+2i—2
— l 2i—-1) \ 2 ) 2i '

Therefore, to finish the proof, it suffices to show that

. z”: ( :_—;) <2n +22iz' - 2> o (6.2)

=

By adapting the identity following (4.7) we have that

Z (2” _221 + 2Z)xl — % ((1 _ \/5)—271—&-1 + (1 + \/5)—271-&-1) )

Also 372, (Z”fl) (—2)! = (1 — 2)?>"~! so that S is the coefficient of 2™ in the product

e N A [CE
(1 + V@t (1= Vo)

Thus S = 0 completing the proof. ¢

The identity (6.2) also appears as a special case of the identity on p37 of [Ri].

7. Projecting products of raised modular forms.

In order to get a non zero projection we try the following. For f = > a;n¢™ € Moag,, g =D bmng™ € Moy,
we examine

Thot(R™My* f(2) - R™y*g(2)).
Clearly it is an element of Myxny for K =3, ki, N =, n;. From (4.10) we derive

Rnlyklf(z) 'any 2 Z U (Y
m=0



with
21: i 4 Lnl'nQ <2k1—1+n1> <2k2—1+n2)
7T
11=012=0 flly! m—lh ny =l

XyK+LZa’jbm—jE(j7l1)E(m_jle) (71)

Jj=0

where L = " l;. (This convention for N, K and L will be in place from now on.) If we label the inner sum
T, (11,125 f, g) then

T (1o frg) = To(ly, D2 f, ) + aobn £(0, 1) E(m, o) + amboE(m, 1) E(0, 12) (7.2)

where

ll7l27f7 Z a/] m— j] m .7) (73)

Finally, applying lemma 4.1, we have that Whol(Rnlyklf(z) - Rm2yf2g(2)) = 3 ¢pg™ with

o 2 Ing! (2ky —14n1\ (2ke — 1+ n9
o umN _ Lnl 2° 1
c ( 7T) Z Z( ll!lQ' ny — ll ng — l2

11=012=0
K+ N+L—-2)! ;.
((2K+2N—2)!) m L b £ 9), (7.4)

for m > 1 and ¢g = (—4m)NagboE(0,n1)E(0,n2). Hence cog = 0 unless n; = ny = 0 and in that case
co = apbp. So we see that the differential operator P, ,,, defined by

P (f,9) = (4m) N mpo(R™y™ f(2) - R™y*2g(2)) (7.5)
gives a map Pp, n, : Moag, X Moy, — Sav4k) for (n1,n2) # (0,0). For ny = ny = 0 we have Py o(f,9) = fg.
Examples in section 9 show that this map is not identically zero.

8. Rankin-Cohen differential operators.
The map P above is similar to a construction of Cohen in [Co]. For f € Moy, , g € Moy, he shows that

1 - 4 ,
Fu(l.9) = (2ri) NZ G G I (s.)

]

. ; g
is an element of My (g4 ) Where 0, means dd7 .

How are F and 73 related? In fact it’s not hard to show that Fy is a certain average of the P,

1'”2

Proposition 8.1. For every f € May,, g € Moy,

N
(~)¥ 3 (1) (2’“ o N) (2‘“2 o N) Puni(f,9) = Fx(f,9). (5.2)
1=0

Proof. If N = 0 then the proposition is true. For N > 1 we may write the left hand side of (8.2) as
S dymg™ with, after simplifying,

m=1
N 2% — 1+ N\ [2ks—1+N
i 1 — 2 * /- .
=30 (P (T I ) v -
1=0

The Fourier coefficients of the right hand side are identical. ¢

As with F, P may be expressed in terms of the derivatives of the modular forms.
8



Proposition 8.2. For every f € May,, g € May,

Lnl'ng 2k1 — 1+ nq 2ko — 1+ ng
Prva (o) = (7)Y 3 (- TR ( oy — 1,

ng — 1
1,=013=0 27

(2K +N+L—
(2K + 2N — 2)!

)aN bl (b folzg). (8.3)

Proof. Compare Fourier coefficients. ¢

Rankin in [Ranl],[Ran2] considers the general question of which polynomials in the derivatives of modular
forms are again modular forms. His operator in [Ran3] includes F as a special case. It is formulated as
follows. Set r > 2 and label » modular forms f; € Mgy, for 1 <i < r. Also define

V(r,N) = {(v1,v2,...,0,) 1 v eN,Zvi =N

U(r) = {(u1,uz,...,u) 1wy GC,ZW =0}

then, for a fixed u € U(r),

. 0" i 0" 1,
(2mi)~N e uyt T (8.4)
ve\;r:,N) (2k1 — 1 4 vy)lvq! 2k, — 1+ vp)l,! 1
which we’ll denote by Gn (f1, f2, ..., fr) is an element of Mgk ny. This operator may also be expressed as
an average, this time of
n(frse fr) = (@) N o (R Y™ f1(2) - Ry fo(2)). (8.5)

Proposition 8.3. With the above notation Gy (f1,-- -, fr) equals

U

Z uit U
_1 N 1 DEEEEY T ) ) g ey .
( ) ev(r,N) (2k1 -1+ U1)!’U1! (2kr -1+ U'r)!vr!,])“7‘..’1r(f1 f’f‘)

Proof. Same as proposition 8.1. ¢

For more information on Rankin-Cohen differential operators see [Zal], [Za2]. Similar operators for Siegel
modular forms are constructed in [Eh-Ib].

9. Convolution sums involving the divisor function.

We give a straightforward application of this material to finding explicit formulas for the sums
m—1
Sm(n1,nair1,r2) = Y 5™ (m = §)"2 07, (4)0r, (m — j). (9.1)
j=1

Glaisher [Gl], Ramanujan [Ram] (pp 136-162) and Lahiri [La] were the first to systematically evaluate Sy,
for small values of ny,n9,7r1,72. Ramanujan manipulated the expressions

17242 — m,

oo

(9.2)

m= m=1



to obtain his identities and this work was extended in [La]. Ramanujan’s series P, @, R are none other than
Es, Ey, Eg, see [Be]. Also go to [H-O-S-W] in this volume for an interesting elementary method employing
a generalization of Liouville’s identity to find explicit formulas for S,,, and other sums.

Set

-B -B =
G2k = W%Ezk = 4]:k + Z agk,l(m)qm. (93)

m=1
While Gy, is in Moy, for k > 2 the series G is not in the zero space M. If we let G5(2) = Ga(z) + (87y) !
then G% does transform correctly under the action of I' and it has weight 2. Although it is no longer
holomorphic we do have yG5(z) € C*(I'\H, 2).
Set

Sy (i lasri,re) = T (11,12 Gry 41, Gro41)

_ . BT’1+1
- Sm(lth,ThTQ) 2(’/"1 i 1)07"2 (m)E(O, ll)E(m,lg)
BT‘2+1
T+ (m)E(0,12) E(m, ly). (9.4)

Thus the sum we are interested in, (9.1), arises naturally in the Fourier coefficients of P;, 1,(Gr 41, Grot1)-
Then it can be seen that (7.4) implies that the expressions S}, satisfy the relation

ni no
nilng! (11 4+ny To + Mg (7“1 +T2+N+L)! N—L
-1)* S (1, I
lz()lzo( ) I1'15! <T1+11>(T2+l2> (r1 + 72 +2N)! m m(lLs 2371, 72)
1=0lp=

=aq,, forry,ro >3 and odd (9.5a)

where Y7 g™ is in Sonjoqr4r if (n1,n2) # (0,0). If (n1,n2) = (0,0) then Y~ amg™ is in
Montotrir, and ag = By 1By (4(r1 + 1) (r2 + 1))

This means that we can express S;,(n1,n2;71,72) (and hence Sy, (n1, ng;r1,72) by (9.4)) in terms of the
sums S} (I1,l2;71,7m2) for 0 < 13 < mny and 0 < Iy < ng and the coefficients of a cusp form in Sy, r,124+2N-
This cusp form may be identified by calculating its first few terms.

If 1 =1 or 7o = 1 then the recurrence relation is slightly different to take into account the extra factor
in the constant term of G5. We have (each for m > 1)

- 5
S*(0,0;1,1) = Tmal (m) + $503(m), (9.5b)
Sl ol (14 01\ (14+n\ (2+N+L) 5_
_pyp e A TS N-LGE (] 11,1
l;”;o( ATl G I b oy v T AC R
NI(N + 1)!
+ (=)™ + (—1)"2)(H(2mmN+1M =P for (n1,n2) # (0,0),
’ (9.5¢)
L & ma! (1+mn1\ [r+n\(1+r+N+L)! 5_
_prinne NoL g (11,125 1
l;)l;)( AT A | PP b s rarrasy v T AC R
| |
—ﬁ-(—l)"ZMmN+1 NN + 7)) for r > 3 odd, (9.5d)

2 @N+r+1) ™

where Y 0°_ | Brnq™ is in Sonta. Also D0 Yimq™ is in Sontrgs if (n1,m2) # (0,0). If (ng,n2) = (0,0) then
> o Ymq™ is in Myy3 and o = By41(48(r + 1)L
Recall that S¥,(n1,na;r1,72) = Sm(ni, ne;ri,r2) unless niny = 0 and in that case S¥, has the two extra
terms given by (9.4). Note that (9.5b) appears in [Zal] where it is proved by finding 7. ((yG5)?). The
relations (9.5a), (9.5¢) and (9.5d) generalize this idea to cover all the other cases.
10



9.1 Examples.

To illustrate these ideas (and check the equations) we’ll give some examples. For S (0, 0; 3, 3) use relation
(9.5a) with n; = ny = 0 to see that S7,(0,0;3,3) = ay, with > °_ a,mg™ in Mg and g = B} /64 =
1/(64 - 900). Thus «,, = o7(m)/120 and

1
S55.(0,0;3,3) = mow(m). (9.1.1)

When ny =1 and ng = 0 (9.5a) implies that
%S;(0,0;S,S) ~ 8% (1,0:3,3) = am
with " | g™ in Sip. Consequently

1
S (1,0;3,3) = 8% (0,1;3,3) = %S;;(o,o;?)ﬁ) = Fi5moe(m). (9.1.2)

When ny =1 and ng =1 (9.5a) implies that

8 4
Em“'s;*n(o, 0;3,3) — 5mS,;;(Lo; 3,3) +575,(1,1;3,3) = ay,

m

with Y °_ | g™ in S12. The one dimensional space S1o contains the discriminant function >, 7(m)q
Since 7(1) = 1 and S7(1,1;3,3) = 0 we have a,,, = —7(m)/540 and

S (1,1;3,3) = %(T(m) +m2a(m)). (9.1.3)

From (9.1.1),(9.1.2) and (9.1.3) we get

S, (0,0;3,3) = %(07(771) ~ o5(m)) (9.1.4)
S (1,0:3,3) = Sin(0,1:3,3) = ﬁm(oﬂm) — oy(m)), (9.1.5)
Sn(1,1:3,3) = %(T(m) + m2or(m)). (9.1.6)

Continuing this procedure we obtain.

0 (2,0:3,3) = T160(47'(m) + 5m2os(m) — 9mEas(m)), (9.1.7)
S(2,1:3,3) = Wlso(m?)m(m) _ mr(m)), (9.1.8)
Sm(2,2:3,3) = @(1%407@) —22m>7(m) + 97(m) + 2160r(m)), (9.1.9)

where r(m) = Z;ﬂ;ll o3(m)T(m — j) comes from the cuspform G4A € Sy;.

With 7y = ro = 1 we have S},(0,0;1,1) = —m/201(m) + 5/1203(m) by (9.5b). By (9.5¢)
. m . 1 ,
S(1.051,1) = 287,(0,051,1) = = (~6m?a1 (m) + 5mos(m)). (9.1.10)

Also

4 2 1
%mQS;L(O,O; 1,1) — ngT*n(l, 0; 1,111) +55(1,1;1,1) — @m301 (m)=0



so that

S (1,1;1,1) = %(m%g(m) —m3ay(m)). (9.1.11)
Therefore
500(0,051,1) = < (01(m) — 6mon (m) + 5a3(m)), (9.1.12)
Sm(1,0;1,1) = 2—14(mal(m) — 6m?o1(m) + 5mosz(m)), (9.1.13)
Sm(1,1;1,1) = 1—12(m203(m) —mBay(m)). (9.1.14)

Finally we consider the case r; = 1,r, = 3. By (9.5d) we have S,(0,0;1,3) + to3(m)m = 7, with
> md™ in Mg and o = —1/5760. Hence v, = 7o5(m)/80 for m > 1 and

S (0,0:1,3) = %(705(m) — 10mas(m)). (9.1.15)

Similarly

1
51(0,0:1,3) = S7,(1,0:1,3) + =sm2aa(m) =

with > 4,g™ in Sg. This implies that

1
S%(1,0;1,3) = %(7m05(m) — 6m2o3(m)). (9.1.16)
We also have
1
Sr(0,1;1,3) = m(?mos(m) — 3m2o3(m)). (9.1.17)

For the last calculation (9.5d) gives

m2 * m * m * * 1 3
TSm(O,O, 1,3) — ZSm(O, 1;1,3) — ESm(l,O7 1,3)+55,(1,1;1,3) — 33g™ o3(m) = vm
with > 4mg™ in Sy9. Thus, as before, 7, = 0 and
1
Sk (1,1;1,3) = @(m205(m) —mB3a3(m)). (9.1.18)
Equations (9.1.15), (9.1.16),(9.1.17) and (9.1.18) imply that
1
Sm(0,0;1,3) = 2f40(2105(m) — 30mosz(m) + 1003(m) — o1(m)), (9.1.19)
1
Sm(1,0;1,3) = %(7m05(m) — 6mos(m) — moy(m)), (9.1.20)
1
Sm(0,1;1,3) = ﬁo(7mo5(m) — 12m203(m) + bmas(m)), (9.1.21)
1
Sm(1,1;1,3) = @(mQUg,(m) —m3o3(m)). (9.1.22)

The equations (9.1.4), (9.1.5), (9.1.12), (9.1.13), (9.1.14), (9.1.19), (9.1.20), (9.1.21) and (9.1.22) appear in
[La] and [H-O-S-W].
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