
A generalization of the Riemann-Siegel formula

Cormac O’Sullivan

Abstract

The celebrated Riemann-Siegel formula compares the Riemann zeta function on the critical line with
its partial sums, expressing the difference between them asan expansion in terms of decreasing powers of
the imaginary variablet. Siegel anticipated that this formula could be generalizedto include the Hardy-
Littlewood approximate functional equation, valid in any vertical strip. We give this generalization for
the first time. The asymptotics contain Mordell integrals and an interesting new family of polynomials.

1 Introduction

1.1 The approximate functional equation

The functional equation for the Riemann zeta functionζ(s) may be written as

ζ(s) = χ(s)ζ(1− s) (1.1)

for

χ(s) := πs−1/2Γ

(

1− s

2

)

Γ
(s

2

)−1
.

Hardy and Littlewood gave the following approximation forζ(s) in [HL23]. The notations = σ+ it for the
real and imaginary parts ofs is assumed from here on.

Theorem 1.1(The Hardy-Littlewood approximate functional equation). Let I ⊂ R be a finite interval. Let
s be any complex number in the vertical strip described byσ ∈ I andt > 2π. Then for allα, β ∈ R>1 with
t = 2παβ, we have

ζ(s) =
∑

n6α

1

ns
+ χ(s)

∑

n6β

1

n1−s
+O

(

α−σ + t1/2−σβσ−1
)

(1.2)

where the implied constant depends only onI.

The sums in (1.2), and similar sums below, are over all positive integersn satisfying the given conditions.
Our use of the bigO notation is as in [HL23] and [IK04, p. 7], for example. Writing f(x) = O(g(x)) (or
equivalentlyf(x) ≪ g(x)) means that, for an explicitly specified rangeX, there is an implied constant
C > 0 so that|f(x)| 6 C · g(x) for all x ∈ X. Similarly, the notation extends to functions of more than one
variable. With this convention, the implied constant in Theorem 1.1 may depend onI, but gives a bound that
is valid for all s, α andβ satisfying the given conditions. In this way, for instance,the qualifier “ast→ ∞”
is not needed for (1.2).

Hardy and Littlewood used Theorem 1.1 to estimate the secondand fourth moments ofζ on the critical
line with real part1/2. See for example [Tit86, Chapter 7], [Ivi85, Chapters 5,8,15] for more on the important
general moment problem and [Sou09] for descriptions of morerecent results and conjectures.
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If α andβ are similar in size then the error in (1.2) is aboutO(t−σ/2) and hence small fort large and
σ positive. Thus,ζα(s) :=

∑

n6α n
−s + χ(s)

∑

n6α n
−1+s gives a good approximation toζ(s) whent is

close to2πα2. For positive fixedα, the functionζα(s) is interesting in its own right. It is shown in [GM13,
Thm. 1.5] that, in a natural sense,100% of its zeros are simple and lie on the critical line.

Following Siegel in [Sie32, Eq. (36)], we define

ϑ(s) := (i/2) log χ(s)

for s ∈ C with s outside the intervals(−∞, 0] ∪ [1,∞). The requirementϑ(1/2) = 0 specifies the branch
uniquely; see Section 4.1 for more details. (We do not use thecommon notationϑ(t) for (i/2) log χ(1/2+it)
as it is not well suited for working off the critical line.) Asa consequence of Corollary 4.3 we have, for
example,

iϑ(s) =

(

s

2
− 1

4

)

log
|t|
2π

− it

2
− sgn(t)

iπ

8
+O

(

1

|t|

)

for all t 6= 0 with the implied constant depending onσ. Alsoϑ(s) satisfies the relations

ϑ(1− s) = −ϑ(s), ϑ(s) = −ϑ(s). (1.3)

Hence, withχ(s) = e−2iϑ(s), we may write the functional equation (1.1) in the symmetricform

eiϑ(s)ζ(s) = eiϑ(1−s)ζ(1− s). (1.4)

It follows that Theorem 1.1 has the equivalent restatement:

Theorem 1.2(The Hardy-Littlewood approximate functional equation, symmetric version). Let I ⊂ R be a
finite interval. Lets be any complex number in the vertical strip described byσ ∈ I and t > 2π. Then for
all α, β ∈ R>1 with t = 2παβ, we have

eiϑ(s)ζ(s) = eiϑ(s)
∑

n6α

1

ns
+ eiϑ(1−s)

∑

n6β

1

n1−s
+O

(

λ1/2−σ
(

λ1/2 + λ−1/2
)

t1/4

)

(1.5)

whereλ :=
√

α/β and the implied constant depends only onI.

We used that

t = 2παβ and λ =

√

α

β
=⇒ α = λ

√

t

2π
and β =

1

λ

√

t

2π
. (1.6)

1.2 The Riemann-Siegel formula

The Riemann-Siegel formula is one of the key results in the theory of the zeta function. It gives a detailed
description of what is happening inside the error terms in Theorems 1.1 and 1.2, at least in the case where the
lengths of the partial sums are the same:α = β andλ = 1. Of course Riemann’s researches predate those
of Hardy and Littlewood by many years. The formula was discovered by Siegel in Riemann’s unpublished
notes and appeared in [Sie32]. Siegel’s classic paper has been recently translated in [BS18] and we use their
page numbering, corresponding to the version of the paper appearing in his collected works.

Most major computations verifying the Riemann hypothesis are based on the Riemann-Siegel formula;
see for example [Bre79], [OS88], [Gou04], [BH18] and the contained references. It also appears in theoreti-
cal work where precise knowledge ofζ(s) on the critical line is required, such as [Fen05, PT15, Pol19].

Let

Ψ(u) :=
cos(π(u2/2− u− 1/8))

cos(πu)
, (1.7)

which may be seen to be an entire function. The following result in a slightly different notation is given in
[Sie32, Eqns. (32), (33)].
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Theorem 1.3(The Riemann-Siegel formula forσ ∈ I). Let I ⊂ R be a finite interval and lets be any
complex number in the vertical strip described byσ ∈ I andt > 2π. Supposeα :=

√

t/(2π) has fractional
part a ∈ [0, 1). Then we have

ζ(s) =
∑

n6α

1

ns
+ χ(s)

∑

n6α

1

n1−s
+

(−1)⌊α⌋(2π)seπis/2

Γ(s)(e2πis − 1)
exp

((

s

2
− 1

4

)

log
t

2π
− it

2
− iπ

8

)

×
(

2π

t

)1/4 N−1
∑

k=0

ak(s)

⌊k/2⌋
∑

r=0

ir−k · k!
r!(k − 2r)!

Ψ(k−2r)(2a)

4r(2π)k/2−r
+O

(

1

tN/6+σ/2

)

. (1.8)

The implied constant depends only onI andN ∈ Z>0.

Siegel was also able to bound the error’s dependence onN in (1.8) for t large enough. The functions
ak(s) may be defined recursively bya−2(s) = a−1(s) = 0, a0(s) = 1 and

(k + 1)
√
t · ak+1(s) = −(k + 1− σ)ak(s) + i · ak−2(s) (k ∈ Z>0). (1.9)

Theorem 1.3 is in fact an intermediate result. In what we may call the completed form, the terms on
the right of (1.8) are expanded in decreasing powers oft. It is also useful to make things symmetric by
multiplying by eiϑ(s). This was Riemann’s goal, as shown in [Sie32, Eqns. (44), (45)], and the following
theorem is stated in [Sie43, p. 143].

Theorem 1.4(The Riemann-Siegel formula: completed, symmetric version for σ = 1/2). Leta ∈ [0, 1) be
the fractional part ofα :=

√

t/(2π). For anyN ∈ Z>0, there exist explicit functions ofa alone,C0(a),
C1(a), C2(a), . . . , such that

eiϑ(s)ζ(s) = eiϑ(s)
∑

n6α

1

ns
+eiϑ(1−s)

∑

n6α

1

n1−s
+(−1)⌊α⌋+1

(

2π

t

)1/4 N−1
∑

m=0

Cm(a)

tm/2
+O

(

1

tN/2+1/4

)

(1.10)

for all s = 1/2 + it with t > 2π. The implied constant in(1.10)depends only onN .

Riemann computed the initial terms in (1.10) exactly and thefirst four are

C0(a) = Ψ(2a), (1.11a)

C1(a) = −1

3
(2π)−3/2Ψ(3)(2a), (1.11b)

C2(a) =
1

18
(2π)−3Ψ(6)(2a) +

1

4
(2π)−1Ψ(2)(2a), (1.11c)

C3(a) = − 1

162
(2π)−9/2Ψ(9)(2a) − 2

15
(2π)−5/2Ψ(5)(2a)− 1

8
(2π)−1/2Ψ(1)(2a). (1.11d)

Siegel proved in [Sie32, p. 293] that only derivativesΨ(r)(2a) for r ≡ 3m mod 4 appear inCm(a).
The left side of (1.10) fors = 1/2 + it definesZ(t), Hardy’sZ function, and the sums overn may be

combined so that (1.10) becomes

Z(t) = 2
∑

n6α

cos(ϑ(1/2 + it)− t log n)

n1/2
+ (−1)⌊α⌋+1

(

2π

t

)1/4 N−1
∑

m=0

Cm(a)

tm/2
+O

(

1

tN/2+1/4

)

. (1.12)

For t ∈ R we have thatϑ(1/2+ it) andZ(t) are real. Therefore zeros ofζ(s) on the critical line correspond
to zeros ofZ(t). Riemann was able to find the first zeros in the critical strip,as Edwards recounts in [Edw74,
Sect. 7.6], although it is not clear if he was using this formula in his calculations. Subsequent work using
(1.12) has verified the Riemann hypothesis up to a large height. In these applications it is important to give
exact bounds on the error in (1.10), (1.12). This has been achieved, for example, by Titchmarsh forN = 1
[Tit86, p. 390] and Gabcke for allN 6 10 [Gab79, Eq. (8)]. In this paper we will not give explicit error
bounds.
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Riemann and Siegel gave recursive procedures for calculating the coefficientsCm(a). Gabcke in [Gab79]
provided a different method of proof of Theorem 1.4 and a new recursion for the coefficientsCm(a). The
starting point in [Gab79] is another unpublished formula ofRiemann appearing in [Sie32], namely

ζ(s) =

∫

0ւ1

z−seπiz
2

eπiz − e−πiz
dz + χ(s)

∫

0ց1

z−se−πiz2

eπiz − e−πiz
dz. (1.13)

The paths of integration are lines that pass through the interval (0, 1) in the indicated direction. We also
mention an interesting formal derivation of theCm(a) by Berry in [Ber95].

As Theorem 1.3 is valid in any vertical strip, it is natural toseek an extension of Theorem 1.4 that is also
valid off the critical line. Arias de Reyna in [AdR11] gave a Riemann-Siegel formula for the left integral on
the right side of (1.13) that holds in any vertical strip. With the same assumptions as Theorem 1.3, his result
may be stated forζ(s) as

ζ(s) =
∑

n6α

1

ns
+ χ(s)

∑

n6α

1

n1−s
+ (−1)⌊α⌋+1

N−1
∑

k=0

1

tk/2

×
[

t−σ/2U(t) ·Dk(a, σ) + χ(s)t(σ−1)/2U(t) ·Dk(a, 1− σ)
]

+O

(

t−σ/2 + t(σ−1)/2

tN/2

)

(1.14)

for U(t) := exp
(

− it
2 log t

2π + it
2 + iπ

8

)

and certain recursively defined functionsDk(a, σ) as described in
[AdR11, Sect. 2]. The implied constant depends onI andN and is bounded explicitly in [AdR11, Thm.
4.2].

1.3 Main results

In this paper we generalize the Riemann-Siegel formula to the case where the lengths of the partial sums,
α andβ, may be different, as in the results of Hardy and Littlewood.Siegel himself, in [Sie32, Sect. 4],
suggested this should be possible without much difficulty and even gave the function that would be needed
in place ofΨ. Foru, τ ∈ C with Re(τ) > 0, it is

Υ(u; τ) :=

∫

0տ1

e−πiτz2+2πiuz

e2πiz − 1
dz (1.15)

where the path of integration is again a line crossing the interval (0, 1) in the indicated direction. It is
straightforward to see that the integral converges rapidlyfor Re(τ) > 0 and is independent of the choice of
line. Siegel usedΦ(−τ, u) for Υ(u; τ), so the new notation should avoid confusion.

We need a suitably normalized version of Siegel’s function:

G(u; τ) := τ1/4 exp

(

−πiu
2

2
+
πi

8

)

Υ
(√
τ · u; τ

)

. (1.16)

Proposition 3.2 will show thatG has the symmetry

G(u; 1/τ) = G(u; τ ). (1.17)

For eachτ ,G(u; τ) is holomorphic inu. The notationG(k)(u; τ) indicates thekth derivative with respect to
this variableu. If τ is rational thenG(u; τ) has a more explicit description as seen in (3.13).

Employing the methods of Riemann and Siegel, we first extend Theorem 1.3 to the case of generalα
andβ. This gives the intermediate result, Theorem 2.1, proved inSection 2. Interesting work in a similar
direction to Theorem 2.1 is found in Chapter 4 of [FL22], alsobased on the techniques in [Sie32]. Our main
theorem, given after the next definitions, is a completed, symmetric Riemann-Siegel formula that is valid
in any vertical strip and that allows the partial sums to havedifferent lengths. Write the quantity we are
interested in estimating as

R(s;α, β) := eiϑ(s)ζ(s)− eiϑ(s)
∑

n6α

1

ns
− eiϑ(1−s)

∑

n6β

1

n1−s
. (1.18)
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With (1.3) and (1.4) it satisfies the symmetry

R(s;α, β) = R(1− s;β, α). (1.19)

Throughout this work we will use the notation

a := α− ⌊α⌋, b := β − ⌊β⌋, λ :=

√

α

β
. (1.20)

Theorem 1.5. LetI ⊂ R be a finite interval. Lets be any complex number in the vertical strip described by
σ ∈ I andt > 2π. Then for allα, β ∈ R>1 with t = 2παβ, we have

R(s;α, β) = (−1)⌊α⌋⌊β⌋+1 exp
(

πi(2aβ − 2bα+ a2λ−2 − b2λ2)/2
)

×
(

2π

t

)1/4 N−1
∑

n=0

λ1/2−s

tn/2

[

3n
∑

r=0

G(r)(aλ−1 + bλ;λ2)

(2π)r/2
· Pn,3n−r

(

(π

2

)1/2
(aλ−1 − bλ), σ

)

]

+O

(

λ1/2−σ(λ+ λ−1)3N+1/2

tN/2+1/4

)

(1.21)

using the notation from(1.18) and (1.20). The implied constant depends only onN ∈ Z>0 and I. The
functionG(u; τ) in (1.21)is the normalized Mordell integral defined in(1.16)andPn,k(x, σ) is a polynomial
in x andσ, of degreek in x, that is given explicitly in(6.1).

The simplest case of Theorem 1.5 hasN = 0. Then the sum is empty, equaling zero, and we find

R(s;α, β) = O

(

λ1/2−σ(λ+ λ−1)1/2

t1/4

)

recovering Hardy and Littlewood’s Theorem 1.2. WhenN = 1 we obtain the next term in the asymptotic
expansion:

R(s;α, β) = (−1)⌊α⌋⌊β⌋+1 exp
(

πi(2aβ − 2bα+ a2λ−2 − b2λ2)/2
)

×
(

2π

t

)1/4

λ1/2−sG(aλ−1 + bλ;λ2) +O

(

λ1/2−σ(λ+ λ−1)3+1/2

t1/2+1/4

)

(1.22)

since, as we will see,P0,0(x, σ) = 1. For N = 2, the next term contains derivatives ofG times the
polynomialsP1,0(x, σ) = −1/3,

P1,1(x, σ) = −ix, P1,2(x, σ) = x2 − i
(

σ − 1
2

)

, P1,3(x, σ) =
i
3x

3 +
(

σ − 1
2

)

x. (1.23)

We may takeλ as fixed in these results but this is not necessary; Theorem 1.5 produces asymptotics whenever
λ and1/λ have order of magnitude less thant1/6.

Forσ = 1/2 andα = β in Theorem 1.5 (so thatλ = 1 andα =
√

t/2π), we recover the Riemann-Siegel
formula, Theorem 1.4, as the expression

R(s;α,α) = (−1)⌊α⌋+1

(

2π

t

)1/4 N−1
∑

n=0

1

tn/2

[

3n
∑

r=0

G(r)(2a; 1)

(2π)r/2
· Pn,3n−r(0, 1/2)

]

+O

(

1

tN/2+1/4

)

. (1.24)

This agrees with the forms of (1.10) and (1.11) sinceG(u; 1) = Ψ(u) by (3.14) and, as shown after Lemma
6.3, the numbersPn,3n−r(0, 1/2) are zero unlessr ≡ 3n mod 4. The more general case ofs with σ ∈ I and
α = β has only the difference thatPn,3n−r(0, 1/2) in (1.24) is replaced byPn,3n−r(0, σ) and we obtain a
simpler form of (1.14).

Our normalizations in Theorem 1.5 are guided by the symmetry(1.19). If we define a transformationT
on functions ofs, α andβ as

T f(s;α, β) := f(1− s;β, α) (1.25)
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thenR(s;α, β) is invariant underT . All the components on the right side of (1.21) are also invariant under
T . For exampleexp

(

πi(2aβ − 2bα + a2λ−2 − b2λ2)/2
)

gets mapped to itself sinceT switchesa andb
and sendsλ to 1/λ. ThatT sendsG(r)(aλ−1+ bλ;λ2) to itself follows from (1.17); see Proposition 3.2. We
prove thatPn,k(

√

π/2(aλ−1 − bλ), σ) is invariant underT in Theorem 6.1. The invariance of the right side
of (1.21) underT is required for the final step in the proof of Theorem 1.5 to obtain the correct error term.

The functionsG(u; τ) appearing in (1.21) are Mordell integrals and have many fascinating properties
and connections, some of which have only been discovered recently [Zwe02, CR15, DRZ17]. In Section
3 we establish the various results about them we will need, including bounds, functional equations and the
linear independence of their derivatives.

A preliminary form of Theorem 1.5 is proved in Section 5 aftersome explicit series expansions related
to ϑ(s) are found in Section 4. The proof is completed in Section 6. The polynomialsPn,k(x, σ) in (1.21)
seem to be new and we also make an initial study of some of theirproperties in Section 6. Their description
in (6.1) is given in terms of Bernoulli, Hermite and De Moivrepolynomials.

N Theorem 1.5
1 −0.08810545388 + 0.10864755195i
3 −0.08764536572 + 0.10936255272i
5 −0.08764522833 + 0.10936268294i

−0.08764522824 + 0.10936268305i R

Table 1: The approximations of Theorem 1.5 toR = R(1/2 + 600i; 30/
√
π, 10/

√
π).

Table 1 shows an example of how Theorem 1.5 approximatesR(s;α, β) for s = 1/2+600i andα/β = 3
(so thatλ =

√
3). The right side of (1.21) for different values ofN may be compared with the left side which

is displayed in the bottom row. Each decimal is correct to theaccuracy shown. Table 2 shows a similar
result ats = −2 + 600i, outside the critical strip. All the calculations in this paper were carried out using
Mathematica. Section 7 contains further examples.

N Theorem 1.5
1 −0.3478598947 + 0.4289646591i
3 −0.3478754856 + 0.4059859119i
5 −0.3479331346 + 0.4059929975i

−0.3479331128 + 0.4059931509i R

Table 2: The approximations of Theorem 1.5 toR = R(−2 + 600i; 30/
√
π, 10/

√
π).

2 The method of Riemann and Siegel

2.1 Initial set-up

The notationI will always denote a finite interval inR. The well-known families of polynomials we require
are those of Bernoulli and Hermite, with generating functions

text

et − 1
=

∞
∑

n=0

Bn(x)
tn

n!
, e2xt−t2 =

∞
∑

n=0

Hn(x)
tn

n!
, (2.1)

respectively. BothBn(x) andHn(x) have degreen; the coefficients ofBn(x) are rational and those of
Hn(x) are integral. Fort > 0 we will also need the power series expansion

w(z, s) := exp

(

(s− 1) log

(

1 +
z√
t

)

− i
√
tz + i

z2

2

)

(2.2)

=
∞
∑

k=0

ak(s) · zk (|z| <
√
t). (2.3)
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The coefficientsak(s) were given recursively by Siegel as we saw in (1.9). We write them in terms of De
Moivre polynomials in Proposition 4.8. The next result generalizes Theorem 1.3.

Theorem 2.1. Recall the notation(1.20). Let s be any complex number in the vertical strip described by
σ ∈ I andt > 2π. Then for allα, β ∈ R>1 with t = 2παβ we have

ζ(s) =
∑

n6α

1

ns
+ χ(s)

∑

n6β

1

n1−s
+ (−1)⌊α⌋⌊β⌋

(2π)seπis/2

Γ(s)(e2πis − 1)

(

2π

t

)1/4

λ1/2−s

× exp

(

πi

2

[

2aβ − 2bα+ a2λ−2 − b2λ2
]

)

exp

((

s

2
− 1

4

)

log
t

2π
− it

2
− iπ

8

)

×
N−1
∑

k=0

ak(s)
k
∑

r=0

(

k

r

)

G(r)(aλ−1 + bλ;λ2)
eπi(k−3r)/4

2k−r(2π)r/2
Hk−r(ωλ) +O

(

λ1−σt−σ/2

tN/6

)

(2.4)

with
ωλ := e−πi/4

√

π/2(aλ−1 − bλ).

The implied constant depends only onN ∈ Z>0, I andλ. If λ > 1 then the implied constant is independent
of λ.

The proof is given in this section and follows the main lines of Siegel’s work in [Sie32, pp. 278-285].
See also [Tit86, Chap. 4] and [Edw74, Chap. 7]. For anym ∈ Z>1 we begin, as in [Sie32, Eq. (8)], with

ζ(s) =

m
∑

n=1

1

ns
+

(2π)seπis/2

Γ(s)(e2πis − 1)

∫

C

zs−1e−2πimz

e2πiz − 1
dz. (2.5)

The contourC starts at−i∞ (with arg z = −π/2), moves up the imaginary axis, circles close to0 and
then returns to−i∞ (with arg z = 3π/2) as displayed in Figure 1. Formula (2.5) is valid for alls ∈ C

and shows thatζ(s) is holomorphic everywhere, except for a pole ats = 1, since1/(Γ(s)(e2πis − 1)) has
poles exactly fors ∈ Z>1 and

∫

C has zeros fors ∈ Z>2. The asymptotics of (2.5) ast → ∞ are obtained
with the saddle-point method. The idea (see for example [Olv74, Chap. 4], [PS97], [O’S19]) is to move the
path of integration so that the main contribution to the integral in (2.5) comes from the neighborhood of the
saddle-point of the integrand – where its derivative with respect toz is zero. For simplicity we just find the
saddle-point of the numeratorzs−1e−2πimz. It is the value

ξ :=
s− 1

2πim
=

t

2πm
+

1− σ

2πm
i (2.6)

and so we need to moveC so that it passes close toξ. A short calculation similar to (2.14), (2.15) shows that

zs−1e−2πimz = ξs−1e−2πimξ exp

(

2π2m2

s− 1
(z − ξ)2 +O

(

(z − ξ)3
)

)

(2.7)

for z close toξ. Then

Re

(

2π2m2

s− 1
(z − ξ)2

)

=
2π2m2

|s− 1| |z − ξ|2 cos(2 arg(z − ξ)− arg(s− 1))

and so the directions in which (2.7) is decreasing the fastest, asz moves away fromξ, are when the cosine is
−1. Forarg(s− 1) close toπ/2 this corresponds toarg(z − ξ) close to3π/4 and−π/4.

The poles of the integrand in (2.5) occur at integersj with residues essentiallyjs−1. This means that
movingC to pass throughξ will add a sum of the form

∑

j6t/(2πm) j
s−1, giving the desired second part of

the approximate functional equation.
As in the statement of the theorem, we chooseα, β ∈ R>1 with t = 2παβ. Letm = ⌊α⌋. Then

ξ ≈ t

2πm
≈ t

2πα
= β (2.8)
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and, following Riemann, we will useβ as our base point instead ofξ. Similarly to Siegel we introduce the
abbreviations

ε := e3πi/4, g(z) :=
zs−1e−2πimz

e2πiz − 1
.

The contour of integrationC in (2.5) is moved to a new contourCβ that encloses exactly the integers from
−⌊β⌋ to ⌊β⌋ and passes throughβ in the desired direction of steepest descentε. As shown in Figure 1,Cβ is
made with five lines. The first,L0, is the vertical line ending atβ− εβ/2 and thenL1 goes fromβ− εβ/2 to

b

C

L3

L4

L2

L1

L0

β

Figure 1: Contours of integrationC andCβ = L0 ∪ L1 ∪ · · · ∪ L4

β + εβ/2. We requireL1 to cross the real line in the open interval(⌊β⌋, ⌊β⌋ + 1); this requires moving the
path slightly to the right whenβ ∈ Z. The horizontal lineL2 continues until its real part reaches−⌊β⌋−1/2.
The vertical linesL3 andL4 complete the contour withL3 finishing, andL4 starting, level with whereL0

finishes. This is at the imaginary value−βi/(2
√
2).

Then
∫

C
g(z) dz = (eπis − 1)

⌊β⌋
∑

n=1

1

n1−s
+

∫

Cβ

g(z) dz

and hence

ζ(s) =
∑

n6α

1

ns
+ χ(s)

∑

n6β

1

n1−s
+

(2π)seπis/2

Γ(s)(e2πis − 1)

∫

Cβ

g(z) dz. (2.9)

Proposition 2.2. For α, β > 1 andσ ∈ I, we have
∫

Cβ

g(z) dz =

∫

L1

g(z) dz +O
(

e−t/100
)

. (2.10)

The implied constant depends only onI.

Proof. For the numerator ofg(z),
∣

∣zs−1e−2πimz
∣

∣ = |z|σ−1e2πmy−t arg z.

Our first claim is that

∣

∣zs−1e−2πimz
∣

∣ 6 |z|σ−1 ×











e−t/8 if z ∈ L2 ∪ L3 ∪ L4,

e−t/20 if z ∈ L0 and10 6 α,

eπ|y| if z ∈ L0 and1 6 α 6 10.

(2.11)

Forz ∈ L2 ∪ L3 ∪ L4,

y 6
β

2
√
2

and arg z > arctan

(

1

2
√
2− 1

)

>
1

2
√
2
+

1

8
.
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Hence
∣

∣zs−1e−2πimz
∣

∣ 6 |z|σ−1 exp

(

2παβ

2
√
2

− t

2
√
2
− t

8

)

= |z|σ−1e−t/8.

With z ∈ L0 we have

y 6 − β

2
√
2

and arg z = − arctan

( |y|
β(1 + 1/(2

√
2))

)

so that
∣

∣zs−1e−2πimz
∣

∣ 6 |z|σ−1 exp

(

−2π⌊α⌋|y| + t|y|
β(1 + 1/(2

√
2))

)

. (2.12)

If α > 10 then replacing⌊α⌋ by α− 1 in (2.12) shows

∣

∣zs−1e−2πimz
∣

∣ 6 |z|σ−1 exp

(

−t |y|
β

[

1

1 + 2
√
2
− 1

α

])

6 |z|σ−1 exp

(

− t

2
√
2

[

1

1 + 2
√
2
− 1

α

])

< |z|σ−1e−t/20. (2.13)

If 1 6 α 6 10 then writing2πα for t/β in (2.12) shows

∣

∣zs−1e−2πimz
∣

∣ 6 |z|σ−1 exp

(

2π|y|
[

−⌊α⌋+ α

1 + 1/(2
√
2)

])

< |z|σ−1eπ|y|.

This completes the verification of the claim (2.11).
For the denominator ofg(z):

|e2πiz − 1|−1
6 (1− e−πβ/

√
2)−1

6 (1− e−π/
√
2)−1 < 2 for z ∈ L2,

|e2πiz − 1|−1 = (1 + e−2πy)−1 < 1 for z ∈ L3.

Hence, forz in L2 ∪ L3 we have thatg(z) ≪ βσ−1e−t/8. Therefore
∫

L2∪L3

g(z) dz ≪ βσe−t/8 ≪ tσe−t/8 ≪ e−t/20.

Forz in L0 ∪ L4 we have

|z| < 4|y| and |e2πiz − 1|−1 < 2e−2π|y|.

Therefore
∫

L4

g(z) dz ≪ e−t/20

∫ ∞

1/(2
√
2)
e−2πyyσ−1 dy ≪ e−t/20,

and we obtain the same bound for
∫

L0
g(z) dz when10 6 α. In the final case with1 6 α 6 10,

∫

L0

g(z) dz ≪
∫ ∞

β/(2
√
2)
e−πyyσ−1 dy ≪

∫ ∞

t/(40
√
2π)

e−2πy/3 dy ≪ e−t/100.

2.2 The saddle-point method

The work in this paper grew out of the project [O’S19] which aimed to clarify some aspects of the saddle-
point method, as elegantly formulated by Perron in 1917. Thepaper [PS97] documents that this method
originated with Riemann, and it is remarkable that one of hisfirst applications was to finding the asymptotic
expansion for the difficult case ofζ(s).

In simpler applications of the saddle-point method, such as[O’S19, Cor. 1.4], the part of the integrand
containing the growing parameterN is expanded into the formexp(Nc(z − ξ)2) times a power series inz
about the fixed saddle-pointξ. The behaviour of the integral forz close toξ will control the asymptotics. Our
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case is more difficult as the saddle-point (2.6) is not fixed and changes with the parameterss andα. Adding
to the complications, it is inconvenient to expand the numerator of g(z) aboutξ and we expand about the
nearby pointβ instead:

zs−1e−2πimz = βs−1e−2πimβ exp

(

−2πim(z − β) + (s− 1) log

(

1 +
z − β

β

))

. (2.14)

The argument ofexp above may be developed as

−2πim(z − β)− (s− 1)
∞
∑

j=1

(−1)j

j

(

z − β

β

)j

. (2.15)

Whenz is close toβ we find (2.15) is

(

σ − 1 + it

β
− 2πim

)

(z − β) +
1− σ − it

2

(

z − β

β

)2

+O

(

(

z − β

β

)3
)

=

[

i

(

t

β
− 2πm

)

(z − β)− it

2β2
(z − β)2

]

+(σ−1)

(

z − β

β

)

− σ − 1

2

(

z − β

β

)2

+O

(

(

z − β

β

)3
)

.

(2.16)

Forβ large, the piece
[

i

(

t

β
− 2πm

)

(z − β)− it

2β2
(z − β)2

]

= 2πi(α −m)(z − β)− πi
α

β
(z − β)2

of (2.16) will be biggest. Therefore we separate it out and, recalling (2.2), write

zs−1e−2πimz = βs−1e−2πimβ exp

(

−πiα
β
(z − β)2 + 2πi(α −m)(z − β)

)

w

(
√
t

β
(z − β), s

)

.

Sinceα/β = λ2 and
√
t/β =

√
2πλ, we obtain

∫

L1

g(z) dz = βs−1e−2πimβ

∫

L1

exp
(

−πiλ2(z − β)2 + 2πia(z − β)
)

e2πiz − 1
w
(√

2πλ(z − β), s
)

dz. (2.17)

The next step is to replacew(z, s) by the first terms in its expansion (2.3). The tail of this power series
has the presentation

rn(z, s) :=

∞
∑

k=n

ak(s)z
k =

zn

2πi

∫

C

w(u, s)

un(u− z)
du, (2.18)

with C a curve inside the disc|u| <
√
t which encircles0 andz in the positive direction. Siegel bounded

rn(z, s) precisely and for completeness we include his proof [Sie32,pp. 281-282] since all the error bounds
depend on it.

Lemma 2.3. For n ∈ Z>0, σ ∈ I andt > 0 we have the estimates

rn(z, s) = O

( |z|n
tn/6

)

for 1 6 n 6
27

50
t, |z| 6 20

21

(

2n
√
t

5

)1/3

, (2.19)

rn(z, s) = O
(

e14|z|
2/29

)

for |z| 6
√
t/2. (2.20)

The implied constants depend only onI andn.
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Proof. With (2.2),

logw(u, s) = (σ − 1) log

(

1 +
u√
t

)

+ iu2
∞
∑

k=1

(−1)k−1

k + 2

(

u√
t

)k

.

Therefore, in the circle|u| 6 3
√
t/5 we have

Re(logw(u, s)) 6 |σ − 1| log 8

5
+

5|u|3
6
√
t
. (2.21)

In (2.18) let|z| 6 4
√
t/7 and letC be a circle aroundu = 0 with a radiusρn satisfying

21

20
|z| 6 ρn 6

3

5

√
t. (2.22)

Then (2.18), (2.21), (2.22) imply the estimate

rn(z, s) = O

(

|z|nρ−n
n exp

(

5

6
√
t
ρ3n

))

. (2.23)

Forn > 1, the functionρ−ne5ρ
3/(6

√
t) of ρ reaches its minimum

(

5e
2n

√
t

)n/3
for
(

2n
√
t

5

)1/3
. According to

(2.22), the choiceρn = ρ is admissible if

21

20
|z| 6

(

2n
√
t

5

)1/3

6
3

5

√
t.

Consequently we obtain (2.19). Forn > 0 and|z| 6 4
√
t/7, the choiceρn = 21|z|/20 is also admissible

according to (2.22); from this we obtain (2.20).

2.3 Error estimates

If we replacew(·, s) in (2.17) by the firstn terms of its expansion (2.3) then the error involves the integral

Jn(s;α, β) :=

∫

L1

exp
(

−πiλ2(z − β)2 + 2πia(z − β)
)

e2πiz − 1
rn

(√
2πλ(z − β), s

)

dz. (2.24)

Proposition 2.4. Supposeσ ∈ I, t > 0 andn ∈ Z>0. Then we have

Jn(s;α, β) = O
(

t−n/6
)

(2.25)

for an implied constant depending only onI, n andλ. If λ > 1 then the implied constant does not depend
onλ.

Proof. Recall thatL1 is usually a straight line fromβ− εβ/2 to β+ εβ/2. However, whenβ is close to⌊β⌋
or ⌊β⌋ + 1 we will adjust the path slightly to avoid the denominator in (2.24) becoming too small. The next
lemma has a straightforward proof that is omitted.

Lemma 2.5. Supposeδ > 0 andz ∈ C. If |z−m| > δ for all m ∈ Z then, for an absolute implied constant,

(e2πiz − 1)−1 = O
(

1 + δ−1
)

.

The proof of the proposition breaks into four cases.

Case I: λ 6 1 and1/100 6 b 6 99/100. For these values ofb we may takeL1 to be a straight line.
The part of the integrand(e2πiz − 1)−1 in (2.24) is absolutely bounded as we may apply Lemma 2.5 with
δ = 1/(100

√
2).
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Writing z = β + εv/(
√
2πλ) shows that

Jn(s;α, β) =
ε√
2πλ

∫

√
t/2

−
√
t/2

exp
(

−v2/2 +
√
2πiεav/λ

)

e2πi(β+εv/(
√
2πλ)) − 1

rn(εv, s) dv (2.26)

and the integrand is bounded by a constant times

exp
(

−v2/2 +
√
2π|v|/λ

)

|rn(εv, s)|. (2.27)

Using (2.20) we have

Jn(s;α, β) ≪
∫

√
t/2

0
exp

(

−v
2

58
+

√
2π

λ
v

)

dv = O(1) (2.28)

with an implied constant depending onn andλ. If n = 0 then (2.28) gives the correct bound (2.25).
Now we fixn ∈ Z>1. Assumet > 50n/27 so that we may also use (2.19). Let

µ :=
20

21
(2n

√
t/5)1/3,

and applying the bounds (2.19) and (2.20) to (2.27) shows

Jn(s;α, β) ≪ t−n/6

∫ µ

0
exp

(

−v
2

2
+

√
2π

λ
v

)

vn dv +

∫

√
t/2

µ
exp

(

−v
2

58
+

√
2π

λ
v

)

dv

≪ t−n/6

∫ ∞

0
exp

(

−v
2

3

)

vn dv +

∫ ∞

µ
exp

(

−v
2

59

)

dv

≪ t−n/6 + e−µ2/60 = O(t−n/6) for t > 50n/27. (2.29)

By (2.28) we have
Jn(s;α, β) = O(1) for 0 < t < 50n/27. (2.30)

Combining (2.29) and (2.30) gives the desired bound (2.25).

Case II: λ 6 1 and0 6 b 6 1/100 or 99/100 6 b < 1. For these values ofb we letL1 be the usual path
of integration except that we replace the segment betweenβ − ε/50 andβ + ε/50 with a semicircular arc
of radius1/50 aboutβ. If 0 6 b 6 1/100 we need the upper arc traversed in a counter-clockwise direction.
For99/100 6 b < 1 we need the lower arc traversed in a clockwise direction. We focus on the former case
from here and it is shown in Figure 2. The other case is similar.

L1

radius1/100

b
β

⌊β⌋

Figure 2: Adjusting the contour of integrationL1 near⌊β⌋ in Case II

Since the circle of radius1/100 about⌊β⌋ is contained in the circle of radius1/50 aboutβ we see that
z ∈ L1 satisfies Lemma 2.5 withδ = 1/100. Therefore(e2πiz − 1)−1 is absolutely bounded and the work
of Case I shows the correct bound for the part ofJn given by the integral on the straight lines.
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Let Jn(s;α, β)A be the remaining part ofJn given by the integral over the arc:

Jn(s;α, β)A =

∫

A

exp
(

−πiλ2w2 + 2πiaw
)

e2πi(β+w) − 1
rn

(√
2πλw, s

)

dw (2.31)

whereA is given byw with |w| = 1/50 and−π/4 6 argw 6 3π/4. The integrand is bounded by a constant
times

exp
(

πλ2/502 + 2π/50
)

∣

∣

∣
rn

(√
2πλw, s

)∣

∣

∣

Using (2.20) we have

Jn(s;α, β)A ≪
∫

A
exp

(

14
∣

∣

∣

√
2πλw

∣

∣

∣

2
/29

)

|dw| = O(1) (2.32)

with an implied constant depending onn andλ. If n = 0 then (2.32) gives the correct bound for (2.25).
Now we fixn ∈ Z>1. Assumet > 50n/27 so that, by (2.19),

Jn(s;α, β)A ≪
∫

A

∣

∣

∣
rn

(√
2πλw, s

)∣

∣

∣
|dw| ≪

(√
2πλ

50

)n

t−n/6 = O
(

t−n/6
)

provided that
√
2πλ/50 6 µ. (Recallµ defined before (2.29).) But this last condition is true ift >

1.4× 10−7. Hence
Jn(s;α, β)A = O

(

t−n/6
)

for t > 50n/27 (2.33)

and by (2.32)
Jn(s;α, β)A = O(1) for 0 < t < 50n/27. (2.34)

The estimates (2.33) and (2.34) complete the proof of (2.25)in this case.

Case III: λ > 1 and1/(100λ) 6 b 6 99/(100λ). This is similar to Case I, though we are more careful in
showing theλ dependence. The integration pathL1 is straight with no adjustments. Forz ∈ L1, the part
of the integrand(e2πiz − 1)−1 in (2.24) is bounded by an absolute constant times1 + λ as we may apply
Lemma 2.5 withδ = 1/(100

√
2λ).

As in (2.26) and (2.27), it may be seen thatJn(s;α, β) is bounded by an absolute constant times

1 + λ

λ

∫

√
t/2

0
exp
(

−v2/2 +
√
2π|v|/λ

)

|rn(εv, s)| dv. (2.35)

As (2.35) is decreasing inλ, we may takeλ = 1 in our bounds and the error will not depend onλ. The
arguments of Case I now go through unchanged.

Case IV: λ > 1 and0 6 b 6 1/(100λ) or 99/(100λ) 6 b < 1. Similarly to Case II,L1 is the usual path of
integration except that we replace the segment betweenβ − ε/(50λ) andβ + ε/(50λ) with a semicircular
arc of radius1/(50λ) aboutβ. As in Case II, we may focus on the situation with0 6 b 6 1/(100λ).

Since the circle of radius1/(100λ) about⌊β⌋ is contained in the circle of radius1/(50λ) aboutβ we
see thatz ∈ L1 satisfies Lemma 2.5 withδ = 1/(100λ). Therefore(e2πiz − 1)−1 is bounded by an absolute
constant times1+λ and the work of Case III shows the correct bound for the part ofJn given by the integral
on the straight lines. LetJn(s;α, β)A be the remaining part ofJn given by the integral over the arc:

Jn(s;α, β)A =
1

λ

∫

A

exp
(

−πiw2 + 2πiaw/λ
)

e2πi(β+w/λ) − 1
rn

(√
2πw, s

)

dw (2.36)

whereA was already defined for (2.31) and given byw with |w| = 1/50 and−π/4 6 argw 6 3π/4.
Hence,Jn(s;α, β)A is bounded by an absolute constant times

1 + λ

λ

∫

A
exp

(

π

502
+

2π

50λ

)

∣

∣

∣rn

(√
2πw, s

)∣

∣

∣ dw. (2.37)

Then (2.37) is decreasing inλ and so we may reuse the estimates of Case II withλ = 1 to boundJn(s;α, β)A
as in (2.33) and (2.34).
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With (2.17), (2.24) and Proposition 2.4, we have shown that

∫

L1

g(z) dz = βs−1e−2πimβ
N−1
∑

k=0

ak(s)(2π)
k/2λk

×
∫

L1

exp
(

−πiλ2(z − β)2 + 2πia(z − β)
)

e2πiz − 1
(z − β)k dz +O

(

βσ−1t−N/6
)

(2.38)

for σ ∈ I, t > 0 andλ > 0, with an implied constant depending only onI,N ∈ Z>0 andλ whenλ < 1.
The last step in rearranging our expressions for

∫

L1
g(z) dz is to extend the line of integration on the

right of (2.38) to infinity in both directions. LetL− be the line fromβ − ε∞ to β − εβ/2 and letL+ be the
line fromβ + εβ/2 to β + ε∞.

Lemma 2.6. For σ ∈ I, t > 1 andN ∈ Z>0 we have

N−1
∑

k=0

ak(s)(2π)
k/2λk

∫

L−∪L+

exp
(

−πiλ2(z − β)2 + 2πia(z − β)
)

e2πiz − 1
(z − β)k dz = O

(

e−t/16
)

. (2.39)

The implied constant depends only onI,N andλ. If λ > 1 then the implied constant is independent ofλ.

Proof. We first note that forz ∈ L− ∪ L+ it is true that

|Imz| > β

2
√
2
=

√
t

2
√
2 ·

√
2πλ

>
1

4
√
πλ
.

Hence by Lemma 2.5,(e2πiz − 1)−1 = O(1 + λ) for an absolute implied constant. Next we see by using
(2.20) withz = 1/2 that

ak(s) = (rk(z, s) − rk+1(z, s))z
−k = O(1) (2.40)

(where this implied constant depends onk andI).
With the change of variablesz = β + εv/(

√
2πλ) that we used in (2.26), the left side of (2.39) equals

N−1
∑

k=0

ak(s)
ε√
2πλ

∫

(−∞,−
√
t/2]∪[

√
t/2,∞)

exp
(

−v2/2 +
√
2πiεav/λ

)

e2πi(β+εv/(
√
2πλ)) − 1

(εv)k dv

and this is bounded by an absolute constant times

N−1
∑

k=0

|ak(s)|
1 + λ

λ

∫ ∞

√
t/2

exp
(

−v2/2 +
√
2πv/λ

)

vk dv. (2.41)

Then (2.41) is

≪
∫ ∞

√
t/2

exp
(

−v2/3
)

dv ≪ exp
(

−(
√
t/2)2/4

)

as required. The implied constant in (2.39) is independent of λ for λ > 1 because (2.41) is decreasing in
λ.

2.4 Relating the integral toG(u; τ)

Proof of Theorem 2.1.It follows from Lemma 2.6 that (2.38) is true with the path of integrationL1 extended
to infinity. If we replacez by z+ ⌊β⌋ in the integral in (2.38) then it is easy to see that the path ofintegration
may now be taken as any infinite straight line crossing the real line in the interval(0, 1) and in the direction
of ε. As before, we use0 տ 1 to denote this path.
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Then combining this with (2.9) and Proposition 2.2 gives

ζ(s) =
∑

n6α

n−s + χ(s)
∑

n6β

ns−1 +
(2π)seπis/2

Γ(s)(e2πis − 1)
βs−1e−2πimβ

N−1
∑

k=0

ak(s)(2π)
k/2λk

×
∫

0տ1

exp
(

−πiλ2(z − b)2 + 2πia(z − b)
)

e2πiz − 1
(z − b)k dz +O

(

βσ−1t1/2−σ

tN/6

)

. (2.42)

For the error, we used that
(2π)seπis/2

Γ(s)(e2πis − 1)
= O

(

t1/2−σ
)

for σ ∈ I andt > 2π by Stirling’s formula or Proposition 4.7. Writing the errorin (2.42) in terms ofλ gives
the error stated in (2.4).

The integral in (2.42) may be expressed in terms ofG(u; τ). It is simpler to relate the integral directly to
the Mordell integralΥ(u; τ) in (1.15), but this would obscure the symmetry ins ↔ 1 − s, α ↔ β we wish
to exploit. The integral in (2.42) isk!(2πi)−k times the coefficient ofuk in
∫

0տ1

exp
(

−πiλ2(z − b)2 + 2πia(z − b)
)

e2πiz − 1
exp
(

2πi(z − b)u
)

dz

= λ−1/2 exp

(

−πi
(

b2λ2 +
1

8

))

exp

(

πi

2

(a

λ
− bλ+

u

λ

)2
)

G
(a

λ
+ bλ+

u

λ
;λ2
)

. (2.43)

It follows from the right identity in (2.1) that

e−c2(u+q)2 = e−c2q2
∞
∑

n=0

Hn(cq)
(−c)nun

n!
.

Expanding the exponential factor on the right of (2.43) using this, withc = e−πi/4
√

π/2 andq = a/λ− bλ,
produces

exp

(

πi

2

(a

λ
− bλ+

u

λ

)2
)

= exp

(

πi

2
(aλ−1 − bλ)2

) ∞
∑

n=0

Hn(ωλ)
(π

2

)n/2( ε

λ

)nun

n!
.

Combining this with the Taylor expansion ofG
(

a/λ+ bλ+ u/λ;λ2
)

shows the integral in (2.42) equals

1

(2πi)k
λ−1/2−k exp

(

−πi
(

b2λ2 +
1

8

))

exp

(

πi

2
(aλ−1 − bλ)2

)

×
k
∑

r=0

(

k

r

)

G(r)
(

aλ−1 + bλ;λ2
)

Hk−r(ωλ)
(π

2

)(k−r)/2
εk−r. (2.44)

Put (2.44) into (2.42) and the final step, to get the formula into the form we want, uses the identities

βs−1

λ1/2
=

(

2π

t

)1/4

exp

((

s

2
− 1

4

)

log
t

2π

)

λ1/2−s (2.45)

and

exp

(

−2πimβ − πi

(

b2λ2 +
1

8

))

exp

(

πi

2
(aλ−1 − bλ)2

)

= (−1)⌊α⌋⌊β⌋ exp

(

πi

2

[

2aβ − 2bα+ a2λ−2 − b2λ2
]

)

exp

(

− it
2
− iπ

8

)

. (2.46)

Equation (2.45) follows fromβ2 = t/(2πλ2). Alsom = ⌊α⌋, πiαβ = it/2 and the equalities

1 = e2πi⌊α⌋⌊β⌋ = e2πi(α−a)(β−b) = e2πi(αβ−αb−aβ+ab),

(−1)⌊α⌋⌊β⌋ = eπi(α−a)(β−b) = eπi(αβ−αb−aβ+ab)

show (2.46). This completes the proof of Theorem 2.1.

15



3 The Mordell integral Υ(u; τ)

3.1 Relations

Foru, τ ∈ C with Re(τ) > 0, recall our definition from (1.15)

Υ(u; τ) :=

∫

0տ1

e−πiτz2+2πiuz

e2πiz − 1
dz. (3.1)

This type of integral was studied in detail by Mordell [Mor33] with earlier work by Kronecker, Lerch,
Ramanujan and Riemann; see the references in the introduction of [CR15]. The method of Riemann for
τ = 1, described in [Sie32, Sect. 1], easily extends to give

Υ(u+ 1; τ) = Υ(u; τ) + τ−1/2eπi(u
2/τ+3/4), (3.2)

Υ(u+ τ ; τ) = eπi(τ+2u)(Υ(u; τ)− 1). (3.3)

Applying these relations repeatedly yields the following result.

Proposition 3.1. Supposeu, τ ∈ C withRe(τ) > 0. Then for allm,n ∈ Z>0

Υ(u+m; τ) = Υ(u; τ) + e3πi/4τ−1/2
m−1
∑

j=0

eπi(j+u)2/τ , (3.4)

Υ(u+ nτ ; τ) = eπin(nτ+2u)Υ(u; τ)− eπi(nτ+u)2/τ
n−1
∑

j=0

e−πi(jτ+u)2/τ . (3.5)

This allows us to computeΥ(u; τ) explicitly for τ a positive rational. Ifnτ = m for m,n ∈ Z>1 then
equating (3.4) and (3.5) shows, as in [Deu67, Sect. 1],

(

eπin(m+2u) − 1
)

Υ
(

u;
m

n

)

= e3πi/4
√
n√
m

m−1
∑

j=0

eπi(j+u)2n/m+eπi(m+u)2n/m
n−1
∑

j=0

e−πi(j+nu/m)2m/n. (3.6)

The right side of (3.6) is left essentially unchanged ifm andn are interchanged,u is replaced bynu/m, and
everything is conjugated. Precisely, we have

(

eπim(n+2nu/m) − 1
)

Υ

(

nu

m
;
n

m

)

= e−3πi/4

√
m√
n
e−πi(m+u)2n/m

(

eπin(m+2u) − 1
)

Υ
(

u;
m

n

)

.

Simplifying this shows

Υ

(

nu

m
;
n

m

)

= −e−3πi/4

√
m√
n
e−πi(m+u)2n/meπin(m+2u)Υ

(

u;
m

n

)

=

√
m√
n
e−πi(nu2/m−1/4)Υ

(

u;
m

n

)

. (3.7)

As in (1.16), set

G(u; τ) := τ1/4 exp

(

−πiu
2

2
+
πi

8

)

Υ
(√
τ · u; τ

)

. (3.8)

This definition gives the simplest possible transformationunderτ → 1/τ , as we see next.

Proposition 3.2. For all u, τ ∈ C with Re(τ) > 0 we have

Υ(u/τ ; 1/τ) =
√
τeπi(u

2/τ−1/4)Υ(u; τ ), (3.9)

G(u; 1/τ) = G(u; τ ), (3.10)

G(k)(u; 1/τ) = G(k)(u; τ), (k ∈ Z>0). (3.11)

Proof. We obtain (3.9) from (3.7) for allu ∈ C and allτ ∈ Q>0. Since both sides of (3.9) are holomorphic
functions ofτ for Re(τ) > 0, it follows that (3.9) extends to all these values ofτ . Then (3.10) follows
directly from (3.9). Differentiating (3.10) with respect to u provides (3.11).
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3.2 Examples

Let
θk(u) := u2/2−

√
ku− k/2− 1/8. (3.12)

For allm,n ∈ Z>1 we have from (3.6) and (3.8) that

G
(

u;
m

n

)

=
1

2i sin(π(
√
mnu+mn/2))

×





(m

n

)1/4
exp
(

−πiθmn(u)
)

n−1
∑

j=0

exp

(

−πij
[

2u

√

m

n
+ j

m

n

])

−
(m

n

)−1/4
exp
(

πiθmn(u)
)

m−1
∑

j=0

exp

(

πij

[

2u

√

n

m
+ j

n

m

])



. (3.13)

If u makes
√
mnu + mn/2 an integer, then the denominatorsin(π(

√
mnu + mn/2)) is zero. Since

G(u;m/n) is a holomorphic function ofu, it follows that the numerator in (3.13) must also be zero. For
these values ofu, G(u;m/n) may be found by taking limits. The numerator being zero in these cases also
gives instances of Gauss sum reciprocity as mentioned by Siegel in [Sie32] and shown in [Deu67].

In the simplest case ofτ = 1 we know by (3.10) thatG(u; 1) = G(u; 1) and soG(u; 1) is real-valued
whenu ∈ R. Then (3.13) implies

G(u; 1) = − 1

2i sin(π(u+ 1/2))

(

eπiθ1(u) − e−πiθ1(u)
)

= − sin(πθ1(u))

sin(π(u+ 1/2))
.

This may also be written as

G(u; 1) = −sin(π(u2/2− u− 5/8))

sin(π(u+ 1/2))
=

cos(π(u2/2− u− 1/8))

cos(πu)
. (3.14)

Forτ = 2, 3 we find

G(u; 2) =
−1

2i sin(
√
2πu)

[

21/4e−πiθ2(u) − 2−1/4eπiθ2(u)
(

1 + ie
√
2πiu

)]

, (3.15)

G(u; 3) =
−1

2i cos(
√
3πu)

[

31/4e−πiθ3(u) − 3−1/4eπiθ3(u)
(

1 + eπi(2u/
√
3+1/3) + eπi(4u/

√
3+4/3)

)]

.

3.3 Analytic continuation and Zwegers’h(u; τ)

The results in this subsection will not be needed in the rest of the paper, though they establish an interesting
connection. In his thesis [Zwe02], [BFOR17, Chap. 8], Zwegers puts the mock theta functions of Ramanujan
into a modular framework. His Appell-Lerch seriesµ(z1, z2; τ), see [Zwe02, Sect. 1.3], is a two-variable
Jacobi form of weight1/2, except that a term containing

h(u; τ) :=

∫ ∞

−∞

eπiτy
2+2πuy

cosh(πy)
dy (u ∈ C, Im(τ) > 0) (3.16)

appears in its modular transformations. Zwegers then showsthat, by adding a non-holomorphic component,
µ may be completed into a Jacobi form that transforms correctly. The mock theta functions can then be
expressed in terms ofµ, as in [BFOR17, Appendix A].

The functionh(u; τ) also appears in [Zwe02, Sect. 1.5] as the period integral of aweight 3/2 unary
theta function. Ramanujan wroteh(u; τ) in terms of a partial theta function; see [CR15, Thm. 2.1]. Thus,
h(u; τ) has many interesting connections to modular and mock modular forms. We see next thath(u; τ) and
Υ(u; τ) are closely related.
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Lemma 3.3. We have

Υ(u; τ) = eπi(u−1/2−τ/4)

∫ ∞

−∞

eπiτy
2+πy(τ−2u+1)

eπy + e−πy
dy (3.17)

for all u, τ with

Re(τ) > 0, Im(τ) > 0 and
Re(τ)− Im(τ)

2
< Re(u) < 1 +

Re(τ)− Im(τ)

2
. (3.18)

Proof. We wish to rotate the line of integration0 տ 1 in (1.15) and make it vertical, passing through1/2.
For largeY > 0 we replace the line of integration from1/2 to 1/2 − Y + iY by the lines from1/2 to
1/2 + iY and1/2 + iY to 1/2 − Y + iY . To bound the integral on the horizontal segment

IY :=

∫ 1/2−Y+iY

1/2+iY

e−πiτz2+2πiuz

e2πiz − 1
dz,

we letz = x+ iY and find

IY ≪
∫ 1/2

1/2−Y

exp
(

2π
[

Re(τ)xY + Im(τ)(x2 − Y 2)/2 − Re(u)Y − Im(u)x
])

e−2πY − 1
dx.

For Im(τ) > 0 we haveIm(τ)(x2 − Y 2) 6 Im(τ)(1/4 − Y ), and so obtain

IY ≪ exp
(

−πY (2Re(u) + Im(τ))
)

∫ 1/2

1/2−Y
exp(2πx[Re(τ)Y − Im(u)]) dx

≪ exp
(

−πY (2Re(u) + Im(τ)− Re(τ))
)

. (3.19)

The line of integration from1/2 + Y − iY to 1/2 is also replaced by horizontal and vertical lines. A
similar argument shows that the horizontal integral satisfies

I−Y :=

∫ 1/2−iY

1/2+Y−iY

e−πiτz2+2πiuz

e2πiz − 1
dz ≪ exp

(

−πY (−2Re(u) + 2− Im(τ) + Re(τ))
)

. (3.20)

Therefore, asY → ∞, the bounds (3.19), (3.20) imply thatIY → 0 andI−Y → 0 if the inequalities on the
right of (3.18) are satisfied. This completes the proof.

Hence

Υ(u; τ) =
1

2
eπi(u−1/2−τ/4)h

(

τ

2
− u+

1

2
; τ

)

, (3.21)

initially for all u andτ satisfying (3.18). By analytically continuing both sides in u we see that (3.21) be-
comes true for allu ∈ C whenRe(τ), Im(τ) > 0. Therefore (3.17) and (3.21) give the analytic continuation
of Υ(u; τ) to all τ with Im(τ) > 0 (and (3.21) gives the analytic continuation ofh(u; τ) to all τ with
Re(τ) > 0).

Conjugating both sides of (3.17) shows that, for allu ∈ C and allτ with Im(τ) > 0, we have

Υ(u; τ) = eπi(τ−2u+1)Υ(u− τ ;−τ). (3.22)

Rearranging and simplifying with (3.3) shows, forIm(τ) > 0,

Υ(u; τ) = 1−Υ(u;−τ). (3.23)

SinceΥ(u; τ) exists forRe(τ) > 0, the relation (3.23) provides the continuation ofΥ(u; τ) to all τ with
Re(τ) < 0. In this way we have extended the definition ofΥ(u; τ) to allu ∈ C and allτ ∈ C except forτ on
the negative imaginary axis:(−∞, 0]i. It follows that (3.23) is valid for allτ outside(−∞, 0]i. Numerically,
the values ofΥ(u; τ) for τ on each side of(−∞, 0]i do not match, so we may take it as a branch cut. We
have shown:
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Proposition 3.4. For eachu ∈ C, the functionΥ(u; τ) defined in(3.1) is an analytic function ofτ when
Re(τ) > 0. With (3.16)and (3.21)we obtain the analytic continuation toIm(τ) > 0. Then(3.23)gives the
continuation toRe(τ) < 0.

Combining (3.22) with (3.9) shows

eπi(τ−2u+1)Υ(u− τ ;−τ) = 1√
τ
e−πi(u2/τ−1/4)Υ(u/τ ; 1/τ) (Re(τ) > 0).

This is also

Υ(−u/τ ;−1/τ) =
√
−τe−πi(u2/τ+2u+τ−3/4)Υ(u+ τ ; τ) (Re(τ) < 0). (3.24)

ForRe(τ) < 0 andIm(τ) > 0 we have the equality of principal square roots
√−τ = e−πi/4

√
−iτ . Putting

this into (3.24) gives

Υ(−u/τ ;−1/τ) =
√
−iτe−πi(u2/τ+2u+τ−1/2)Υ(u+ τ ; τ) (3.25)

which by analytic continuation inτ is valid for all τ outside of the negative imaginary axis. Translating
(3.25) into a relation forh(z; τ) by (3.21), withz = u+ τ/2− 1/2 and usingh(−z; τ) = h(z; τ), shows

h(z/τ ;−1/τ) =
√
−iτe−πiz2/τh(z; τ) (3.26)

which is part(5) of [Zwe02, Prop. 1.2]. Therefore we have given another proofof (3.26) which is proved
in [Zwe02] with the Fourier transform. Alternatively, starting with (3.26) and using (3.22), we may give
another proof of Proposition 3.2.

Parts(1) and(2) of [Zwe02, Prop. 1.2] are equivalent to (3.2), (3.3). Part(6) translates into the following
interesting identity. For allu ∈ C and initially for all τ with Im(τ) > 0

Υ(u; τ)−Υ

(

u+
1

2
; τ + 1

)

=
1√
τ + 1

exp

(

πi

[

4u2 − 4u− τ

4(τ + 1)

])

·Υ
(

2u+ τ

2(τ + 1)
;

τ

τ + 1

)

.

3.4 Bounds forΥ and G

The proof of our main theorem will require these next estimates.

Proposition 3.5. For all u, τ ∈ R with 0 < τ 6 1 we have

τk/2Υ(k)(u; τ) ≪ τ−1/2(1 + |u|)
(

1 +
1 + |u|k
τk/2

)

for an implied constant depending only onk ∈ Z>0.

Proof. Suppose thatu = x +m with 0 6 x < 1 andm ∈ Z. If m > 0, then differentiating (3.4)k times
implies

Υ(k)(u; τ) = Υ(k)(x; τ) + e3πi/4τ−1/2
m−1
∑

j=0

dk

dxk
eπi(j+x)2/τ .

The right-hand terms may be evaluated with the identity

dk

dxk
e−c2(x+q)2 =

[

(−c)kHk(c(x+ q))
]

e−c2(x+q)2 (3.27)

andc = e−πi/4
√

π/τ , q = j. Hence

Υ(k)(u; τ)−Υ(k)(x; τ) = τ−1/2
m−1
∑

j=0

e3πi(k+1)/4
(π

τ

)k/2
Hk

(

e−πi/4

√
π√
τ
(x+ j)

)

eπi(j+x)2/τ (3.28)

≪ τ−k/2−1/2
m−1
∑

j=0

(

1 +
(j + 1)k

τk/2

)

≪ τ−k/2−1/2(1 + |u|)
(

1 +
(1 + |u|)k
τk/2

)

. (3.29)
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We find the same bound whenu = x+m with m 6 0. This reduces the question to estimatingΥ(k)(u; τ)
for 0 6 u < 1.

Differentiating (1.15) inside the integral is valid and writing z = 1/2 + εt then shows

Υ(k)(u; τ) = −ε(πi)keπi(u−τ/4)

∫

R

exp
(

−πτt2 + πiε(2u − τ)t
)

e2πiεt + 1
(1 + 2εt)k dt. (3.30)

It is straightforward to see that

1

|e2πiεt + 1| <
{

2e
√
2πt if t 6 0,

2 if t > 0.
(3.31)

We have

Υ(k)(u; τ) ≪
∫

R

exp

(

−πτt2 + πτt√
2

)

exp
(

−
√
2πut

)

|e2πiεt + 1| (1 + |t|k) dt. (3.32)

If we now assume that0 6 u 6 1, then the middle fraction in (3.32) is at most2 by (3.31). Changing
variables we obtain

Υ(k)(u; τ) ≪
∫

R

exp

(

−πv2 + π
√
τv√
2

)(

1 +
|v|k
τk/2

)

dv

τ1/2

and this is≪ τ−1/2(1 + τ−k/2) whenτ 6 1. Using this last bound forΥ(k)(x; τ) in (3.29) and simplifying
completes the proof.

Theorem 3.6. For all u, τ ∈ R with τ > 0 we have

G(k)(u; τ) ≪







τ−1/4
(

1 + τ1/2|u|
)(

1 + τ−k/2 + |u|k
)

if τ 6 1,

τ1/4
(

1 + τ−1/2|u|
)(

1 + τk/2 + |u|k
)

if τ > 1
(3.33)

for an implied constant depending only onk ∈ Z>0.

Proof. From the definition (1.16) and (3.27) we have

G(k)(u; τ) := τ1/4eπi/8
k
∑

j=0

(

k

j

)

dj

duj
exp

(

−πiu
2

2

)

· d
k−j

duk−j
Υ(

√
τu; τ)

= τ1/4 exp

(

−πiu
2

2
+
πi

8

) k
∑

j=0

(

k

j

)

e5πij/4
(π

2

)j/2
Hj

(

eπi/4
√
π√
2
u

)

· τ (k−j)/2Υ(k−j)(
√
τu; τ). (3.34)

Then, using Proposition 3.5,

G(k)(u; τ) ≪ τ−1/4
k
∑

j=0

(

1 + |u|j
)

(

1 + τ1/2|u|
)(

1 + τ (j−k)/2 + |u|k−j
)

≪ τ−1/4
(

1 + τ1/2|u|
)(

1 + τ−k/2 + |u|k
)

(3.35)

for τ 6 1. Whenτ > 1, the relation (3.11) combined with (3.35) finishes the proofof (3.33).

Corollary 3.7. For λ > 0 anda, b satisfying0 6 a, b 6 1 we have

G(k)(aλ−1 + bλ;λ2) = O
(

λk+1/2 + λ−k−1/2
)

for an implied constant depending only onk ∈ Z>0.
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3.5 Linear independence

The next result will be needed in the proof of Theorem 6.1.

Proposition 3.8. Let τ withRe(τ) > 0 be fixed. The functions ofu in the set
{

G(u; τ), G(1)(u; τ), G(2)(u; τ), . . . , G(m)(u; τ)
}

are linearly independent for anym ∈ Z>0. (Them = 0 case is saying that, for eachτ , G(u; τ) is never
identically0 as a function ofu.)

Proof. Suppose we have
m
∑

j=0

cjτ
−j/2G(j)(u; τ) = 0 (u ∈ C). (3.36)

The constantscj may depend on the fixedτ and it is convenient to include the nonzero factorτ−j/2. Replac-
ingG(u; τ) with Υ(

√
τu; τ) using (3.34), and then replacingu by u/

√
τ implies

m
∑

j=0

ψj(u)Υ
(j)(u; τ) = 0 (u ∈ C) (3.37)

for polynomialsψj(u). Explicitly, for 0 6 j 6 m, we have

ψj(u) =
m
∑

k=j

ck

(

k

j

)

e5πi(k−j)/4
( π

2τ

)(k−j)/2
Hk−j

(

eπi/4
√
π√
2τ
u

)

.

The highest degree term inHn(y) is 2nyn by (6.7) and soψj(u) has degreem− j with highest degree term

cm

(

m

j

)

(−πi/τ)m−j · um−j. (3.38)

Since we know (3.2), it is natural to apply the difference operator∆ to (3.37). We have

∆Υ(j)(u; τ) := Υ(j)(u+ 1; τ)−Υ(j)(u; τ) = Lj(u)e
πiu2/τ

for, using the calculation in (3.28) withm = 1,

Lj(u) := τ−1/2e3πi(j+1)/4
(π

τ

)j/2
Hj

(

e−πi/4

√
π√
τ
u

)

.

Recall that
∆(f(u)g(u)) = (∆f(u)) · g(u) + f(u+ 1) · (∆g(u)),

and applying∆ to a polynomial reduces the degree by at least1. Hence∆ applied to (3.37) implies

m−1
∑

j=0

(∆ψj(u))Υ
(j)(u; τ) +

m
∑

j=0

ψj(u+ 1)Lj(u)e
πiu2/τ = 0 (3.39)

and a second application gives

m−2
∑

j=0

(

∆2ψj(u)
)

Υ(j)(u; τ) +

m−1
∑

j=0

(∆ψj(u+ 1))Lj(u)e
πiu2/τ +

m
∑

j=0

∆
[

ψj(u+ 1)Lj(u)e
πiu2/τ

]

= 0.

After a total ofm + 1 applications of the difference operator to (3.37), the functionsΥ(j)(u; τ) disappear
and we are left with

m
∑

k=0

m−k
∑

j=0

∆m−k
[(

∆kψj(u+ 1)
)

Lj(u)e
πiu2/τ

]

= 0. (3.40)
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To expand (3.40), note the easily verified relations

∆m(f(u)g(u)) =

m
∑

j=0

(

m

j

)

∆m−j(f(u+ j)) ·∆jg(u),

∆mf(u) =

m
∑

j=0

(−1)m−j

(

m

j

)

f(u+ j).

Define the polynomialhk,j(u) :=
(

∆kψj(u+ 1)
)

Lj(u), and the left side of (3.40) equals

m
∑

k=0

m−k
∑

j=0

∆m−k
[

hk,j(u)e
πiu2/τ

]

=

m
∑

k=0

m−k
∑

j=0

m−k
∑

r=0

(

m− k

r

)

∆m−k−rhk,j(u+ r) ·∆reπiu
2/τ

= eπiu
2/τ

m
∑

k=0

m−k
∑

j=0

m−k
∑

r=0

(

m− k

r

)

∆m−k−rhk,j(u+ r) ·
r
∑

ℓ=0

eπiℓ
2/τ (−1)r−ℓ

(

r

ℓ

)

e2πiℓu/τ . (3.41)

Dividing both sides of (3.40) byeπiu
2/τ implies with (3.41) that

m
∑

ℓ=0

φℓ(u)e
2πiℓu/τ = 0 (3.42)

for polynomialsφℓ(u). Clearlye2πimu/τ only appears in (3.41) whenk = 0, and so forℓ = r = m in (3.41)
we find

φm(u) = eπim
2/τ

m
∑

j=0

ψj(u+m+ 1)Lj(u+m).

The degree ofφm(u) ism sinceψj(u) has degreem− j andLj(u) has degreej. The coefficient ofum in
φm(u) is therefore, using (3.38),

eπim
2/τ

m
∑

j=0

[

cm

(

m

j

)(−πi
τ

)m−j
]

·
[

τ−1/2e3πi/4
(

2πi

τ

)j
]

= cm · τ−1/2eπi(m
2/τ+3/4)

m
∑

j=0

(

m

j

)(−πi
τ

)m−j(2πi

τ

)j

= cm · τ−1/2eπi(m
2/τ+3/4)

(

πi

τ

)m

. (3.43)

However, it follows from (3.42) that all the polynomialsφk(u) are identically0. A simple way to see this is
to putu = −iτy and examine the size of each term asy → ∞. Hence (3.43) is0 and socm = 0. Repeating
this argument shows that all of the coefficientsc0, c1, . . . , cm in (3.36) are0, as we wanted to prove.

4 Some series expansions

4.1 The Riemann-Siegel functionϑ(s)

We begin with

Lemma 4.1. Supposes ∈ C satisfiesσ ∈ I andt 6= 0. Then for allk,R ∈ Z>0 we have

1

(σ + it)k
=

1

(it)k

R−1
∑

r=0

(

k + r − 1

r

)(−σ
it

)r

+O

(

1

|t|k+R

)

(4.1)

for an implied constant depending only onI, k andR.
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Proof. By Taylor’s Theorem and bounding the integral form of the remainder in the usual way, as in (2.18),
we have

(1 + z)−k =
R−1
∑

r=0

(−k
r

)

zr +O(|z|R) (4.2)

for all z ∈ C when |z| 6 1/2, say. The coefficients ofzr in the sum (4.2) are given by the Generalized
Binomial Theorem. Withz = σ/(it), this proves (4.1) when|t| > 2|σ|. If 0 < |t| 6 2|σ| then

|t|k+R

∣

∣

∣

∣

∣

1

(σ + it)k
− 1

(it)k

R−1
∑

r=0

(

k + r − 1

r

)(−σ
it

)r
∣

∣

∣

∣

∣

6 |t|R +
R−1
∑

r=0

(

k + r − 1

r

)

|σ|r|t|R−r
6 |2σ|R +

R−1
∑

r=0

(

k + r − 1

r

)

|σ|r|2σ|R−r = O(1).

Hence the error in (4.1) isO(|t|−k−R) for 0 < |t| 6 2|σ| as well, completing the proof.

Hermite and Barnes gave the asymptotics oflog Γ(z + a) as|z| → ∞ when0 6 a 6 1. These shifted
argument results and further improvements are described in[Nem13]. See also [Olv74, Ex. 4.4, p. 295], for
example. Our next proposition shows the asymptotics oflog Γ(s), for s in any vertical strip, in terms ofσ
andt. It agrees with the previously mentioned work when0 6 σ 6 1.

Proposition 4.2. Supposes ∈ C satisfiesσ ∈ I andt 6= 0. Then

log Γ(s) =

(

s− 1

2

)

log it− it+
1

2
log 2π −

N−1
∑

k=1

(

i

t

)kBk+1(σ)

k(k + 1)
+O

(

1

|t|N
)

for an implied constant depending only onI andN ∈ Z>1.

Proof. Stirling’s series as in [Olv74, p. 294] states that for alls ∈ C with s /∈ (−∞, 0] we have

log Γ(s)−
(

s− 1

2

)

log s+ s− log 2π

2
=

M−1
∑

n=1

B2n

2n(2n− 1)

1

s2n−1
− 1

2M

∫ ∞

0

B2M (v − ⌊v⌋)
(v + s)2M

dv (4.3)

whereM ∈ Z>1. We may replace the last term in (4.3) withO(1/|t|2M−1) since

∫ ∞

0

|B2M (v − ⌊v⌋)|
|v + s|2M dv ≪

∫ ∞

−∞

1

((v + σ)2 + t2)M
dv =

√
π
Γ(M − 1/2)

Γ(M)

1

|t|2M−1

where the last equality is [GR07, 3.241.4]. With Lemma 4.1 wemay write each1/s2n−1 term in (4.3) as

1

s2n−1
=

Rn−1
∑

r=0

(

2n+ r − 2

r

)

(−i)2n−1(iσ)r

t2n+r−1
+O

(

1

|t|2n+Rn−1

)

.

ChoosingRn so that2n+Rn − 1 = 2M − 1 we find that the left side of (4.3) equals

M−1
∑

n=1

B2n

2n(2n− 1)

2M−2n−1
∑

r=0

(

2n+ r − 2

r

)

(−i)2n−1(iσ)r

t2n+r−1
+O

(

1

|t|2M−1

)

= −
2M−2
∑

k=1

ik

tk

⌊(k+1)/2⌋
∑

n=1

(

k − 1

2n− 2

)

B2n

2n(2n − 1)
σk+1−2n +O

(

1

|t|2M−1

)

= −
2M−2
∑

k=1

ik

k(k + 1)

[

Bk+1(σ) +
k + 1

2
σk − σk+1

]

1

tk
+O

(

1

|t|2M−1

)

.
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Therefore

log Γ(s) =

(

s− 1

2

)

log s− s+
1

2
log 2π

−
N−1
∑

k=1

ik

k(k + 1)

[

Bk+1(σ) +
k + 1

2
σk − σk+1

]

1

tk
+O

(

1

|t|N
)

. (4.4)

A similar proof to Lemma 4.1 shows that, forσ ∈ I andt 6= 0,

log s = log(it) + log
(

1 +
σ

it

)

= log(it)−
N−1
∑

k=1

(iσ)k

k · tk +O

(

1

|t|N
)

where the implied constant depends only onN ∈ Z>1 andI. Hence

(

s− 1

2

)

log s = (s− 1/2) log(it) + σ +
N−1
∑

k=1

(

i

t

)k[σk

2k
− σk+1

k(k + 1)

]

+O

(

1

|t|N
)

. (4.5)

Inserting (4.5) into (4.4) completes the proof.

Since−2iϑ(s) = (s− 1/2) log π + log Γ((1 − s)/2)− log Γ(s/2) we easily now obtain

Corollary 4.3. Supposes ∈ C satisfiesσ ∈ I andt 6= 0. Then

iϑ(s) =

(

s

2
− 1

4

)

log
|t|
2π

− it

2
− sgn(t)

iπ

8

−
N−1
∑

n=1

(

2i

t

)n[Bn+1(σ/2) + (−1)n+1Bn+1((1− σ)/2)

2n(n+ 1)

]

+O

(

1

|t|N
)

for an implied constant depending only onI andN ∈ Z>1.

Corollary 4.4. Supposet 6= 0. Then

ϑ(1/2 + it) =
t

2
log

|t|
2π

− t

2
− sgn(t)

π

8
−

N−1
∑

n=1

(−4)n−1B2n(1/4)

(2n− 1)n · t2n−1
+O

(

1

|t|2N−1

)

for an implied constant depending only onN ∈ Z>1.

Corollary 4.4 agrees with [Gab79, Satz 4.2.3(b)] asB2n(1/4) = 2−2n(21−2n − 1)(−1)n+1|B2n|.

4.2 De Moivre polynomial expansions

The De Moivre polynomialsAi,j give a convenient and explicit way to express the series coefficients we
need. They complement the methods of Riemann and Siegel based on generating functions and recursions.

Let p1, p2, p3, . . . be any sequence of complex numbers and consider the formal series p1x + p2x
2 +

p3x
3 + · · · . For integersi andj with j > 0, the generating function definition ofAi,j(p1, p2, p3, . . . ) is

given by
(

p1x+ p2x
2 + p3x

3 + · · ·
)j

=
∑

i∈Z
Ai,j(p1, p2, p3, . . . )x

i. (4.6)

For i > j we note that

Ai,j(p1, p2, p3, . . . ) =
∑

1ℓ1+2ℓ2+···+mℓm=i
ℓ1+ℓ2+···+ℓm=j

(

j

ℓ1, ℓ2, · · · , ℓm

)

pℓ11 p
ℓ2
2 · · · pℓmm , (4.7)
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for m = i− j + 1 where the sum is over all possibleℓ1, ℓ2, . . . , ℓm ∈ Z>0. HenceAi,j(p1, p2, p3, . . . ) is a
polynomial inp1, p2, . . . , pi−j+1 of homogeneous degreej with positive integer coefficients. For instance,

A8,4(p1, p2, p3, . . . ) = p42 + 12p1p
2
2p3 + 6p21p

2
3 + 12p21p2p4 + 4p31p5.

The paper [O’S] gives a detailed account of these polynomials and their history. They may be expressed in
terms of the closely related ‘partial Bell polynomials’ which are included in the Mathematica system, for
example.

Based on the terms in Corollary 4.3 we make the definitions

fn(σ) :=
Bn+1(σ/2) + (−1)n+1Bn+1((1− σ)/2)

2n(n+ 1)
, (4.8)

um(σ) := (−2)m
m
∑

k=0

1

k!
Am,k(f1(σ), f2(σ), . . . ). (4.9)

Thenfn(σ) is a polynomial of degreen + 1 with rational coefficients. Hence,Am,k(f1(σ), f2(σ), . . . ) has
degree at mostm+ k. It follows thatum(σ) is a polynomial with rational coefficients. Its degree is exactly
2m since it may be checked that the coefficient ofσ2m in um(σ) is (−1)m/(4mm!). We have for example
u0(σ) = 1 and

u1(σ) = (−1 + 6σ − 6σ2)/24, u2(σ) = (1 + 36σ − 96σ2 + 24σ3 + 36σ4)/1152.

The next result requires the finite version of (4.6):

(

p1x+ p2x
2 + · · ·+ prx

r
)j

=

rj
∑

i=j

Ai,j(p1, p2, . . . , pr, 0, 0, . . . )x
i. (4.10)

Theorem 4.5. Supposes ∈ C satisfiesσ ∈ I andt > ǫ > 0. Then

exp

((

s

2
− 1

4

)

log
t

2π
− it

2
− iπ

8
− iϑ(s)

)

=
L−1
∑

m=0

um(σ)

(it)m
+O

(

1

tL

)

(4.11)

for an implied constant depending only onI, ǫ andL ∈ Z>0.

Proof. We first note that for allz ∈ C with |z| 6 T , and with an implied constant depending only on
K ∈ Z>0 andT , we have

ez =
K−1
∑

k=0

zk

k!
+O

(

|z|K
)

(4.12)

by Taylor’s Theorem with the usual remainder estimates. Choose anyN > 1 and set

zt :=

(

s

2
− 1

4

)

log
t

2π
− it

2
− iπ

8
− iϑ(s)−

N−1
∑

n=1

(

2i

t

)n

fn(σ)

for anys satisfying the conditions of the theorem. Then by Corollary4.3 there is a constantCI,N so that

|zt| 6 CI,N/t
N

6 CI,N/ǫ
N .

Using (4.12) withT = CI,N/ǫ
N andK = 1 we obtainezt = 1 +O(1/tN ), so that

exp

((

s

2
− 1

4

)

log
t

2π
− it

2
− iπ

8
− iϑ(s)

)

= exp

(

N−1
∑

n=1

(

2i

t

)n

fn(σ)

)

(

1 +O

(

1

tN

))

(4.13)

= exp

(

N−1
∑

n=1

(

2i

t

)n

fn(σ)

)

+O

(

1

tN

)

. (4.14)
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WhenN = 1 we mean1 +O(1/t) on the right of (4.13) and (4.14). ForN > 2, (4.14) follows from (4.13)
by using that

N−1
∑

n=1

(

2i

t

)n

fn(σ) = O

(

1

t

)

=⇒ exp

(

N−1
∑

n=1

(

2i

t

)n

fn(σ)

)

= O(1). (4.15)

It is also true by (4.12) and the left bound in (4.15) that

exp

(

N−1
∑

n=1

(

2i

t

)n

fn(σ)

)

=

K−1
∑

k=0

1

k!

(

N−1
∑

n=1

(

2i

t

)n

fn(σ)

)k

+O

(

1

tK

)

. (4.16)

By (4.10), the sum on the right is

K−1
∑

k=0

1

k!

(

N−1
∑

n=1

(

2i

t

)n

fn(σ)

)k

=

K−1
∑

k=0

1

k!

(N−1)k
∑

m=k

Am,k(f1(σ), . . . , fN−1(σ), 0, 0, . . . )

(

2i

t

)m

=

(N−1)(K−1)
∑

m=0

(−2

it

)m

×
min(m,K−1)
∑

k=0

1

k!
Am,k(f1(σ), . . . , fN−1(σ), 0, 0, . . . ). (4.17)

Recall thatAm,k(f1(σ), . . . , fN−1(σ), 0, 0, . . . ) just requires the firstm − k + 1 terms of the sequence
f1(σ), . . . , fN−1(σ), 0, 0, . . . and so will not use the0 terms ifm−k+1 6 N −1. Therefore we may write
(4.17) as

N−2
∑

m=0

(−2

it

)m

×
m
∑

k=0

1

k!
Am,k(f1(σ), f2(σ), . . . ) +O

(

1

tN−1

)

(4.18)

if N − 2 6 K − 1. Assembling (4.14), (4.16) and (4.18) yields

exp

((

s

2
− 1

4

)

log
t

2π
− it

2
− iπ

8
− iϑ(s)

)

=

N−2
∑

m=0

(−2

it

)m

×
m
∑

k=0

1

k!
Am,k(f1(σ), f2(σ), . . . ) +O

(

1

tN−1

)

+O

(

1

tN

)

+O

(

1

tK

)

for K = N − 1. LettingL = N − 1 in (4.11) completes the proof.

Corollary 4.6. Supposes ∈ C satisfiesσ ∈ I andt > ǫ > 0. Then

exp(iϑ(s)) = O
(

tσ/2−1/4
)

, exp(−iϑ(s)) = O
(

t−σ/2+1/4
)

(4.19)

for implied constants depending only onI andǫ.

Proof. By Theorem 4.5 withL = 1,

exp

((

s

2
− 1

4

)

log
t

2π
− it

2
− iπ

8
− iϑ(s)

)

= 1 +O

(

1

t

)

. (4.20)

It follows simply that the reciprocal of the left side has thesame bound:

exp

(

−
(

s

2
− 1

4

)

log
t

2π
+
it

2
+
iπ

8
+ iϑ(s)

)

= 1 +O

(

1

t

)

. (4.21)

Multiplying both sides of (4.21) byexp
((

s
2 − 1

4

)

log t
2π − it

2 − iπ
8

)

and bounding gives the left estimate in
(4.19). The right estimate is similar, manipulating (4.20).
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It should be possible to replace the restrictiont > ǫ > 0 in Theorem 4.5 and Corollary 4.6 with just
t > 0. This would require a more careful treatment in Proposition4.2 when|t| < 1. Our applications will
only requiret > 2π in any case.

Set

gn(σ) := −Bn+1(σ)

n(n+ 1)
and γm(σ) := im

m
∑

k=0

1

k!
Am,k(g1(σ), g2(σ), . . . )

so that, for instance,γ0(σ) = 1 and

γ1(σ) = (−1 + 6σ − 6σ2)i/12, γ2(σ) = (−1 + 36σ − 120σ2 + 120σ3 − 36σ4)/288.

Then a similar proof to that of Theorem 4.5, using Proposition 4.2, gives the asymptotics of theΓ function
in vertical strips:

Proposition 4.7. Supposes ∈ C satisfiesσ ∈ I andt > ǫ > 0. Then

Γ(s) =
√
2π exp

(

πis

2
− it− πi

4

)

ts−1/2

(

L−1
∑

m=0

γm(σ)

tm
+O

(

1

tL

)

)

for an implied constant depending only onI, ǫ andL ∈ Z>0.

The power series coefficientsak(s) of w(z, s) in (2.2) and (2.3) may also be expressed in terms of De
Moivre polynomials. For this we will need the identity

exp
(

u(p1x+ p2x
2 + . . . )

)

=

∞
∑

n=0

xn
n
∑

k=0

An,k(p1, p2, . . . )
uk

k!
. (4.22)

Define

dm,r(σ) :=

m
∑

n=r

An,r(
1
3 ,−1

4 ,
1
5 , . . . )

r!

m−n
∑

k=0

Am−n,k(1,−1
2 ,

1
3 , . . . )

k!
(σ − 1)k. (4.23)

Proposition 4.8. For all k ∈ Z>0 we have

ak(s) =

⌊k/3⌋
∑

r=0

ir · dk−2r,r(σ) · tr−k/2. (4.24)

Proof. Expanding the logarithm in (2.2) into its power series and then employing (4.22) produces

w(z, s) = exp



(σ − 1)

∞
∑

j=1

(−1)j+1

j

(

z√
t

)j


 exp



iz2
∞
∑

j=1

(−1)j+1

j + 2

(

z√
t

)j




=

( ∞
∑

n=0

(

z√
t

)n n
∑

k=0

An,k(1,−1
2 ,

1
3 , . . . )

(σ − 1)k

k!

)( ∞
∑

m=0

(

z√
t

)m m
∑

r=0

Am,r(
1
3 ,−1

4 ,
1
5 , . . . )

(iz2)r

r!

)

=
∞
∑

h=0

(

z√
t

)h h
∑

r=0

(iz2)r
h
∑

m=r

Am,r(
1
3 ,−1

4 ,
1
5 , . . . )

r!

h−m
∑

k=0

Ah−m,k(1,−1
2 ,

1
3 , . . . )

k!
(σ − 1)k.

Therefore

w(z, s) =
∞
∑

h=0

t−h/2
h
∑

r=0

ir · dh,r(σ) · zh+2r

=

∞
∑

k=0

zk
⌊k/3⌋
∑

r=0

ir · dk−2r,r(σ) · tr−k/2.

For examplea0(s) = 1, a1(s) = (σ − 1)/t1/2 and

a2(s) = (σ2 − 3σ + 2)/(2t), a3(s) = (σ3 − 6σ2 + 11σ + 2it− 6)/(6t3/2).

Siegel gaveak(s) in terms of the recursion (1.9). The advantage of Proposition 4.8 is that it gives explicit
formulas for the coefficients of the powers oft in ak(s). These formulas will be needed in the next section.
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5 Proof of most parts of the main theorem

Our goal in this section is the next result.

Theorem 5.1.Recall the statement of Theorem 1.5. This statement, with the change that the implied constant
in (1.21)may also depend onλ whenλ < 1, is true.

Proof. We begin with Theorem 2.1 and multiply both sides of (2.4) byeiϑ(s). Corollary 4.6 gives the estimate
eiϑ(s) = O(tσ/2−1/4). It is convenient to abbreviate the inner sum in (2.4) as

ck(λ) :=

k
∑

r=0

(

k

r

)

G(r)(aλ−1 + bλ;λ2)
eπi(k−3r)/4

2k−r(2π)r/2
Hk−r(ωλ). (5.1)

Thus we have shown the following. Letσ ∈ I and t = 2παβ for real numbersα, β > 1. Then for all
N ∈ Z>0 we have

R(s;α, β) = eiϑ(s)(−1)⌊α⌋⌊β⌋
(2π)seπis/2

Γ(s)(e2πis − 1)

× exp

(

πi

2

[

2aβ − 2bα+ a2λ−2 − b2λ2
]

)

exp

((

s

2
− 1

4

)

log
t

2π
− it

2
− iπ

8

)

×
(

2π

t

)1/4

λ1/2−s
N−1
∑

k=0

ak(s) · ck(λ) +O

(

λ1−σt−1/4

tN/6

)

. (5.2)

The implied constant in (5.2) depends only onI,N andλ. If λ > 1 then the implied constant is independent
of λ. We may simplify the initial terms on the right of (5.2) by noting that

e−2iϑ(s) = χ(s) =
(2π)s

2 cos(πs/2)Γ(s)
.

Then

eiϑ(s)
(2π)seπis/2

Γ(s)(e2πis − 1)
= eiϑ(s)

eπis/2

(e2πis − 1)
2 cos(πs/2)e−2iϑ(s) (5.3)

= e−iϑ(s) e
πis + 1

e2πis − 1
=

e−iϑ(s)

eπis − 1
= −e−iϑ(s)

(

1 +O(e−πt)
)

.

So replacing the left side of (5.3) with−e−iϑ(s) in (5.2) introduces an error of size

∣

∣

∣

∣

∣

e−iϑ(s)

(

t

2π

)(s−1)/2

λ1/2−s
N−1
∑

k=0

ak(s) · ck(λ)
∣

∣

∣

∣

∣

e−πt. (5.4)

By Corollary 4.6,e−iϑ(s) = O(t−σ/2+1/4). We haveak(s) = O(1) by (2.40). With Corollary 3.7 and the
fact thatHn(x) has degreen, it follows from (5.1) that

ck(λ) ≪ λk+1/2 + λ−k−1/2. (5.5)

Putting these estimates together shows that (5.4) is

O
(

λ1/2−σ(λN−1/2 + λ−N+1/2)t−1/4e−πt
)

.

Our results so far have established the next estimate (replacingN with M ).
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Proposition 5.2. Letσ ∈ I andt = 2παβ for real numbersα, β > 1. Then for allM ∈ Z>0 we have

R(s;α, β) = (−1)⌊α⌋⌊β⌋+1 exp

(

πi

2

[

2aβ − 2bα + a2λ−2 − b2λ2
]

)

× exp

((

s

2
− 1

4

)

log
t

2π
− it

2
− iπ

8
− iϑ(s)

)(

2π

t

)1/4

λ1/2−s
M−1
∑

k=0

ak(s) · ck(λ)

+O

(

λ1/2−σ

t1/4

(

λM−1/2 + λ−M+1/2
)

e−πt +
λ1−σ

tM/6+1/4

)

. (5.6)

The implied constant in(5.6)depends only onI,M andλ. If λ > 1 then the implied constant is independent
of λ.

The proof of Theorem 5.1 continues by inserting (4.11) and (4.24) into (5.6) to obtain the desired asymp-
totic expansion in decreasing powers oft. An argument similar to the one bounding (5.4) shows that thetotal
error introduced from the error term in (4.11) is

O
(

λ1/2−σ
(

λM−1/2 + λ−M+1/2
)

t−1/4−L
)

. (5.7)

Ignoring the constant and modulus1 pieces of (5.6) for the moment, we have

λ1/2−s

t1/4

(

L−1
∑

m=0

um(σ)

(it)m

)

M−1
∑

k=0

ck(λ)





⌊k/3⌋
∑

j=0

ij · dk−2j,j(σ) ·
1

tk/2−j





=
λ1/2−s

t1/4

M+2L−3
∑

n=0

1

tn/2

∑

m,k,j,
2m+k−2j=n

ck(λ) · ij−m · dk−2j,j(σ) · um(σ)

=
λ1/2−s

t1/4

M+2L−3
∑

n=0

1

tn/2

∑

k

ck(λ) · i(k−n)/2
∑

j

dk−2j,j(σ) · uj+(n−k)/2(σ) (5.8)

where in the last line we are summing over allk andj such that

k ≡ n mod 2, 0 6 k 6M − 1, 2− 2L+ n 6 k 6 3n, (5.9)

0 6 j 6 k/3, (k − n)/2 6 j 6 (k − n)/2 + L− 1. (5.10)

The natural ranges ofk andj are0 6 k 6 3n andmax(0, (k−n)/2) 6 j 6 k/3, but for largen these ranges
become truncated. We may chooseN small enough in relation toM andL so that, for0 6 n 6 N − 1, the
ranges ofk andj are not truncated. This requires

M > 3N + 1, L > N/2 + 1. (5.11)

The size of the remaining part of the sum (5.8) withN 6 n 6 M + 2L − 3 is O(t−N/2−1/4) in t (see the
next lemma) and we also require that the errorO(t−M/6−1/4) in (5.6) and the errorO(t−L−1/4) in (5.7) are
both less than this. This requiresM > 3N andL > N/2 and so is already ensured by (5.11). GivenN , we
therefore chooseM = 3N + 1 andL = ⌈N/2⌉ + 1.

Lemma 5.3. We have

λ1/2−s

t1/4

3N+2⌈N/2⌉
∑

n=N

1

tn/2

∑

k

ck(λ) · i(k−n)/2
∑

j

dk−2j,j(σ) · uj+(n−k)/2(σ)

= O

(

λ1/2−σ

tN/2+1/4

(

λ3N+1/2 + λ−3N−1/2
)

)

(5.12)

where the indicesk andj sum over the ranges(5.9)and (5.10)for M = 3N + 1 andL = ⌈N/2⌉ + 1. The
implied constant depends only onN andI.
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Proof. By (5.9), the largestk appearing in the sum is3N . Thereforeck(λ) is always≪ λ3N+1/2+λ−3N−1/2

with (5.5). The other bounds are clear.

Forn ≡ k mod 2 let

qn,k(σ) :=

⌊k/3⌋
∑

j=max(0,(k−n)/2)

dk−2j,j(σ) · uj+(n−k)/2(σ). (5.13)

With the definitions (4.23) and (4.9) it is clear thatqn,k(σ) is a polynomial inσ with rational coefficients.
Sincedm,r(σ) has degreem− r andum(σ) has degree2m it follows thatqn,k(σ) has degree at mostn.

For our choice ofM andL, the error in (5.12) is larger then the error terms in (5.6) and (5.7). Therefore
we have shown that

R(s;α, β) = (−1)⌊α⌋⌊β⌋+1 exp

(

πi

2

[

2aβ − 2bα + a2λ−2 − b2λ2
]

)

(2π)1/4

× λ1/2−s

t1/4

N−1
∑

n=0

1

tn/2

∑

06k63n
k≡n mod 2

i(k−n)/2qn,k(σ)
k
∑

r=0

(

k

r

)

G(r)(aλ−1 + bλ;λ2)
eπi(k−3r)/4

2k−r(2π)r/2
Hk−r(ωλ)

+O

(

λ1/2−σ

tN/2+1/4

(

λ3N+1/2 + λ−3N−1/2
)

)

. (5.14)

The sums overk andr in (5.14), after interchanging, are

3n
∑

r=0

G(r)(aλ−1 + bλ;λ2)

(2π)r/2
eπi(n−3r)/4

∑

r6k63n
k≡n mod 2

(

k

r

)

(−1)(n−k)/2

2k−r
· qn,k(σ) ·Hk−r(ωλ).

Recall thatωλ = e−πi/4
√

π
2 (aλ

−1 − bλ). Write the inner piece as

Pn,3n−r(x, σ) := eπi(n−3r)/4
∑

r6k63n
k≡n mod 2

(

k

r

)

(−1)(n−k)/2

2k−r
· qn,k(σ) ·Hk−r

(

e−πi/4x
)

.

Then

Pn,k(x, σ) = e3πik/4
⌊k/2⌋
∑

ℓ=0

(

3n− 2ℓ

3n − k

)

(−1)n+ℓ

2k−2ℓ
· qn,3n−2ℓ(σ) ·Hk−2ℓ

(

e−πi/4x
)

. (5.15)

ClearlyPn,k(x, σ) is a polynomial inx andσ with degree at mostk in x. A short calculation finds that the
coefficient ofxk is ik

(3n
k

)

/((−3)nn!) and so the degree is exactlyk. The complete construction ofPn,k(x, σ)
is repeated for convenience in (6.1). This finishes the proofof Theorem 5.1.

If λ < 1 then the implied constant in Theorem 5.1 may have extraλ dependence; this can be traced back
to Proposition 2.4. We will use the symmetry (1.19) to fix thisissue in the next section and complete the
proof of Theorem 1.5.

6 The polynomialsPn,k(x, σ)

6.1 A functional equation

Recall the Bernoulli, Hermite and De Moivre polynomials from (2.1) and (4.6). Assembling our results, we
may give a complete description ofPn,k(x, σ) in terms of these polynomials as follows. In (4.8), (4.9) and
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(4.23) we defined

fn(σ) :=
Bn+1(σ/2) + (−1)n+1Bn+1((1− σ)/2)

2n(n+ 1)
, (6.1a)

um(σ) := (−2)m
m
∑

k=0

1

k!
Am,k(f1(σ), f2(σ), . . . ), (6.1b)

dm,r(σ) :=

m
∑

n=r

An,r(
1
3 ,−1

4 ,
1
5 , . . . )

r!

m−n
∑

k=0

Am−n,k(1,−1
2 ,

1
3 , . . . )

k!
(σ − 1)k. (6.1c)

Rearranging (5.13) we may set

qn,3n−2ℓ(σ) :=

⌊ℓ/3⌋
∑

m=max(0,ℓ−n)

um(σ) · dn−2m,n−ℓ+m(σ) (6.1d)

for 0 6 ℓ 6 ⌊3n/2⌋. Then as we saw with (5.15),

Pn,k(x, σ) = e3πik/4
⌊k/2⌋
∑

ℓ=0

(

3n− 2ℓ

3n − k

)

(−1)n+ℓ

2k−2ℓ
· qn,3n−2ℓ(σ) ·Hk−2ℓ

(

e−πi/4x
)

. (6.1e)

We next show that the polynomialsPn,k(x, σ) obey a functional equation asσ → 1−σ. It seems difficult
to prove this directly with (6.1); our proof is based on Theorem 5.1.

Theorem 6.1. For all x, σ ∈ R and alln, k ∈ Z with 0 6 k 6 3n we have

Pn,k(x, σ) = Pn,k(−x, 1− σ).

Proof. Recall thatR(s;α, β) is unchanged under the transformationT given in (1.25). All the components
of the right side of (1.21), except for possiblyPn,k, are also unchanged underT . For example

T (λ1/2−s) = (1/λ)1/2−(1−s) = λ1/2−s,

T G(r)(aλ−1 + bλ;λ2) = G(r)(bλ+ aλ−1;λ−2) = G(r)(aλ−1 + bλ;λ2)

using (3.11). Hence, by Theorem 5.1 we obtain

N−1
∑

n=0

1

tn/2

3n
∑

r=0

G(r)(aλ−1 + bλ;λ2)

(2π)r/2

×
[

Pn,3n−r

(√
π√
2
(aλ−1 − bλ), σ

)

− Pn,3n−r

(√
π√
2
(bλ− aλ−1), 1 − σ

)

]

= O

(

1

tN/2

)

(6.2)

where the implied constant depends onN ∈ Z>0 and also onλ andσ which we assume are fixed. We
chooseλ such thatλ2 is a rationalu/v with (u, v) = 1. If we think ofα varying then we have the dependent
relations

β =
v

u
α, t = 2π

v

u
α2, a = α− ⌊α⌋, b =

v

u
α−

⌊v

u
α
⌋

. (6.3)

Supposeα = α0 has the correspondinga andb valuesa0 andb0, respectively. Then clearlyα = α0 + u will
have the samea andb values. Hence, fort taking values in the sequence2π v

u(α0 + ku)2 for integersk, the
inner sum in (6.2) is unchanged witha = a0 andb = b0. By lettingk, and hencet, become arbitrarily large
we obtain

3n
∑

r=0

G(r)(aλ−1 + bλ;λ2)

(2π)r/2

[

Pn,3n−r

(√
π√
2
(aλ−1 − bλ), σ

)

− Pn,3n−r

(√
π√
2
(bλ− aλ−1), 1− σ

)

]

= 0
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for a = a0 andb = b0 andn 6 N −1. This follows since we may first show that the coefficient of1/t0 must
be0. Then the coefficient of1/t1/2 must be0, etc. (If asymptotic expansions exist then they are unique.)

Let
f(α) := aλ−1 + bλ, g(α) := aλ−1 − bλ,

wherea andb depend onα as in (6.3). As we already saw,f(α) andg(α) both have periodu. The next
result shows which values they can take and we omit its elementary proof.

Lemma 6.2. For f(α) andg(α) as defined above:

(i) The functiong(α) is constant onu+ v − 1 non-empty intervals[xj , xj+1) which partition[0, u).

(ii) The valuesg(α) takes are

ℓ√
uv

for integersℓ with 1− u 6 ℓ 6 v − 1. (6.4)

(iii) On each interval[xj , xj+1) whereg(α) is constant, the graph off(α) is a line of slope2/λ.

Fix x as one of theg(α) values in (6.4). By part (iii) of the lemma we have

3n
∑

r=0

G(r)(w;λ2)

(2π)r/2

[

Pn,3n−r

(√
π√
2
x, σ

)

− Pn,3n−r

(

−
√
π√
2
x, 1− σ

)

]

= 0 (6.5)

for w in some non-empty interval. Since eachG(r)(w;λ2) is a holomorphic function ofw, it follows that
(6.5) is true for allw ∈ C.

The linear independence of the derivatives ofG shown in Proposition 3.8 implies that

Pn,k

(√
π√
2
x, σ

)

− Pn,k

(

−
√
π√
2
x, 1− σ

)

(6.6)

is 0 for everyk with 0 6 k 6 3n. Hence the numbers (6.4) giveu+ v − 1 distinct zeros of the polynomial
(6.6) inx. It has degree at most3n in x. Returning to our choice ofλ2 = u/v, we may choose a reduced
fraction so thatu+ v − 1 > 3n. This gives too many zeros and so (6.6) is identically zero asrequired.

Proof of Theorem 1.5.By Theorem 5.1, we know that Theorem 1.5 is true forλ > 1, so assume thatλ < 1.
Then by (1.19) we haveR(s;α, β) = R(1− s;β, α). We may apply Theorem 5.1 toR(1 − s;β, α) and
obtain an error that is independent ofλ. All the components of the right side of (1.21) are invariantunder
the transformationT in (1.25), including thePn,k term by Theorem 6.1. In this way we obtain Theorem 1.5
whenλ < 1. This completes our proof of the main theorem.

6.2 Formulas for the coefficients

With the well-known formula for Hermite polynomials

Hn(x) = n!

⌊n/2⌋
∑

j=0

(−1)j

j!(n − 2j)!
(2x)n−2j (6.7)

we obtain from (5.15)

Pn,k(x, σ) =

⌊k/2⌋
∑

ℓ=0

(3n − 2ℓ)!

(3n− k)!

(−1)n+ℓ

2k−2ℓ
· qn,3n−2ℓ(σ)

⌊k/2⌋
∑

m=ℓ

(−1)m−ℓik+m(2x)k−2m

(m− ℓ)!(k − 2m)!

=
(−1)n

(3n − k)!

⌊k/2⌋
∑

m=0

ik+mxk−2m

(−4)m(k − 2m)!

m
∑

ℓ=0

4ℓ
(3n − 2ℓ)!

(m− ℓ)!
· qn,3n−2ℓ(σ).
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For0 6 m 6 ⌊3n/2⌋ put

sn,m(σ) :=

m
∑

ℓ=0

4ℓ
(3n − 2ℓ)!

(m− ℓ)!
· qn,3n−2ℓ(σ) (6.8)

so that

Pn,k(x, σ) =
(−1)nik

(3n − k)!

⌊k/2⌋
∑

m=0

sn,m(σ)

(4i)m
xk−2m

(k − 2m)!
. (6.9)

An easy calculation with (6.9) gives the next result, showing how Theorem 6.1 may be interpreted at the
level of the coefficients ofPn,k(x, σ).

Lemma 6.3. Letn be inZ>0. For all integersk with 0 6 k 6 3n, we havePn,k(x, σ) = Pn,k(−x, 1− σ)
if and only if

sn,m(σ) = (−1)msn,m(1− σ)

for all integersm satisfying0 6 m 6 ⌊3n/2⌋.
Theorem 6.1 and Lemma 6.3 show in particular thatsn,m(1/2) = 0 for m odd. Hencem may be

assumed to be even in (6.9) whenσ = 1/2. We obtain

Pn,k(x, 1/2) =
(−1)nik

(3n − k)!

⌊k/4⌋
∑

m=0

(−1)m
sn,2m(1/2)

16m
xk−4m

(k − 4m)!
. (6.10)

In the casex = 0 we see thatPn,k(0, 1/2) is zero if k 6≡ 0 mod 4. This explains why only every fourth
derivative appears in the classical Riemann-Siegel formulas (1.11), (1.24).

The coefficients of the highest powers ofx in Pn,k(x, σ) may be computed explicitly:

xk :
(−1)nik

3nn!

(

3n

k

)

, (6.11a)

xk−2 :
(−1)nik−1

3n−1(n − 1)!

(

3n − 2

k − 2

)

(σ − 1/2), (6.11b)

xk−4 :
(−1)nik

3n−2(n − 2)!

(

3n − 4

k − 4

)[

3n− 1

20
− 1

2
(σ − 1/2)2

]

, (6.11c)

xk−6 :
(−1)nik−1

3n−2(n − 2)!

(

3n − 6

k − 6

)

(σ − 1/2)

[

9n2 − 20n + 9

20
− n− 2

2
(σ − 1/2)2

]

. (6.11d)

The general pattern continues with the next coefficient

xk−8 :
(−1)nik

3n−3(n− 3)!

(

3n − 8

k − 8

)

×
[

63n2 − 141n + 31

5600
(3n − 5)− 9n2 − 28n + 23

40
(σ − 1/2)2 +

n− 3

8
(σ − 1/2)4

]

. (6.11e)

These calculations use (6.9), (6.8) and (6.1). Findingdm,r(σ) involves the De Moivre polynomials and we
used the explicit expressions forAr,r, Ar+1,r, Ar+2,r and so on, given in [O’S, Sect. 2]. The algebra to
obtain the coefficients in (6.11) was carried out with Mathematica.

7 Examples and numerical work

7.1 The caseα = 2β

The classical case of the Riemann-Siegel formula has the lengths of the partial sums equal, so thatα = β
andλ = 1. In Theorem 1.5, the next simplest case has the length of one partial sum twice the other:

α = 2β =⇒ λ =
√
2, α =

√

t

π
, β =

1

2

√

t

π
.

33



With a andb the fractional parts of2β andβ we obtain

R(s; 2β, β) = (−1)⌊2β⌋⌊β⌋+1 exp
(

πi(aβ − 2bβ + a2/4− b2)
)

×
(

2π

t

)1/4 N−1
∑

n=0

21/4−s/2

tn/2

[

3n
∑

r=0

G(r)(a/
√
2 +

√
2b; 2)

(2π)r/2
· Pn,3n−r

(√
π(a/2 − b), σ

)

]

+O

(

2(1−σ+3N)/2

tN/2+1/4

)

. (7.1)

As we saw in (3.15), withθ2(u) := u2/2 −
√
2u− 9/8,

G(u; 2) =
−1

2i sin(
√
2πu)

[

21/4e−πiθ2(u) − 2−1/4eπiθ2(u)
(

1 + ie
√
2πiu

)]

.

It is easy to see that the polynomialsPn,3n−r(x, σ) in (7.1) are only evaluated atx = 0 if b ∈ [0, 1/2) and at
x = −√

π/2 if b ∈ [1/2, 1). This corresponds to Lemma 6.2 withu = 2 andv = 1. Examples of (7.1) for
s = 3/4 + 400i and different values ofN are displayed in Table 3, correct to the accuracy shown.

N Theorem 1.5
1 0.11628656704 + 0.03102038722i
3 0.11503659264 + 0.03134163666i
5 0.11503572670 + 0.03134146229i

0.11503572550 + 0.03134146183i R

Table 3: The approximations of Theorem 1.5 toR = R(3/4 + 400i; 20/
√
π, 10/

√
π).

7.2 An example with increasingλ

Suppose we takeα = tc in Theorem 1.5 for somec > 1/2. Then

β =
t

2πα
=
t1−c

2π
, λ =

√

α

β
=

√
2π tc−1/2.

The error term in (1.21) isO(t−(c−1/2)(σ−1/2)+N(3c−2)−1/2) and so we requirec < 2/3 for this to decrease
with N . If we takec = 5/8, for example, then Theorem 1.5 gives

R(s; t5/8, t3/8/(2π)) = eπiA(t)(2π)3/4−st−1/8−s/4

×
N−1
∑

n=0

1

tn/2

[

3n
∑

r=0

G(r)( a√
2π
t−1/8 + b

√
2πt1/8; 2πt1/4)

(2π)r/2
· Pn,3n−r

(a

2
t−1/8 − bπt1/8, σ

)

]

+O

(

1

t(N+1+σ)/8

)

(7.2)

for

A(t) := ⌊t5/8⌋⌊t3/8/(2π)⌋ + 1 + at5/8 − b
t3/8

2π
+
a2

4π
t−1/4 − b2πt1/4

anda, b the fractional parts oft5/8, t3/8/(2π). The derivatives ofG in (7.2) may be expressed in terms of
Hermite polynomials and derivatives ofΥ as in (3.34). Then the derivatives ofΥ can be computed with
(3.30). Table 4 shows each side of (7.2) whens = 1/2 + 256i.

It is natural to consider the differenceR(s;α, β)−R(s;α′, β′), as theζ(s) terms cancel. Withα = t5/8

as above andα′ = t5/8/2 we may obtain the asymptotics of

eiϑ(s)

(

∑

t5/8

2
<n6t5/8

1

ns

)

− eiϑ(1−s)

(

∑

t3/8

2π
<n6 t3/8

π

1

n1−s

)

,

for example, with (7.2) minus a similar expression.
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N Theorem 1.5
1 −0.12120812956 + 0.00884587559i
2 −0.12075592244 + 0.00789494686i
4 −0.12074208191 + 0.00787729724i

−0.12074212743 + 0.00787728177i R

Table 4: The approximations of Theorem 1.5 toR = R(1/2 + 256i; 32, 4/π).

7.3 On the lineRe(s) = 1

Whenσ = 1 there are some simplifications in the definition ofPn,k(x, σ) in (6.1). With basic properties of
Bernoulli polynomials we find

fn(1) =
Bn+1

n(n+ 1)2n+1
.

Also, fordm,r(1) in (6.1c), only thek = 0 term can be non-zero. ThenAm−n,0(1,−1
2 ,

1
3 , . . . ) is zero unless

n = m. Therefore
dm,r(1) = Am,r(

1
3 ,−1

4 ,
1
5 , . . .)/r!.

With this, the first polynomialsPn,k(x, 1) for 0 6 k 6 3n areP0,0(x, 1) = 1 and

P1,0(x, 1) = −1
3 , P1,1(x, 1) = −ix, P1,2(x, 1) = x2 − i

2 , P1,3(x, 1) =
i
3x

3 + 1
2x.

Forn = 2 we have

P2,0(x, 1) =
1
18 , P2,1(x, 1) =

i
3x, P2,2(x, 1) = −5

6x
2 + i

6 , P2,3(x, 1) = −10i
9 x

3 − 2
3x,

P2,4(x, 1) =
5
6x

4 − ix2 + 1
8 , P2,5(x, 1) =

i
3x

5 + 2
3x

3 + i
4x,

P2,6(x, 1) = − 1
18x

6 + i
6x

4 − 1
8x

2 + i
8 . (7.3)

For example, takingσ = 1, t = 600 andα/β = 5/3 in Theorem 1.5 gives the results in Table 5.

N Theorem 1.5
1 0.07827091811 − 0.07657008324i
3 0.07798494014 − 0.07693255693i
5 0.07798504883 − 0.07693266047i

0.07798504890 − 0.07693266040i R

Table 5: The approximations of Theorem 1.5 toR = R(1 + 600i;
√

500/π,
√

180/π).

7.4 On the critical line

For σ = 1/2 we have already seen with (6.10) that the polynomialsPn,k(x, σ) take a simpler form; only
coefficients of powers ofx that are congruent tok mod 4 can be non-zero. For example,P0,0(x, 1/2) = 1
and

P1,0(x, 1/2) = −1
3 , P1,1(x, 1/2) = −ix, P1,2(x, 1/2) = x2, P1,3(x, 1/2) =

i
3x

3. (7.4)

Of course, (7.4) is a special case of (1.23). Forn = 2 we have

P2,0(x, 1/2) =
1
18 , P2,1(x, 1/2) =

i
3x, P2,2(x, 1/2) = −5

6x
2, P2,3(x, 1/2) = −10i

9 x
3,

P2,4(x, 1/2) =
5
6x

4 + 1
4 , P2,5(x, 1/2) =

i
3x

5 + i
2x, P2,6(x, 1/2) = − 1

18x
6 − 1

4x
2. (7.5)

We give a more detailed numerical example in Table 6 fors = 1/2 + 800i andα/β = 4.
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N Theorem 1.5
1 −0.07966764263636 − 0.07373504930114i
3 −0.07957371736089 − 0.07351910859701i
5 −0.07957365182034 − 0.07351897839664i
7 −0.07957365178158 − 0.07351897825965i

−0.07957365178152 − 0.07351897825948i R

Table 6: The approximations of Theorem 1.5 toR = R(1/2 + 800i; 40/
√
π, 10/

√
π).

Specializing (6.11) toσ = 1/2, and extending the calculation toxk−12, shows that the highest degree
terms inPn,k(x, 1/2) are

Pn,k(x, 1/2)

(−1)nik
=

(

3n

k

)

xk

3nn!
+

(

3n− 4

k − 4

)

3n− 1

20

xk−4

3n−2(n− 2)!

+

(

3n − 8

k − 8

)

63n2 − 141n + 31

5600
(3n− 5)

xk−8

3n−3(n− 3)!

+

(

3n− 12

k − 12

)

567n4 − 4374n3 + 10968n2 − 9621n + 1280

112000
(n− 3)

xk−12

3n−4(n − 4)!
+ · · · . (7.6)

The formulas in (7.6) only make sense forn large enough. ForPn,k(x, 1/2) to containxk−12 for instance,
we needk > 12 and hencen > 4. It may be verified that the coefficient ofxk−12 in (7.6) is always positive
for thesen andk. Similarly, the higher powers ofx in (7.6) always have positive coefficients. Combining
these calculations with (6.10), we have proved:

Proposition 7.1. The terms inPn,k(x, 1/2)/((−1)nik) may only contain powers ofx of the formxk−4m for
0 6 m 6 k/4. For thesem values, the coefficients ofxk−4m are always positive if0 6 m 6 3.

To examine this positivity further, letSn,k be the set of all the coefficients ofxk−4m for 0 6 m 6 k/4
in Pn,k(x, 1/2)/((−1)nik). LetSn be the union of theseSn,k for k in the range0 6 k 6 3n. Then further
computations show that all the elements ofSn are positive for0 6 n 6 50. It seems likely that this positivity
continues for alln. This would also imply that the sign pattern forCn(a) we see in (1.11) continues for all
n, with positive coefficients forn even and negative coefficients forn odd. The signs of the coefficients of
Pn,k(x, σ) also appear to obey predictable patterns, at least forσ not too far from1/2.

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

3−3

3i

−3i

Figure 3: The zeros ofP6,18(x, 1/2)

Another interesting aspect ofPn,k(x, 1/2) is that, in all the cases we have examined, its zeros are on the
lines bisecting the quadrants and are nearly evenly spaced.Figure 3 shows the zeros of

P6,18(x, 1/2) = − 1
524880x

18 − 17
38880x

14 − 18889
907200x

10 − 367
1920x

6 − 5
32x

2.

Forσ near1/2 the zeros ofPn,k(x, σ) appear to have a similar distribution.
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7.5 Conclusion

We have shown that the Riemann-Siegel formula and the Hardy-Littlewood approximate functional equation
are special cases of a shared natural generalization in Theorem 1.5. The classical Riemann-Siegel coefficients
Cn(a) are given in our reformulation by

Cn(a) =

3n
∑

r=0

G(r)(2a; 1)

(2π)r/2
· Pn,3n−r(0, 1/2) (7.7)

as is seen by comparing (1.10) with (1.24). In the wider context of Theorem 1.5, we need the more general
Mordell integralG(u; τ), and the constant termsPn,k(0, 1/2) in (7.7) are replaced with the polynomials
Pn,k(x, σ) in x andσ. The remarkable properties of Mordell integrals have attracted many authors, as we
have seen in Sections 3.1, 3.3. The key symmetry ofG(u; τ) as τ → 1/τ is related through Theorem
1.5 to the functional equation ofζ(s). The polynomialsPn,k(x, σ) inherit a functional equation fromζ(s),
(Theorem 6.1), and as noted above they also seem to inherit interesting zeros.

In future work we will examine these componentsG(u; τ) andPn,k(x, σ) in greater detail. Also a
natural extension of the techniques in this paper is to DirichletL-functionsL(s, χ). This would generalize
the treatments in [Sie43] and [Deu67].
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