A generalization of the Riemann-Siegel formula

Cormac O’Sullivan

Abstract

The celebrated Riemann-Siegel formula compares the Rieaeta function on the critical line with
its partial sums, expressing the difference between thean agpansion in terms of decreasing powers of
the imaginary variable. Siegel anticipated that this formula could be generalteadclude the Hardy-
Littlewood approximate functional equation, valid in angrtical strip. We give this generalization for
the first time. The asymptotics contain Mordell integrald an interesting new family of polynomials.

1 Introduction

1.1 The approximate functional equation

The functional equation for the Riemann zeta funcos) may be written as

((s) = x(s)C(1 =) (1.1

X(s) == ws—1/2r<$>r(g) -

Hardy and Littlewood gave the following approximation fgr) in [HL23]. The notations = o + it for the
real and imaginary parts afis assumed from here on.

for

Theorem 1.1(The Hardy-Littlewood approximate functional equatiohpt I C R be a finite interval. Let
s be any complex number in the vertical strip described ey I andt¢ > 27. Then for alla, 8 € R>; with
t = 2maf, we have

)=y L) 3 nll_s + 0<a—0 n t1/2—050—1) (1.2)

where the implied constant depends onlylon

The sums in (1.2), and similar sums below, are over all p@sititegers: satisfying the given conditions.
Our use of the big) notation is as in [HL23] and [IK04, p. 7], for example. Wrigrf (z) = O(g(zx)) (or
equivalently f(x) < g(x)) means that, for an explicitly specified rangge there is an implied constant
C > 0sothat/f(x)] < C-g(x) forall z € X. Similarly, the notation extends to functions of more thae o
variable. With this convention, the implied constant in @fem 1.1 may depend an but gives a bound that
is valid for all s, o« and 8 satisfying the given conditions. In this way, for instantte qualifier “as — oo”
is not needed for (1.2).

Hardy and Littlewood used Theorem 1.1 to estimate the seanddourth moments af on the critical
line with real partl /2. See for example [Tit86, Chapter 7], [Ivi85, Chapters HBfer more on the important
general moment problem and [Sou09] for descriptions of mecent results and conjectures.
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If o andg3 are similar in size then the error in (1.2) is abduit—°/?) and hence small far large and
o positive. Thus(,(s) == > <o n™* + X(5) X< n~'* gives a good approximation t{s) whent is
close to2ma?. For positive fixedy, the function¢,(s) is interesting in its own right. It is shown in [GM13,
Thm. 1.5] that, in a natural sensél0% of its zeros are simple and lie on the critical line.

Following Siegel in [Sie32, Eg. (36)], we define

U(s) == (i/2)log x(s)

for s € C with s outside the interval§—oco, 0] U [1,00). The requirement)(1/2) = 0 specifies the branch
uniquely; see Section 4.1 for more details. (We do not useahenon notation(t) for (i/2) log x(1/2+it)
as it is not well suited for working off the critical line.) As consequence of Corollary 4.3 we have, for

example,
(s 1 it it in 1

for all t # 0 with the implied constant depending en Also ¥(s) satisfies the relations
91 —s)=—0(s), I(s)=—09(3). (1.3)
Hence, withy(s) = e~29(s) we may write the functional equation (1.1) in the symméfwitn
eV (s) = eI (1 — s). (1.4)
It follows that Theorem 1.1 has the equivalent restatement:

Theorem 1.2(The Hardy-Littlewood approximate functional equatioymsnetric version) Let/ C Rbe a
finite interval. Lets be any complex number in the vertical strip describedrly I andt > 2x. Then for
all a, 8 € R>y witht = 273, we have

) ) 1 ) 1 /\1/2—0 /\1/2 /\—1/2
ezﬁ(s)c(s) _ eu?(s) Z E + ezﬁ(l—s) Z = + O( ( t1/4+ ) (15)

n<a n<pB

where) := /a//3 and the implied constant depends onlyfon
We used that

« t 1 t
t=2 d A=,/= =M/ d B=—4/—. 1.6
oS and A 5 = a=\ 5 and (8 TV 2s (1.6)

1.2 The Riemann-Siegel formula

The Riemann-Siegel formula is one of the key results in tleerh of the zeta function. It gives a detailed
description of what is happening inside the error terms iecfems 1.1 and 1.2, at least in the case where the
lengths of the partial sums are the same= g and\ = 1. Of course Riemann’s researches predate those
of Hardy and Littlewood by many years. The formula was disted by Siegel in Riemann’s unpublished
notes and appeared in [Sie32]. Siegel’s classic paper leasrbeently translated in [BS18] and we use their
page numbering, corresponding to the version of the pagezaamg in his collected works.

Most major computations verifying the Riemann hypothesiskmsed on the Riemann-Siegel formula;
see for example [Bre79], [0S88], [Gou04], [BH18] and theteamed references. It also appears in theoreti-
cal work where precise knowledge ¢fs) on the critical line is required, such as [Fen05, PT15, Fol19

Let
cos(m(u?/2 —u — 1/8))

cos(mu) ’ (3.7)

U(u) =

which may be seen to be an entire function. The following ltéala slightly different notation is given in
[Sie32, Egns. (32), (33)].



Theorem 1.3(The Riemann-Siegel formula fer € I). LetI C R be a finite interval and let be any
complex number in the vertical strip describeddoyg I andt > 27. Supposer := +/t/(27) has fractional
parta € [0,1). Then we have

1 1 —1)led(27)semis/2 s 1 t it im
€0 =Y 1Y o+ S oo (5 1) a5 %)

1/4 N—1 k/2] ke gk—2r)
« <27T> ? kKl w (2&) O( 1

ar(s) I 14 (9 k/2— m)- (1.8)
k=0 r=0 T'(k - 2T)- 4 (271') / tN/6+0/

The implied constant depends onlyband N € Z-,.

Siegel was also able to bound the error's dependencd am (1.8) for ¢ large enough. The functions
ar(s) may be defined recursively lay »(s) = a_i(s) = 0, ap(s) = 1 and

(k+1D)Vt-app1(s) = —(k+1—0)ap(s) +i-ar_a(s) (k€ Zsg). (1.9)

Theorem 1.3 is in fact an intermediate result. In what we nadlytbe completed form, the terms on
the right of (1.8) are expanded in decreasing powers df is also useful to make things symmetric by
multiplying by ¢??(*). This was Riemann’s goal, as shown in [Sie32, Eqns. (44)],(4Bd the following
theorem is stated in [Sie43, p. 143].

Theorem 1.4(The Riemann-Siegel formula: completed, symmetric verfiw o = 1/2). Leta € [0,1) be
the fractional part ofa := /t/(27). Forany N € Z-, there exist explicit functions af alone, Cy(a)
01((1), Cg(a), Ceey such that

219(5 W(l—s la]+1 2m 1= Cm(a) 1
Z +e Zn1_5+(—1) = Z—W +0( sy ) (110)

n<a n<a m=0

forall s =1/2 4 it with ¢t > 27. The implied constant ifiL.10)depends only oiV.

Riemann computed the initial terms in (1.10) exactly andfitts¢ four are

Co(a) = ¥(2a), (1.11a)
Ci(a) = —é(27r)_3/2llf(3)(2a), (1.11b)
Cy(a) = %(2@—3@(6)(2@) + i(zw)—qu@)@a), (1.11c)
Cy(a) = 162(2@ 9/29/) (2q) — 135(2@—5/2@(5)(2@) - %(277)_1/2\11(1)(260. (1.11d)

Siegel proved in [Sie32, p. 293] that only derivative$) (2a) for r = 3m mod 4 appear irC,, (a).
The left side of (1.10) fos = 1/2 + it definesZ(t), Hardy’s Z function, and the sums overmay be
combined so that (1.10) becomes

cos(¥(1/2 +it) — tlogn) alet (27 1/4N_1Cm(a) 1
_22 nl/2 +(_1)H+ t Z +m/2 +0 (N/2+1/4 |° (1.12)

n<a m=0

Fort € R we have that)(1/2 +it) andZ(t) are real. Therefore zeros ¢fs) on the critical line correspond
to zeros ofZ(t). Riemann was able to find the first zeros in the critical sagpEdwards recounts in [Edw74,
Sect. 7.6], although it is not clear if he was using this folarin his calculations. Subsequent work using
(1.12) has verified the Riemann hypothesis up to a large heliglthese applications it is important to give
exact bounds on the error in (1.10), (1.12). This has beeieadh, for example, by Titchmarsh fof = 1
[Tit86, p. 390] and Gabcke for alv < 10 [Gab79, Eq. (8)]. In this paper we will not give explicit erro
bounds.



Riemann and Siegel gave recursive procedures for calegltite coefficients’,, (a). Gabcke in [Gab79]
provided a different method of proof of Theorem 1.4 and a newsursion for the coefficientS),,(a). The
starting point in [Gab79] is another unpublished formul&afmann appearing in [Sie32], namely

2 2

((s) :/ S —I—X(s)/ A (1.13)
0,1 e — € 0N\1 e — €

The paths of integration are lines that pass through thevaté0, 1) in the indicated direction. We also

mention an interesting formal derivation of tbg,(a) by Berry in [Ber95].

As Theorem 1.3 is valid in any vertical strip, it is naturakek an extension of Theorem 1.4 that is also
valid off the critical line. Arias de Reyna in [AdR11] gave &Rann-Siegel formula for the left integral on
the right side of (1.13) that holds in any vertical strip. WMihe same assumptions as Theorem 1.3, his result
may be stated fof(s) as

1 1 |
() =3 () Y e ()Y
k=0

n<a n<a

s o t—0/2 _|_t(0—1)/2
X [t 2U(t) - Dy(a, o) + x(s)t " V2U@) - Dp(a, 1 — o—)] + O( N2 (1.14)
for U(t) := exp(—%log o= + £ + Z) and certain recursively defined function,(a, o) as described in
[AdR11, Sect. 2]. The implied constant depends/acand N and is bounded explicitly in [AdR11, Thm.
4.2].

1.3 Main results

In this paper we generalize the Riemann-Siegel formula@cctise where the lengths of the partial sums,
« and 8, may be different, as in the results of Hardy and Littlewo&iegel himself, in [Sie32, Sect. 4],
suggested this should be possible without much difficulty even gave the function that would be needed
in place of¥. Foru, € C with Re(7) > 0, itis

e—7ri7—z2+27riuz
Y(u;T) = / ——dz (1.15)
( ) o<1 e?mz -1
where the path of integration is again a line crossing therwal (0, 1) in the indicated direction. It is
straightforward to see that the integral converges ragaiyRe(7) > 0 and is independent of the choice of
line. Siegel use®(—, u) for Y (u; 7), so the new notation should avoid confusion.
We need a suitably normalized version of Siegel’s function:

m; + %) T(\/7_' - U 7'). (1.16)

2

Gu;1) == /4 exp (—

Proposition 3.2 will show thatr has the symmetry
G(u;1/1) = G(w; 7). (1.17)

For eachr, G(u; ) is holomorphic inu. The notationG*) (u; 7) indicates theith derivative with respect to
this variableu. If 7 is rational therG(u; 7) has a more explicit description as seen in (3.13).

Employing the methods of Riemann and Siegel, we first extdmebiiem 1.3 to the case of genesal
andg. This gives the intermediate result, Theorem 2.1, prove8dation 2. Interesting work in a similar
direction to Theorem 2.1 is found in Chapter 4 of [FL22], alesed on the techniques in [Sie32]. Our main
theorem, given after the next definitions, is a completedhregtric Riemann-Siegel formula that is valid
in any vertical strip and that allows the partial sums to hdiferent lengths. Write the quantity we are
interested in estimating as

R(s;a, B) = )¢ (s) — €?0) Z 1 e (1=s) Z ! (1.18)

ns nl-s :
n<o n<pB




With (1.3) and (1.4) it satisfies the symmetry
Throughout this work we will use the notation

a:=a-—|al, b:=p—18], A= %. (1.20)

Theorem 1.5. Let] C R be afinite interval. Let be any complex number in the vertical strip described by
o € I andt > 2x. Then for alle, 5 € R>; witht = 27a 3, we have

R(s;a, ) = (1) B+ exp(mi(2a8 — 2ba + a®X72 — 57X%) /2)

2\ VAR A2=s [ 30 G0 (aA~! 4 bA; A2) N

/20 —1\3N+1/2
+O<A A+ ) (1.21)

r=

+N/2+1/4

using the notation fron§1.18) and (1.20) The implied constant depends only dhe Z-o andI. The
functionG (u; 7) in (1.21)is the normalized Mordell integral defined (h.16)and P, ,(x, o) is a polynomial
in x and o, of degreek in z, that is given explicitly in(6.1).

The simplest case of Theorem 1.5 ds= 0. Then the sum is empty, equaling zero, and we find

)\1/2—0 >\_|_/\—1 1/2
R(S;avﬁ) = O( (t1/4 )

recovering Hardy and Littlewood’s Theorem 1.2. Wh¥n= 1 we obtain the next term in the asymptotic
expansion:

R(s;a, 8) = (1) B+ exp (mi(2a8 — 2ba + a®X72 — 57X%) /2)

o 1/4 Lo . ) )\1/2—0()\+)\—1)3+1/2
X <7> A2 (aA™ + A0 + 0 PyoEyr (1.22)

since, as we will seefyo(z,0) = 1. For N = 2, the next term contains derivatives 6f times the
polynomialsP; o(z,0) = —1/3,

P i(z,0) = —iz, Pia(z,0)= z? - z'(o' - %), P 3(z,0) = %aj?’ + (0 - %)aj (1.23)

We may take\ as fixed in these results but this is not necessary; Theogprdduces asymptotics whenever
A and1/\ have order of magnitude less theiS.

Foro = 1/2 anda = 8 in Theorem 1.5 (so that = 1 anda = +/t/27), we recover the Riemann-Siegel
formula, Theorem 1.4, as the expression

: Pn,3n—r(07 1/2)

1/4N—1 3n (r) .
R(s;a,a):(—l)LaJ+1<2_7T> 1 [ G (2a;1)

t = tn/2 (2m)r/2

1
+O<W>. (1.24)

This agrees with the forms of (1.10) and (1.11) sitfe:; 1) = ¥ (u) by (3.14) and, as shown after Lemma
6.3, the number#, 5,,_(0,1/2) are zero unless = 3n mod 4. The more general case oWith o € I and
a = (3 has only the difference thdt, 3,—,(0,1/2) in (1.24) is replaced by, 3,—,(0,c) and we obtain a
simpler form of (1.14).

Our normalizations in Theorem 1.5 are guided by the symm{étd9). If we define a transformatich
on functions ofs, « andg as

r=0

5



thenR(s; a, B) is invariant undef7". All the components on the right side of (1.21) are also ilavarunder
T. For exampleexp(7i(2a8 — 2ba + a®?A™2 — b*A?) /2) gets mapped to itself sincE switchesa andb
and sends\ to 1/\. That7 sendsG") (aA~! + bA; A?) to itself follows from (1.17); see Proposition 3.2. We
prove thatP, .(1/7/2(aA™! — b)), o) is invariant undef” in Theorem 6.1. The invariance of the right side
of (1.21) underT is required for the final step in the proof of Theorem 1.5 taobthe correct error term.

The functionsG(u; 7) appearing in (1.21) are Mordell integrals and have manyifatiog properties
and connections, some of which have only been discoverahtigdZwe02, CR15, DRZ17]. In Section
3 we establish the various results about them we will neediiding bounds, functional equations and the
linear independence of their derivatives.

A preliminary form of Theorem 1.5 is proved in Section 5 aileme explicit series expansions related
to ¥(s) are found in Section 4. The proof is completed in Section G pblynomialsP,, ;. (z, o) in (1.21)
seem to be new and we also make an initial study of some ofphairerties in Section 6. Their description
in (6.1) is given in terms of Bernoulli, Hermite and De Moiyelynomials.

N Theorem 1.5

1 —0.08810545388 + 0.108647551952

3  —0.08764536572 + 0.109362552721

5 —0.08764522833 + 0.109362682941
—0.08764522824 + 0.10936268305¢ R

Table 1: The approximations of Theorem 1.5R6= R(1/2 + 600¢;30/+/7, 10//7).

Table 1 shows an example of how Theorem 1.5 approxim@tesa, 5) for s = 1/24-600; anda/5 = 3
(so that\ = /3). The right side of (1.21) for different values df may be compared with the left side which
is displayed in the bottom row. Each decimal is correct toabeuracy shown. Table 2 shows a similar
result ats = —2 + 6004, outside the critical strip. All the calculations in thispes were carried out using
Mathematica. Section 7 contains further examples.

N Theorem 1.5

1 —0.3478598947 + 0.42896465917

3 —0.3478754856 + 0.40598591197

5 —0.3479331346 + 0.40599299757
—0.3479331128 + 0.4059931509¢ R

Table 2: The approximations of Theorem 1.586= R(—2 + 600¢; 30/+/7, 10//7).

2 The method of Riemann and Siegel

2.1 Initial set-up

The notation/ will always denote a finite interval iR. The well-known families of polynomials we require
are those of Bernoulli and Hermite, with generating funtdio

tet! = t" omtt? e t"
41 an:%Bn(x)ma € :TLZ::OHn(x)E7 (2.1)

respectively. BothB, (x) and H,(x) have degree:; the coefficients ofB,,(z) are rational and those of
H,(zx) are integral. Fot > 0 we will also need the power series expansion

z , 22
w(z, s) = exp((s —1)log (1 + %> — itz + 25> (2.2)
= Zak(s) . 2* (|z] < V). (2.3)
k=0



The coefficientsi,(s) were given recursively by Siegel as we saw in (1.9). We whieat in terms of De
Moivre polynomials in Proposition 4.8. The next result gafizes Theorem 1.3.

Theorem 2.1. Recall the notatior{(1.20) Lets be any complex number in the vertical strip described by
o € I andt > 2x. Then for alla, 8 € R>; witht = 27a 8 we have

v L L lals_@m)em? (2_7T> Y 1
C(S) - Z ns + X(S) Z nl—s +( 1) I‘(S)(e2m’s _ 1) t A

n<o n<pB

T 908 — 2\-2 _12)2 51\ e it
xexp<2[2a5 2ba + a”A bA})exp<<2 4>log27T 5 8>

N-1 k .
k , B eTi(k—3r)/4 A\—op—o/2
X ak(s)z< >G( J(aA™t 45X A2) Hyr(@)) + O —x7— | (24

2]@—7”(271-)7”/2
with ‘
wy 1= e ™/ /2(aNt — bA).

The implied constant depends only 8ne Z~, I and A. If A > 1 then the implied constant is independent
of \.

The proof is given in this section and follows the main linésSegel's work in [Sie32, pp. 278-285].
See also [Tit86, Chap. 4] and [Edw74, Chap. 7]. Forang Z-; we begin, as in [Sie32, Eq. (8)], with

m s ,mis/2 s—1_—2mimz
(o)=Y Ly ke 1)/Cz ¢ dz. 2.5)

ns F(s)(e27ris _ e2m’z -1

+

The contourC' starts at—ioo (with argz = —7/2), moves up the imaginary axis, circles close0tand
then returns to-ico (with arg z = 37 /2) as displayed in Figure 1. Formula (2.5) is valid for ale C
and shows thaf(s) is holomorphic everywhere, except for a polesat 1, sincel/(I'(s)(e*™ — 1)) has
poles exactly fos € Z~, and fc has zeros fos € Z-5. The asymptotics of (2.5) @s— oo are obtained
with the saddle-point method. The idea (see for exampled@IChap. 4], [PS97], [O’S19]) is to move the
path of integration so that the main contribution to thegnéin (2.5) comes from the neighborhood of the
saddle-point of the integrand — where its derivative witpect toz is zero. For simplicity we just find the
saddle-point of the numeratef —'e=2"""%_ |t is the value

3—1: t +1—0Z, (2.6)

" 2mim 2mm 0 27wm

and so we need to move so that it passes close{oA short calculation similar to (2.14), (2.15) shows that

272m?2
s—1

Zs—le—szmz — 65_16_27”7”5 exp<

(z— &2+ 0((= - 5)3)> 2.7)

for z close to£. Then

2,2 2,,2

Ro( 200 e - €7 ) = T 6f cos(2ang( — ) - angls — 1)
s—1 |s — 1]

and so the directions in which (2.7) is decreasing the fasies moves away frong, are when the cosine is

—1. Forarg(s — 1) close tor /2 this corresponds targ(z — &) close to3r/4 and—m /4.

The poles of the integrand in (2.5) occur at integemsith residues essentially?~'. This means that
moving C to pass througl§ will add a sum of the fornEjgt/( 4571, giving the desired second part of
the approximate functional equation.

As in the statement of the theorem, we choasg € R, with t = 2ra. Letm = |a]. Then

2mm,)

En — = —=0 (2.8)



and, following Riemann, we will usg as our base point instead &f Similarly to Siegel we introduce the
abbreviations

Zs—l e—27rzmz

— p3mifd —
= e g(z) == S

(SN
The contour of integratiod’ in (2.5) is moved to a new contodr that encloses exactly the integers from
—|B] to | 8] and passes throughin the desired direction of steepest deseerfs shown in Figure 1('s is
made with five lines. The first,, is the vertical line ending & — /2 and then; goes from3 —¢3/2 to

A
o
M 7 N
|/
Ls L
n
C
' -
Ly Ly

Figure 1: Contours of integratioff andCs = Lo U L1 U--- U Ly

B + /2. We requireL; to cross the real line in the open intervab |, | 3| + 1); this requires moving the
path slightly to the right whepfi € Z. The horizontal lind., continues until its real part reachesg| —1/2.
The vertical linesLs and L, complete the contour witl finishing, andL, starting, level with wherd.
finishes. This is at the imaginary valug3i/(2v/2).

Then
| 8]
g(z)dz = (™ —1 _—I—/gzdz
[o@a = -n> s [ o)
and hence /2
1 1 (2m)%em™s
= — . . 2.9
()= 325 + X002 s + gy 90 @

Proposition 2.2. For o, 8 > 1 ando € I, we have

/CB g9(z)dz = /L1 g(z)dz + O(e_t/loo). (2.10)

The implied constant depends only bn
Proof. For the numerator of(z),
‘25—16—27rimz| — ’2‘0—1627rmy—t arg z

Ouir first claim is that

e t/8 if z€ LoUL3zU Ly,
|zs_16_2mmz‘ <27 P x $ et i 2 € Lyand10 < a, (2.11)
emvlif 2 € Ly andl < o < 10.

Forz € Ly U L3 U Ly,

11
+=.

1
2\/5—1>>2\/§ 8

y< —— and arg z > arctan<

8



Hence
‘Zs—le—2m'mz| < ‘2’0—1 exp<2ﬂ'045 _ t _ E) _ ‘Z’a—le—t/S.

2v2 22 8

With z € Ly we have

B ( |y >
y< ——— and arg z = — arctan
2v2 B(1+1/(2v2))
so that ol
1 —9mi _ t\y
257 leT MMz 2|0 1exp<—27TLon|y|—|— > (2.12)
| | B(1+1/(2v2))
If « > 10 then replacing «| by o — 1 in (2.12) shows
s—1,—2mimz| o—1 —tM 1 _ l
e b ten( g G
t 1 1
< o—1 v - o—1 —t/20‘ 2.13
ool sl ) e e

If 1 <« < 10 then writing2r« for t/5 in (2.12) shows

28 lem2mimz| < p0-1 exp<27ry {— o +#]> < |27 el
| <4 | ~lod + 1757 ) <

This completes the verification of the claim (2.11).
For the denominator of(z):
27 1T < (1—e ™IV L (1—e ™Vl <2 for  ze Lo,
2™ Tt =(1+e?™) <1 for  z€Ls.

Hence, forz in Ly U L3 we have thay(z) < 57~ e~*/®. Therefore
/ g(2)dz < 778 « 17e7 8 « e,
LoUL3

Forzin Lo U Ly we have
|z| < 4]y| and  [e?™F — 1|7 < 2727,

Therefore N
/ g(z)dz < et/ / e 2yl dy < Y20,
La 1/(2v2)

and we obtain the same bound ﬁfLrO g(z)dz when10 < «. In the final case with < a < 10,

oo

/ g(z)dz < / e ™y dy < / e 2mY/3 gy & e~t/100, 0
Lo B/(2v2) t/(40+/27)

2.2 The saddle-point method

The work in this paper grew out of the project [0’S19] whicimad to clarify some aspects of the saddle-
point method, as elegantly formulated by Perron in 1917. gdyer [PS97] documents that this method
originated with Riemann, and it is remarkable that one ofiré$ applications was to finding the asymptotic
expansion for the difficult case qf s).

In simpler applications of the saddle-point method, sucfCeS19, Cor. 1.4], the part of the integrand
containing the growing parametéf is expanded into the forrxp(Nc(z — £)?) times a power series in
about the fixed saddle-poigt The behaviour of the integral farclose to¢ will control the asymptotics. Our

9



case is more difficult as the saddle-point (2.6) is not fixedl @ranges with the parameterand«. Adding
to the complications, it is inconvenient to expand the nuwerof g(z) about( and we expand about the
nearby point5 instead:

Zilem2mime — gs—lo=2mimB oy (—2m'm(z —B)+ (s—1)log <1 + %)) (2.14)

The argument oéxp above may be developed as

~2nim(z = §) — (s = 1)) (=1) ('z?)]. (2.15)

J=1 J

Whenz is close tog we find (2.15) is

(=5t (52 of (52
-] (5 (5 {5

For s large, the piece

3
of (2.16) will be biggest. Therefore we separate it out aadalling (2.2), write

{z(% — 27Tm> (z—p) Z'—t(z — 5)2] =2mi(a —m)(z — B) — m’%(z —B)?

ZSTlem2mimz — ps—lo=2mimB oy <—m‘%(z — B)? + 2mi(ac — m)(z — ﬁ))w <%(z - 5), s).

Sincea/B = A\? andv/t/3 = v/27 )\, we obtain

/ g(2) dz = g5~ Le=2mimp / exp(—m‘)\2(2 — )" + 2miaz - ﬁ)) w(x/ﬁ)\(z - p), s) dz. (2.17)
Ly

L, e27riz -1

The next step is to replace(z, s) by the first terms in its expansion (2.3). The tail of this poseries
has the presentation

rn(z,8) == Zak(s)zk _ 2 /C _wlu,s) du, (2.18)
k=n

27 Jo un(u — 2)

with C a curve inside the disf| < /t which encircles) and z in the positive direction. Siegel bounded
rn(2, s) precisely and for completeness we include his proof [Sipp2281-282] since all the error bounds
depend onit.

Lemma 2.3. For n € Z>o, o € I andt > 0 we have the estimates

1/3
A 27 20 [ 2nV/t
rn(z,8) = O(el4|z|2/29> for |2 < Vt/2. (2.20)

The implied constants depend only bandn.

10



Proof. With (2.2),

log w(u, s) = (o — 1)log<1 + —) +zu2§: kll; <%>k

k=1

Therefore, in the circléu| < 3v/¢/5 we have

5[ul®
Re(logw(u, s)) < |o — 1| log —+ 2.21
(log w(u, 5)) < o — 1] S (2:21)
In (2.18) let|z| < 44/t/7 and letC be a circle around, = 0 with a radiusp,, satisfying
21 3
—|z| < pn < = VL 2.22
5gl?l Son <V (2.22)

Then (2.18), (2.21), (2.22) imply the estimate

(2, 8) = O<\2!"p;" exp(%ﬂi))- (2.23)

)n/s for <2n5 t)l/?’, According to

Forn > 1, the functionp="¢5"/(6VD of , reaches its mwmun(
(2.22), the choice,, = p is admissible if

1/3
21 2n\/t
- < —
20‘2’\< 5 > \[

2nv/t

Consequently we obtain (2.19). Fer> 0 and|z| < 4v/t/7, the choicep,, = 21|z|/20 is also admissible
according to (2.22); from this we obtain (2.20). O

2.3 Error estimates

If we replacew(-, s) in (2.17) by the first: terms of its expansion (2.3) then the error involves thegirztie

Tu(si0n8) = /L exp(=miX?(z — B)? + 2ria(z - 5))%(@A(z B 5)73) 5 (2.24)

e2mz -1

Proposition 2.4. Supposer € I,t > 0 andn € Zxo. Then we have

Tu(s;a, B) = O(t_”/6> (2.25)

for an implied constant depending only énn and A. If A > 1 then the implied constant does not depend
on .

Proof. Recall thatZ, is usually a straight line from¥ — 3 /2 to 5 + 3 /2. However, wherg is close to| 3 |
or | 3] + 1 we will adjust the path slightly to avoid the denominator 2:24) becoming too small. The next
lemma has a straightforward proof that is omitted.

Lemma 2.5. Supposeé > 0 andz € C. If |z—m| > § for all m € Z then, for an absolute implied constant,
(¥ — 1)~ = o1+ 5‘1).
The proof of the proposition breaks into four cases.

Case I: A < 1 and1/100 < b < 99/100. For these values df we may takeL; to be a straight line.
The part of the integran¢e® % — 1)1 in (2.24) is absolutely bounded as we may apply Lemma 2.5 with
5 =1/(100v/2).

11



Writing z = 8 4 ev/(v/27A) shows that

V2 exp(—v?/2 + v 27Ti€av//\)

Jn(s;a, ) = \/ﬁ)\ s e (VE) rn(ev, s) dv (2.26)
and the integrand is bounded by a constant times
exp(—v2/2 + \/27T|U|//\) |rn (ev, s)|. (2.27)
Using (2.20) we have
Vt/2 2 /9
Jn(s;a, B) < / exp <_;_8 + )\Wv> dv=0(1) (2.28)
0

with an implied constant depending erand\. If n = 0 then (2.28) gives the correct bound (2.25).
Now we fixn € Z~,. Assume: > 50n/27 so that we may also use (2.19). Let

= %(271\/%/5)1/3,

and applying the bounds (2.19) and (2.20) to (2.27) shows

" 2/ Vi/2 2/
Jn(s;a, B) < t_”/6/ exp (—U— + 27T1)> " dv +/ exp (—U— + 27Tv> dv
n

0 2 " 58 A
(e} 2 0o 2
< t_”/6/0 exp<—%>v" dv —i—/ﬂ exp<—;}—9> dv
<70 Lm0 — O /0 for > 50n/27. (2.29)
By (2.28) we have
Jn(s;a, B) = O(1) for 0 <t <50n/27. (2.30)

Combining (2.29) and (2.30) gives the desired bound (2.25).

Case ll: A < 1and0 < b < 1/100 or99/100 < b < 1. For these values dfwe let L; be the usual path
of integration except that we replace the segment betvgeere /50 and 5 + /50 with a semicircular arc

of radius1/50 aboutg. If 0 < b < 1/100 we need the upper arc traversed in a counter-clockwisetitinec

For99/100 < b < 1 we need the lower arc traversed in a clockwise direction. aad on the former case
from here and it is shown in Figure 2. The other case is similar

radlusl/loo

Figure 2: Adjusting the contour of integratidn near| 3] in Case Il
Since the circle of radiu$/100 about || is contained in the circle of radiuls/50 about we see that

z € Ly satisfies Lemma 2.5 with = 1/100. Therefore(e?™* — 1)1 is absolutely bounded and the work
of Case | shows the correct bound for the pargiiven by the integral on the straight lines.
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Let J,,(s; o, B) 4 be the remaining part of,, given by the integral over the arc:

exp (—miA2w? + 2miaw
Jn(s;a,ﬁ)A:/A p( PO )rn<\/27r)\w,s> dw 2.31)

whereA is given byw with |w| = 1/50 and—7/4 < argw < 37 /4. The integrand is bounded by a constant

times
exp (7T/\2/502 + 27/50) |ry, (\/ﬁ)\w, s) ‘

Using (2.20) we have
Jn(s;a, B)a < / exp<14‘\/27r)\w‘2/29> |[dw| = O(1) (2.32)
A

with an implied constant depending arand ). If n = 0 then (2.32) gives the correct bound for (2.25).
Now we fixn € Z~,. Assume: > 50n/27 so that, by (2.19),

o (V21 w, s) | |dw| < V2 nt—N/Ei:O 4—n/6
50

Jn(s;0,B)a < /A

provided thaty/27\/50 < u. (Recall i defined before (2.29).) But this last condition is true if>
1.4 x 10~7. Hence
Tn(s; 0, B)a = o(t—"/6> for ¢ 50n/27 (2.33)

and by (2.32)
In(s;a,8)a = O(1) for 0 <t<50n/27. (2.34)

The estimates (2.33) and (2.34) complete the proof of (dr26)is case.

Case lll: A > 1 and1/(100\) < b < 99/(100)). This is similar to Case I, though we are more careful in
showing the\ dependence. The integration pdih is straight with no adjustments. Ferc L., the part
of the integrande?™* — 1)~! in (2.24) is bounded by an absolute constant tirhes A as we may apply
Lemma 2.5 withs = 1/(100v/2)).

Asin (2.26) and (2.27), it may be seen tha(s; a, 8) is bounded by an absolute constant times

14\ [Vi2

% ; exp(—v2/2 +V 277\2}\/)\) |rn(ev, s)| dv. (2.35)
As (2.35) is decreasing in, we may takeh = 1 in our bounds and the error will not depend &n The
arguments of Case | now go through unchanged.

Case IV: A > 1and0 < b < 1/(100X) or99/(100\) < b < 1. Similarly to Case Il,L; is the usual path of
integration except that we replace the segment betyeere/(50\) and3 + ¢/(50\) with a semicircular
arc of radiusl /(50\) abouts. As in Case Il, we may focus on the situation with< b < 1/(100)).

Since the circle of radiu$/(100)) about|3]| is contained in the circle of radius/(50\) abouts we
see that € L, satisfies Lemma 2.5 with = 1/(100)). Therefore(e?™* — 1)~! is bounded by an absolute
constant timeg + \ and the work of Case 11l shows the correct bound for the pai,afiven by the integral
on the straight lines. Lef,(s; «, ) 4 be the remaining part of,, given by the integral over the arc:

1 [ exp(—miw? + 2miaw/\
Tn(s: 0, B)a = X/A (ezm(Bw/A) — )rn<\/27rw,s) dw (2.36)

where A was already defined for (2.31) and given bywith |w| = 1/50 and—n/4 < argw < 37/4.
Hence,J, (s; «, 8) 4 is bounded by an absolute constant times

14+ A / T . 27

_ X —_ —_

xS0 P50z T s0N
Then (2.37) is decreasing and so we may reuse the estimates of Case Il with 1 to boundJ,, (s; a, 5) 4
asin (2.33) and (2.34). O

Tn (\/ﬁw, s) ‘ dw. (2.37)
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With (2.17), (2.24) and Proposition 2.4, we have shown that

dz = 58 1 —27r2mﬁ a 27T k/2>\k
/o Z s

exp(—m)\z(z — B)* + 2mia(z — B))
x /L 1

e27riz -1

(z — B)F dz + O(B”‘lt_N/6> (2.38)

foro € I,t > 0andX > 0, with an implied constant depending only 6nN € Z-, and\ when\ < 1.

The last step in rearranging our expressionsﬁplrg(z) dz is to extend the line of integration on the
right of (2.38) to infinity in both directions. Let~ be the line from3 — eco to 8 — ¢/3/2 and letL* be the
line from 3 + ¢/3/2 to 5 + ecc.

Lemma2.6.Foro € I,t > 1andN € Z>, we have

an(s)(om m}\k/ exp(—miN(z — )2 + 2ria(z - ) (o B)F dz = O(e_t/w). (2.39)
L-uULt+

e2mz -1

N-1

k=0
The implied constant depends only BnV and A. If A\ > 1 then the implied constant is independeniof

Proof. We first note that for € L= U LT itis true that

B Vit L1
W2 2V2 21N T AT

Hence by Lemma 2.5¢2™* — 1)~! = O(1 + \) for an absolute implied constant. Next we see by using
(2.20) withz = 1/2 that

Imz| >

ai(s) = (ri(z,8) — ree1(z, s))z_k =0(1) (2.40)

(where this implied constant depends/oandl).
With the change of variables=  + ev/(v/27 ) that we used in (2.26), the left side of (2.39) equals

pl £ exp(—v?/2 + V2micav/N)
Z ak(s - (ev)" dv
- V27N J (oo —E/2UIVE/2,00)  €2TiH(BFEV/(V2TN))
and this is bounded by an absolute constant times
1 + A 9 &
Z lak(s) exp(—v /2 + \/2711)/)\)1) dv. (2.41)
Vt/2
Then (2.41) is
< / exp(—v?/3) dv < exp (—(\/5/2)2/4)
Vt/2
as required. The implied constant in (2.39) is independént for A > 1 because (2.41) is decreasing in
A O

2.4 Relating the integral toG(u; 7)

Proof of Theorem 2.1lt follows from Lemma 2.6 that (2.38) is true with the path mtagration., extended
to infinity. If we replacez by z + | 3] in the integral in (2.38) then it is easy to see that the pathtefration
may now be taken as any infinite straight line crossing thelireain the interval(0, 1) and in the direction
of e. As before, we usé ~_1 to denote this path.
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Then combining this with (2.9) and Proposition 2.2 gives

271‘)5 mis/2 N1 2k
Z n- + X Z n W/@s—le—%mmﬁ Z CLk 27T /2)\
n<o n<f k=0
exp(—miX*(z — b)? + 2mia(z — b)) x Bo—14l/2—o
X /0\1 T (z=0)"dz+ 0O NG . (2.42)

For the error, we used that »
(271‘)567”8 /9o
T(s) (@ —1) o)
for o € I andt > 27 by Stirling’s formula or Proposition 4.7. Writing the errior(2.42) in terms of\ gives
the error stated in (2.4).
The integral in (2.42) may be expressed in term&6f; 7). It is simpler to relate the integral directly to
the Mordell integralY (u; 7) in (1.15), but this would obscure the symmetryir- 1 — s, a <> 5 we wish
to exploit. The integral in (2.42) is!(27i) " times the coefficient of* in

/ exp(—miX*(z — b)? + 2mia(z — b))
o~1

2riz _ ] exp (27rz'(z — b)u) dz

1 T /a u\ 2 a U
_y—1/2 _f2y2 L mra u a U 2
= exp( m(b)\ —|—8>>exp<2(/\ b)\—l-)\> )G(/\+b)\+)\7/\). (2.43)

It follows from the right identity in (2.1) that

—02(u+q _ —02q2 ZH Cq

Expanding the exponential factor on the right of (2.43) gshis, withc = e~™/*, /7 /2 andq = a/\ — b,

produces
exp<%i<%—b)\+§>2> :exp< (ax™! > ZH wy) ( >n/2<x)n2—7

Combining this with the Taylor expansion Gf(a/)\ + bA 4+ u/A; )\2) shows the integral in (2.42) equals

1 _1/9_ . 1 T,
W)\ 127k exp (—m <b2)\2 + §>> exp(—(aA - b/\)2>

k—r)/2
X Z( >G<’” (aA™" + bA; A2) Hy T(w)\)(g)( P hr (.40

Put (2.44) into (2.42) and the final step, to get the formula the form we want, uses the identities

gt 1/ 1/2—
I L N

and

Equation (2.45) follows frons? = t/(27\?). Alsom = |a/, mia3 = it/2 and the equalities
1= e27riLaJ 18] _ e2m’(a—a)(ﬁ—b) _ e27ri(aﬁ—ab—aﬁ+ab)’

(—1)elB) = gmila=a)(8=b) _ gri(af—ab-ap-ab)

show (2.46). This completes the proof of Theorem 2.1. O
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3 The Mordell integral Y (u; )

3.1 Relations

Foru, T € C with Re(7) > 0, recall our definition from (1.15)

e—m"rz2 +2miuz

This type of integral was studied in detail by Mordell [Mo}38ith earlier work by Kronecker, Lerch,
Ramanujan and Riemann; see the references in the introductiiCR15]. The method of Riemann for
7 =1, described in [Sie32, Sect. 1], easily extends to give

Y(u+1;7)=Y(u;T) + 7'_1/267“(“2/T+3/4), (3.2
T(u+7;7) = T2 (Y (u;7) — 1). (3.3)
Applying these relations repeatedly yields the followieguit.
Proposition 3.1. Suppose:, 7 € C with Re(7) > 0. Then for allm,n € Z~

m—1
T(u+m;7) = Y(u;7) + /47712 Z emitTu)?/T (3.4)
7=0
n—1
T(u + nr; 7_) — ewin(n’r+2u)fr(u;7_) _ em’(n’r-‘,—u)Q/T Z e—7ri(j7'+u)2/’r' (35)
7=0

This allows us to comput® (u; 7) explicitly for 7 a positive rational. v = m for m,n € Z-; then
equating (3.4) and (3.5) shows, as in [Deu67, Sect. 1],

min(m-+2u ,m _ T \/ﬁm_l mi(j+u)2n/m wi(m uQnmn_l —7mi(j+nu/m)2m/n
(e (+2)—1)T(U,E)—63 Mﬁge (j+u)?n/m y wi(m+u)?n/ ;e Gnu/m)*m/n (3 6)

The right side of (3.6) is left essentially unchangeghifindn are interchanged, is replaced by:u/m, and
everything is conjugated. Precisely, we have

mim(n+2na/m) _ n_ﬂ ny —37ri/4@ —mi(m+u)2n/m [ min(m+2u) .m
(emim(nt-2nt/m) 1)T< ; >—e \/ﬁe (e 1>T(u,n).

m m

Simplifying this shows

T <n_ﬂ ﬁ) _ _e—3m'/4@e—wi(m+u)2n/mewin(m+2u)fr <’LL; m)
n

m’'m NG
_ @e—mmu?/m—l/w(u; m. (3.7)
n n
Asin (1.16), set
. 2 .
G(u;T) = V% exp (— m2u + %) T(\/; : Uﬂ')- (3.8)

This definition gives the simplest possible transformatioderr — 1/7, as we see next.

Proposition 3.2. For all u, 7 € C with Re(7) > 0 we have

Y(u/T;1/T) = \/7_'67”(“2/7_1/4)'1“@; 7), (3.9
G(u;1/1) = G(w;7), (3.10)
GP(u;1/7) = W (w;7), (k€ Zso). (3.11)

Proof. We obtain (3.9) from (3.7) for all. € C and allT € Q-. Since both sides of (3.9) are holomorphic
functions ofr for Re(7) > 0, it follows that (3.9) extends to all these valuesrof Then (3.10) follows
directly from (3.9). Differentiating (3.10) with respect# provides (3.11). O
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3.2 Examples

Let
O (u) == u?/2 — Vku —k/2 —1/8. (3.12)

For allm,n € Z-; we have from (3.6) and (3.8) that

m

1
E) ~ 2isin(r(y/mnu 4+ mn/2))

(2" exp(~mibnn(w) :Z;::exp<—m'j [2u\/§ +j%D
_<%>—1/4 exp(mgmn(u)> :exp<ﬂij [Qu\/g +j%] >] . (3.13)

=

G(u;

If w makesy/mnu + mn/2 an integer, then the denominatsin (7 (v/mnu + mn/2)) is zero. Since
G(u;m/n) is a holomorphic function of, it follows that the numerator in (3.13) must also be zeror Fo
these values of, G(u; m/n) may be found by taking limits. The numerator being zero irs¢heases also
gives instances of Gauss sum reciprocity as mentioned lggeBSie[Sie32] and shown in [Deu67].

In the simplest case af = 1 we know by (3.10) thatG(u; 1) = G(w; 1) and soG(u; 1) is real-valued
whenu € R. Then (3.13) implies

. _ 1 w101 (u —m101 (u _ Sin(ﬂ-e (u))
G = g ) = i 1)

This may also be written as

_sin(ﬂ(u2/2 —u—5/8))  cos(m(u?/2 —u— 1/8)).

G(u;1) = Sin(r(u £ 1/2)) = cos () (3.14)
Forr =2, 3 we find
-1 . . .
G :2) = 21/4 —7if2(u) 2—1/4 w102 (u) 1434 V2miu ’ 3.15
(u:2) 2i sin(v/27u) [ ‘ ‘ ( e )] (3.15)
-1 4 4 . .
Gu;3) = gl/4o—mifs(u) _ g—1/4 mifs(u) (1 + ewz(2u/\/§+1/3) + ewz(4u/\/§+4/3) )
(1:3) 2i cos(v/3mu) [ ( )}

3.3 Analytic continuation and Zwegers'h(u; 7)

The results in this subsection will not be needed in the reteopaper, though they establish an interesting
connection. In his thesis [Zwe02], [BFOR17, Chap. 8], Zwsgpits the mock theta functions of Ramanujan
into a modular framework. His Appell-Lerch serigézi, z9;7), see [Zwe02, Sect. 1.3], is a two-variable

Jacobi form of weight /2, except that a term containing

0o miTy?+2muy
h(u;7) := _— I 3.16
wr) = [ et e () >0) 316)
appears in its modular transformations. Zwegers then shmtsby adding a non-holomorphic component,
1 may be completed into a Jacobi form that transforms cogred@he mock theta functions can then be
expressed in terms @f, as in [BFOR17, Appendix A].

The functionh(u; T) also appears in [Zwe02, Sect. 1.5] as the period integralwéight 3/2 unary
theta function. Ramanujan wrotdu; 7) in terms of a partial theta function; see [CR15, Thm. 2.1]Ju§h
h(u; T) has many interesting connections to modular and mock mothrias. We see next that(w; 7) and
Y (u; T) are closely related.
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Lemma 3.3. We have

oo mity?+my(r—2u+1)

i(u— —T e
Y (u; 7) = emitu=1/2=7/4) / e (3.17)

for all w, 7 with

Re(7) — Im(7) Re(7) — Im(7)
2 2 )
Proof. We wish to rotate the line of integratianX 1 in (1.15) and make it vertical, passing througie.

For largeY > 0 we replace the line of integration froy2 to 1/2 — Y + Y by the lines froml/2 to
1/2+¢Y andl/2 +:Y to1/2 — Y + Y. To bound the integral on the horizontal segment

Re(r) >0, Im(r)>0 and < Re(u) <1+ (3.18)

dz,

1/2-Y+iY e—ni722+2m’uz
Jy = /1 e2miz _

J24iY

we letz = z + Y and find

< /1/2 exp (27 [Re(r)zY + Im(T)(iU;; 3_/21)/2 — Re(u)Y — Im(u)z]) i,
1/2-Y €
ForIm(7) > 0 we havelm(7)(z? — Y?) < Im(7)(1/4 — Y'), and so obtain
1/2
Ty < exp(—wY(2Re(u) + Im(T))) / exp(2rxz[Re(7)Y — Im(u)]) dz
1/2-Y
< exp(—ﬂY(QRe(u) + Im(r) — Re(7‘))>. (3.19)

The line of integration from /2 +Y — Y to 1/2 is also replaced by horizontal and vertical lines. A
similar argument shows that the horizontal integral sassfi

1/2—iY e—7ri7'z2+27riuz
Iy = / C g dz < exp(—rY (~2Re(u) + 2 Im(7) + Re(r))).  (3.20)
124y —iy €T —1
Therefore, a¥ — oo, the bounds (3.19), (3.20) imply that- — 0 andJ_y — 0 if the inequalities on the
right of (3.18) are satisfied. This completes the proof. O
Hence . )
o b omi(u=1/2—7/4)p (T 2.
T (u; ) 5¢ h<2 u+ 277'>, (3.21)

initially for all « andr satisfying (3.18). By analytically continuing both sidesui we see that (3.21) be-
comes true for all: € C whenRe(7), Im(7) > 0. Therefore (3.17) and (3.21) give the analytic continuatio
of Y(u;7) to all 7 with Im(7) > 0 (and (3.21) gives the analytic continuation /afu; 7) to all 7 with
Re(7) > 0).

Conjugating both sides of (3.17) shows that, fora#f C and all with Im(7) > 0, we have

W = e”i(7_2“+1)T(u —T;—T). (3.22)
Rearranging and simplifying with (3.3) shows, foni(7) > 0,
YT(u;7)=1—"(u;—7). (3.23)

SinceY (u; 7) exists forRe(7) > 0, the relation (3.23) provides the continuationofu; 7) to all = with
Re(7) < 0. In this way we have extended the definitiomdfu; 7) to allu € C and allr € C except forr on

the negative imaginary axi$—oo, 0]i. It follows that (3.23) is valid for alt- outside(—oo, 0]:. Numerically,

the values ofY (u; 7) for 7 on each side of—oo, 0] do not match, so we may take it as a branch cut. We
have shown:
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Proposition 3.4. For eachu € C, the functionY (u; 7) defined in(3.1) is an analytic function of when
Re(7) > 0. With (3.16)and (3.21)we obtain the analytic continuation i (7) > 0. Then(3.23)gives the
continuation toRe(r) < 0.

Combining (3.22) with (3.9) shows
ie"ri(7“‘2/7_1/4)T(u/T; 1/7) (Re(7) > 0).

wi(T—2u+1) o) —
e Y(u—7;—7) =

This is also
T(—U/T, _1/7_) — \/__Te—wi(u2/7'+2u+7'—3/4)'r(u + T; 7—) (Re(T) < O) (324)

ForRe(7) < 0 andIm(r) > 0 we have the equality of principal square rogts- 7 = e~™/*\/—ir. Putting
this into (3.24) gives

Y(—u/T;—1/7) = \/——he_”i(“2/7+2“+7_1/2)T(u +7;7) (3.25)
which by analytic continuation irr is valid for all = outside of the negative imaginary axis. Translating
(3.25) into a relation foh(z; 7) by (3.21), withz = u + 7/2 — 1/2 and usingh(—z; 7) = h(z; 7), shows

h(z/T;=1/7) = \/——1'7'6_””2/7h(z;7') (3.26)

which is part(5) of [Zwe02, Prop. 1.2]. Therefore we have given another poddB.26) which is proved
in [Zwe02] with the Fourier transform. Alternatively, sfiag with (3.26) and using (3.22), we may give
another proof of Proposition 3.2.

Parts(1) and(2) of [Zwe02, Prop. 1.2] are equivalent to (3.2), (3.3). Réjttranslates into the following
interesting identity. For allk € C and initially for all 7 with Im(7) > 0

1 1 qu? —du — 1 Qu+71 T
Y(u:7)— 7T — 1) = | ) T —— ).
i) =0 (i +1) = oA e (| ] ) 1 (e )

3.4 Bounds forYT and G

The proof of our main theorem will require these next estenat
Proposition 3.5. For all u,7 € Rwith0 < 7 < 1 we have

k
YW () < 772 (1 4+ ]u\)(l i1 jk’;;‘ )

for an implied constant depending only bre Z-.
Proof. Suppose that = z + m with 0 < z < 1 andm € Z. If m > 0, then differentiating (3.4} times
implies
Ay
T(k) . _ T(k) . 3mi/4_—1/2 = emiite)t /T
(u;T) (x;7)+e T jZ::O el

The right-hand terms may be evaluated with the identity

k
%e—‘*(“ﬁ - [(—c)ka(c(w + q))} e~ (o0 (3.27)

andec = e~/ /7 /7, ¢ = j. Hence

m—1
K (o ) (Y —1/2 Sri(kt1)/a (T)F/? _rija VT N\ riGi4e)? /T
T (us7) = T8 (257) = 7 ;)e (T) Hy( M2 ) e (3.28)
=, G
—k/2—-1/2
crreny (140
j=0
/o 1+ |u k
< 7k 1/2(1+yu\)<1+(7%>. (3.29)
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We find the same bound when= z + m with m < 0. This reduces the question to estimatg (u; 7)
for0 <u<1.
Differentiating (1.15) inside the integral is valid and g z = 1/2 + =t then shows

, —7t? je(2u — T)t
TE) (4 1) = —e(mi)*emi@=T/9 / exp ”627:;?_15(1“ 7) )(1+25t)kdt. (3.30)
R

It is straightforward to see that

1 2eV2if ¢ <0,
< _ (3.31)
|e2miet 4 1] 2 if t>0.
We have ( /3 )
K o mTt\ exp(—V2mut i

If we now assume thal < u < 1, then the middle fraction in (3.32) is at masty (3.31). Changing

variables we obtain
k
(9) (). 2 TV [[* dv
T (u77')<</ReXp< e + 5 1+Tk/2 72

and this is< 7=1/2(1 + 7—%/2) whent < 1. Using this last bound foi* *) (z; 7) in (3.29) and simplifying
completes the proof. O

Theorem 3.6. For all v, 7 € R with 7 > 0 we have

7_1/4(1+7'1/2|u|) (1—|—T_k/2+ |u|k) if 7

<
3.33
7'1/4(1+7'_1/2\u]) (1+7'k/2+ ]u\k) if 7> ( )

G*) (u;T) < {

for an implied constant depending only bre Z-.

Proof. From the definition (1.16) and (3.27) we have

.9 k—j
lell )(u T) = /4 7”/82 < >duJ <__m2u > .—dik_jT(ﬁu; 7)

" exp<—m2 n ﬁ) 5 (B)ermars(B) s (1) x50

2 8],:0]

Then, using Proposition 3.5,

G®) (u; ) < 774 Z (1+ |u) (1 + 71/2\uy> (1 +70R2 \uy’f—j)
=
< 7'_1/4<1 + 7'1/2|u|) (1 k2 g lul ) (3.35)

for < 1. Whenr > 1, the relation (3.11) combined with (3.35) finishes the pmfof3.33). O

Corollary 3.7. For A > 0 anda, b satisfying0d < a,b < 1 we have
G(k)(a)\—l + bA; )\2) _ O()\k+l/2 + )\—k—l/2>

for an implied constant depending only bre Z-.
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3.5 Linear independence

The next result will be needed in the proof of Theorem 6.1.

Proposition 3.8. Let7 with Re(7) > 0 be fixed. The functions afin the set
{Gun), ¢Vwr), D), ..., ™)}

are linearly independent for any: € Z~o. (Them = 0 case is saying that, for each G(u;7) is never
identically 0 as a function ofs.)

Proof. Suppose we have

Z ch—j/zc;(j)(u; 7)=0 (u € C). (3.36)
j=0

The constants; may depend on the fixedand it is convenient to include the nonzero factof/2. Replac-
ing G (u; 7) with Y(y/7u; 7) using (3.34), and then replacingby u/+/7 implies

iwj(U)T(j)(U;T) =0 (ueC) (3.37)
j=0

for polynomialsy; (u). Explicitly, for 0 < j < m, we have

. i ( (k=3)/2 i \/_
60 = e () () (s ).

The highest degree term H,, (y) is 2"y" by (6.7) and sa);(u) has degree: — j with highest degree term

Cm <T> (—mi /7)™ ™, (3.38)
Since we know (3.2), it is natural to apply the differencerapa A to (3.37). We have
AT (u; 1) i = YD (w4 157) = YO (u;7) = Lj(u)em“Q/T
for, using the calculation in (3.28) witth = 1,

T ]/2 —7r ™
Li(u) = ~—1/2,3 (g+1)/4<T) Hj<e /4\/7;u>_

Recall that
A(f(u)g(u)) = (Af(w)) - g(u) + f(u+1) - (Ag(u)),
and applyingA to a polynomial reduces the degree by at [dasienceA applied to (3.37) implies

>_A

m— m

Z (A% () TP (us7) + 3 4 (u+ 1) Ly (w)e™ /™ = 0 (3.39)

and a second application gives

l\’)

m— m—1 m

T(J (u;T) + Z Ai(u+1))Lj(u)e miu?/T 4 ZA[T/}]'(U + 1)Lj(u)e7”“2/7 =0.
]:0 7=0 7=0
After a total ofm + 1 applications of the difference operator to (3.37), the fioms T(j)(u; 7) disappear

and we are left with i

Em: N [(A%(u v 1))Lj(u)em2/7} — 0. (3.40)

k=0 j

3

Il
=)
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To expand (3.40), note the easily verified relations

Define the polynomiaky, ;(u) := (A*y;(u + 1)) L;(u), and the left side of (3.40) equals

m m—k
Z Am—k [hk,j (u)eww2/7:|
k=0 j=0
m m—km—k m—k
Z Z < )Am k— ’"hkj(u—kr) AT T 2/r
k=0 j=0 r=
m m—km— k
_ em’uQ/T Z (m - >Am_k_rhk7j(u + T‘) . Z e7ri€2/’r(_1)r—é <T> eZWiZu/T' (341)
k=0 j=0 r=0 " £=0 ¢
Dividing both sides of (3.40) by’”'“2/ 7 implies with (3.41) that
Z (b 27rz£u/7— — (342)

for polynomialse,(u). Clearlye? %/ only appears in (3.41) wheén= 0, and so for = r = m in (3.41)
we find

Om(u) = mm2/72¢] (u+m+1)Lj(u+m).
7=0

The degree ob,,(u) is m sincey;(u) has degreen — j andL;(u) has degreg. The coefficient ofu™ in
¢m(u) is therefore, using (3.38),

S )
= J T T
e Ty <m> (ﬂ) <@>
— \J T T

J
—c ,7_—1/267ri(m2/7—+3/4) <_‘IZ> ) (343)
’7—

However, it follows from (3.42) that all the polynomialg (u) are identically0. A simple way to see this is
to putu = —iTy and examine the size of each termyas> oo. Hence (3.43) i$ and soc,,, = 0. Repeating
this argument shows that all of the coefficieaiscy, . . ., ¢, in (3.36) ared, as we wanted to prove. [

4 Some series expansions

4.1 The Riemann-Siegel functionj(s)

We begin with
Lemma 4.1. Suppose € C satisfiess € I andt # 0. Then for allk, R € Z~( we have

1 1 k+r—1 1
T~ T - ( ><Zt> +O<—!t!k+3> (4.1)

for an implied constant depending only bnk: and R.
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Proof. By Taylor's Theorem and bounding the integral form of the agrder in the usual way, as in (2.18),
we have

R-1
—k
14 2)7F = r k 4.2
=3 ()= o0 @2)
for all z € C when|z| < 1/2, say. The coefficients of” in the sum (4.2) are given by the Generalized
Binomial Theorem. Withe = o /(it), this proves (4.1) wheft| > 2|o|. If 0 < [¢| < 2|o]| then

1 Rzl k4r—1 r
(0+zt (it)k it
R—1
k‘—I—T‘—l r —r ]{,‘—F’I"—l r —r
<\t\R+ < . >\a\ |t|F <y2a\R+Z< . )yay 205" = O(1).
r=0

r=0

Mk—i—R

Hence the error in (4.1) i©(|t|~*~F) for 0 < |t| < 2|o| as well, completing the proof. O

Hermite and Barnes gave the asymptotic$ogfl'(z + a) as|z| — oo when0 < a < 1. These shifted
argument results and further improvements are describpdeim13]. See also [Olv74, Ex. 4.4, p. 295], for
example. Our next proposition shows the asymptotice®f’(s), for s in any vertical strip, in terms of
andt. It agrees with the previously mentioned work witeg o < 1.

Proposition 4.2. Suppose € C satisfiess € T andt # 0. Then

N-1
B 1 1 Byt (o) 1
logI'(s) = <s 2> log it — it + 5 log 27 E <t> R+ 1) +0 P

k=1

for an implied constant depending only é@nd N € Z~ ;.

Proof. Stirling’s series as in [OIlv74, p. 294] states that forsaét C with s ¢ (—oco, 0] we have

M-1
_ log2n Bon 1 Bon (v — |v])
logT(s) — (5 — = |1 - - —d 4.3
og1'(s) <3 2> 088 H s Z2n(2n—1)32"1 2M/ wrspr 0 43

whereM € Z-1. We may replace the last term in (4.3) with{1/[¢|*"~1) since

| Bapr (v — |v])] > 1
/0 o+ P27 d”<</_oo<<v+o> Z 5 )M

where the last equality is [GR07, 3.241.4]. With Lemma 4.1may write each /s>"~! term in (4.3) as

1l o — 2\ (=)L (io)T o 1
g2n—1 Z r t2n+r—1 + ’t’2n+Rn—l :

r=0

r(M-1/2) 1

7dv = VT T(M) ||2M 1

ChoosingR,, so tha2n + R,, — 1 = 2M — 1 we find that the left side of (4.3) equals

I ) e G Y (N
— 2n(2n _ 1) —~ r t2n+7"—1 ’t’21\/[—1
_ 2%32 f L(]H_Zl%/% k—1 B2n O_k+1—2n + 9] 1
N = th = \2n—2)2n(2n —1) |t|2M -1
2M —2 A
B i k+1 . 4n]l 1
_—Zm{Bk_i_l(O’)—f‘TO’ — g t—k—i—O W .

k=1
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Therefore

1 1
logT'(s) = <s— 5) logs—s+—log27r
N-1 ‘k

k(k+1) [B’““( HEU’“U’“”] +O<ﬁ> (4.4)

2
k=1

A similar proof to Lemma 4.1 shows that, ferc I andt # 0,

N-1

. o io)k
log s = log(it) + log<1 + E) log (it) Z g{j ,)519 <|t|N>

k=1

where the implied constant depends only/ére Z-; andI. Hence

1 i\ [ok ot 1
— =) logs = (s—1/2)log(i i Y A — 4.5
<s 2> ogs=(s—1/ )og(zt)—l—a—l—;<t> [% k(k+1)]+O<HN> (4.5)
Inserting (4.5) into (4.4) completes the proof. O
Since—2id(s) = (s — 1/2)log m + logI'((1 — s)/2) — log I'(s/2) we easily now obtain

Corollary 4.3. Suppose € C satisfiess € T andt # 0. Then

) = (5 5) s gy~ 5~
Y mmnca. o)

for an implied constant depending only é@nd N € Z~ ;.

Corollary 4.4. Suppose # 0. Then

N1
, it| ¢ ) )" 1By, (1/4) 1
9(1/2 t_—l — ——— = — O
(/ +Z) g2 2 Sgn 8 Z 2’1’L—1’I’L t2” 1 + |t|2N—1

n=1
for an implied constant depending only &he Z- ;.

Corollary 4.4 agrees with [Gab79, Satz 4.2.3(b)Ras (1/4) = 2727(21 72" — 1)(=1)"*| By, |.

4.2 De Moivre polynomial expansions

The De Moivre polynomials4; ; give a convenient and explicit way to express the seriedficmafts we
need. They complement the methods of Riemann and Siegel basgenerating functions and recursions.
Let p1, p2, p3, ... be any sequence of complex numbers and consider the formes ser + poa? +

psz3 + ---. For integersi andj with j > 0, the generating function definition ol; j(p1,p2,p3,...) Is
given by ‘
(p12 + poa® +psa® +---) = Z Aij(p1,p2,p3,... )" (4.6)
i€Z

Fori > j we note that

j W -
Aij(p1,p2,p3,...) = E (E / / >p11p22~'pfn, 4.7)
1014204+ mlpy=i 152, vem
€1+é2+ é'm—J
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form = i — j 4+ 1 where the sum is over all possible, (o, ..., ¢y, € Z>o. HenceA,; ;(p1,p2,ps,...)is a
polynomial inpy, po, . . ., pi—j+1 0of homogeneous degrgewith positive integer coefficients. For instance,

As 4(p1, 2, D3, - .. ) = pa + 12p1p3ps + 6p3p3 + 12pTpaps + 4pips.

The paper [O’S] gives a detailed account of these polynavdal their history. They may be expressed in
terms of the closely related ‘partial Bell polynomials’ whiare included in the Mathematica system, for
example.

Based on the terms in Corollary 4.3 we make the definitions

Bui1(0/2) + (=1)" "' B (1 — 0)/2)
2n(n + 1) ’

un(0) = (2™ Y T Ani(1(0), fo(0), ). (4.9)
k=0

fulo) :=

(4.8)

Then f,, (o) is a polynomial of degree + 1 with rational coefficients. Henced,,, »(fi(o), f2(o),...) has
degree at most: + k. It follows thatu,, (o) is a polynomial with rational coefficients. Its degree isctka
2m since it may be checked that the coefficientdf* in u,,(c) is (—1)™/(4™m!). We have for example
up(o) = 1 and

ui(o) = (=1 +60 —602)/24,  uy(o) = (14 360 — 960> + 240> + 360%)/1152.

The next result requires the finite version of (4.6):

(plw +p2x2 +---+ prwr)j = Z Ai,j(p17p27 <oy Pry 07 07 s )xl (410)

Theorem 4.5. Suppose € C satisfiess € I andt > € > 0. Then

s 1 t it — 1
exp<<§—z>lg2——5—§— > (tL> (4.12)

m=0

for an implied constant depending only énc and L € Z~.

Proof. We first note that for alk € C with |z|] < 7', and with an implied constant depending only on
K € Z>o andT', we have

K= Z
; o+ 0(|2]%) (4.12)

by Taylor's Theorem with the usual remainder estimates.oS8a@nyN > 1 and set

N-1

2 = <§—i>log%—%—%—w(s)—Z<2Z> falo)

n=1

for any s satisfying the conditions of the theorem. Then by Corollagthere is a constait;  so that

|zl < Crn/tY < Cr /el
Using (4.12) withT' = C y/eV and K = 1 we obtaine* = 1 + O(1/t"), so that

exp<<§ - i) log % - z—t - %T - w(s)> — exp <§<%>nfn(a)> (1 + 0<tiN>> (4.13)
—on( X (%) ) o) e



WhenN = 1 we meanl + O(1/t) on the right of (4.13) and (4.14). Fo¥ > 2, (4.14) follows from (4.13)

by using that
Nf(%nma) -o(}) = exp<]v§_f(¥>"fn<a>> _ o). (4.15)

n=1 n=1

Itis also true by (4.12) and the left bound in (4.15) that

exp (jvi <%>nfn(a)> _ Ki‘l % <J§<%>nf”(g)> : N o<tiK>. (4.16)

n=1

By (4.10), the sum on the right is

(N-1)(K-1) _o\™ min(m,K—1) 1
= 2, <z_> X l;) EAmk(fl(a),...,fN_l(a),O,O,...). (4.17)

Recall thatA,, (fi(o),..., fn-1(c),0,0,...) just requires the first — k + 1 terms of the sequence

fi(e),..., fn-1(0),0,0,... and so will not use thé terms ifm — k+1 < N — 1. Therefore we may write
(4.17) as
-\ &1 1
Z<7> X yAm,k(fl(U%h(U)w--)+O<tN—_1> (4.18)
m=0 k=0 "

if N —2< K — 1. Assembling (4.14), (4.16) and (4.18) yields

T\ &1 1 1 1
- <7> x> i Amk(f1(0), fa(0), ) + 0<tN—_1> + O<W> + o<t7>
for K = N — 1. LettingL = N — 1in (4.11) completes the proof. O
Corollary 4.6. Suppose € C satisfiess € I andt > ¢ > 0. Then
exp(id(s)) = O(t”/2_1/4>, exp(—id(s)) = o<t—0/2+1/4) (4.19)

for implied constants depending only émnde.

Proof. By Theorem 4.5 withl, = 1,

s 1 t it am 1
exp<<§—1> log%—g—g—zﬁ(sv —1+O<¥>. (4.20)
It follows simply that the reciprocal of the left side has g@me bound:
s 1 t it oam 1
exp<— <§ - Z) log 7 + 3 + ) + zﬁ(s)) =1+ O<;> (4.21)

Multiplying both sides of (4.21) byxp(($ — 1) log &= — % — ) and bounding gives the left estimate in
(4.19). The right estimate is similar, manipulating (4.20) O
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It should be possible to replace the restrictio ¢ > 0 in Theorem 4.5 and Corollary 4.6 with just
t > 0. This would require a more careful treatment in Proposiddhwhen|t| < 1. Our applications will
only requiret > 27 in any case.

Set

gn(o) := —% and (o) = zmz — A i(91(0),92(0),...)

so that, for instancey,(¢) = 1 and
y1(0) = (=14 60 —60%)i/12,  72(0) = (=1 + 360 — 12002 + 1200° — 360%)/288.

Then a similar proof to that of Theorem 4.5, using Propasid®, gives the asymptotics of tliefunction
in vertical strips:

Proposition 4.7. Suppose € C satisfiess € I andt¢ > ¢ > 0. Then

. . L1
_ Varexo( T i _ T2 [ aml@) o L
I'(s) = 27Texp< 5 it 4>t <m§::0 m +O<tL
for an implied constant depending only 6ne and L € Z.

The power series coefficients (s) of w(z, s) in (2.2) and (2.3) may also be expressed in terms of De
Moivre polynomials. For this we will need the identity

o0 n k
u
exp(u(p1z + par? +...)) = Z " Z A i (p1,D2, - - )H. (4.22)
n=0 k=0
Define
m An7r(%7_%7%7...)m—”Am_mk(l,—%,%,...) &
(o) = . > - (0 —1)*. (4.23)
n=r k=0
Proposition 4.8. For all £ € Z>(, we have
Lk/3]
ap(s) =Y i dp_gpp(0) - t7F2, (4.24)
r=0

Proof. Expanding the logarithm in (2.2) into its power series arehtBmploying (4.22) produces

w-en(o S 2 () ) £ )

<

o0 z n n (O__l)kj o0 Py m m (ZzZ)r
- I A”vk 17_1717 <_> Am,?” ly_l,l7
(nz:;)<\/%> kzz;) ( 273 ) k! mz::() Vi ; (3:—13 ) o
oo<z>hzh: ) zh:A (l_ll )h_mAh k(l_ll ) .
= W (ZZ )T T30 '4’5"" —m, 7' 2739 (0__1)
h=0 \/z r=0 m=r r k=0 k
Therefore
00 h
’LU(Z,S) = Zt—h/2zir dy, (O’) . pht2r
h=0 r=0
o0 lk/3]
= Z Sk i dk—2r,r(0) k2 -

0
For examplezg(s) = 1, a;(s) = (o — 1)/t'/? and
as(s) = (02 — 30 +2)/(21), as(s) = (0% — 60% + 110 + 2it — 6)/(6t>/2).

Siegel gaveu(s) in terms of the recursion (1.9). The advantage of Proposii® is that it gives explicit
formulas for the coefficients of the powerstdh ay(s). These formulas will be needed in the next section.
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5 Proof of most parts of the main theorem

Our goal in this section is the next result.

Theorem 5.1. Recall the statement of Theorem 1.5. This statement, veitthinge that the implied constant
in (1.21)may also depend chwhen\ < 1, is true.

Proof. We begin with Theorem 2.1 and multiply both sides of (2.4}1¥*). Corollary 4.6 gives the estimate
e(s) = O(t7/2-1/%). It is convenient to abbreviate the inner sum in (2.4) as

ko sk )/t ) oTi(k—3r) /4
ey ::Z<T>G (aX +b)\;)\)WHk_T(wA). (5.1)

r=0

Thus we have shown the following. Let € I andt = 2wag for real numbersy, 3 > 1. Then for all
N € Z>o we have

. (s o (27T)se7ris/2
R(S7O£,,8):€ ()(_1)L JLﬁJW
m _ 2y-2 242 f__ _i_t_i_ﬂ
xexp<2 [2@5 2ba+a” A~ b)\ >exp<<2 > 5 8>
N-1

1/4 1—04—1/4

2m A%

X <7> )\1/2 s ak(s) . Ck( ) + O (W) . (52)
k=0

The implied constant in (5.2) depends onlyQnV and . If A > 1 then the implied constant is independent
of A\. We may simplify the initial terms on the right of (5.2) by mg that

—2i9(s) _ _ (2m)°
c x(s) 2cos(ms/2)[(s)’
Then
s ,mis/2 s /2
sy (2m)%e _ id(s)__€ 9 9) o~ 2i0(s) 53
e —F(s)(e2”3 Y e 7(627% Y cos(ms/2)e (5.3)
) TS —id(s)
_ 6—219(5) (& ' +1 _ 6' _ (s )(1 + O( —ﬂt))

e27rzs -1 emis _

So replacing the left side of (5.3) withe=*?(%) in (5.2) introduces an error of size

9(s) ¢ (s—1)/2 12 N-1
e " <%> AETE Z ag(s) - cp(N)

k=0

e . (5.4)

By Corollary 4.6,e=*(s) = O(t=7/2+1/4), We havea(s) = O(1) by (2.40). With Corollary 3.7 and the
fact thatH,,(x) has degree, it follows from (5.1) that

cr(N) < AFFY2 o \h=1/2, (5.5)
Putting these estimates together shows that (5.4) is

0 (/\1/2—0 (/\N—1/2 + /\—N+1/2)t—1/4e—7rt) ‘

Our results so far have established the next estimate ¢iagla/ with M).
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Proposition 5.2. Leto € I andt = 2wap for real numbersy, 5 > 1. Then for allM € Z~, we have

R(s;a, B) = (—1)ldl81+1 exp(% [Qaﬁ R b2/\2}>

cop( (5= N iogt T i) (22) e S o
ep((5-7) s —5 — 5 10 ) (5 ar(s) - cr(N)

k=0

AP77 i ey mm A
+0< 7 (A 2+ /)e + s |- (56)

The implied constant i(b.6) depends only o, M and\. If A > 1 then the implied constant is independent
of \.

The proof of Theorem 5.1 continues by inserting (4.11) an@4into (5.6) to obtain the desired asymp-
totic expansion in decreasing powerg 0An argument similar to the one bounding (5.4) shows thatdts
error introduced from the error term in (4.11) is

O<>\1/2—0' (/\M—l/2 i )\—M—H/2)t—1/4—L>' (5.7)

Ignoring the constant and modulipieces of (5.6) for the moment, we have

\L/2-s (=1 (o) M-1 Lk/3] 1
£/ (Z <z't>’”> 2 W\ 2 i)
J:

m=0 k=0
)\1/2—8 M+2L-3

=T X wE 2 G T dia(0) (o)

n:O m7k7j7
2m—+k—2j=n

1 (ken
- 11/4 Z /2 Z ck(A) - ith=m/2 Z dk—2j,j(‘7) : Uj+(n—k)/2(0) (5.8)
n=0 j

where in the last line we are summing over/alind; such that

k=nmod2, 0<k<M-1, 2-2L+n<k<3n, (5.9)
0<j<k/3, (k—n)/2<j<(k—n)/24+L-1. (5.10)
The natural ranges éfand;j are0 < k£ < 3n andmax(0, (k—n)/2) < j < k/3, but for largen these ranges

become truncated. We may choa$esmall enough in relation td/ and L so that, for0 < n < N — 1, the
ranges ofc andj are not truncated. This requires

M>3N+1, L>N/2+1. (5.11)

The size of the remaining part of the sum (5.8) wkh<. n < M + 2L — 3is O(t~V/2=1/4) in t (see the
next lemma) and we also require that the e@gt—/6-1/4) in (5.6) and the erro©(t~L~1/%) in (5.7) are
both less than this. This requird¢ > 3N andL > N/2 and so is already ensured by (5.11). Givénwe
therefore choosd/ = 3N + 1 andL = [N/2] + 1.

Lemma5.3. We have

A1/2-s 3N+2[N/2] 1
/4 Z 2 Z cr(A) it Z d—25,(0) * Wiy (n—i)/2(0)
k J

n=N

A/2me 3N+1/2 | \—3N—1/2

where the indice¢ and j sum over the rangg®.9)and (5.10)for M = 3N + 1andL = [N/2] + 1. The
implied constant depends only éhandI.
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Proof. By (5.9), the largest appearing in the sum &V. Therefore;, ()\) is always< A3V+1/24 \—3N-1/2
with (5.5). The other bounds are clear. O

Forn = k mod 2 let

Lk/3]

Gnk(0) = Z dk—25,j(0) * Wiy (n—k)/2(0). (5.13)
j=max(0,(k—n)/2)

With the definitions (4.23) and (4.9) it is clear thgt; (o) is a polynomial ino with rational coefficients.
Sinced,, (o) has degreen — r andu,, (o) has degre@m it follows thatg, 1 (o) has degree at most

For our choice of\/ and L, the error in (5.12) is larger then the error terms in (5.6) én7). Therefore
we have shown that

R(s;a, B) = (—1)ldlBl+1 exp(%Z [2aﬁ — 2ba + a*\T? — b2)\2} > (2m)1/4

A/2—s N2y (e—m)/2 kol Y ) emilk—3r)/4
X t1/4 nz:;) tn/2 0<%<:3 1 qn,k(U) z_; <T> G (CL)\ + b)\7 A )WHIC_T(WA)
k‘E;, H:O(QLZ =

A/2me 3N+1/2 | y—3N—1/2
+0 tN/2+1/4<>\ A ) . (5.14)

The sums ovek andr in (5.14), after interchanging, are

3n

3 G (aA™! + b >\2)e7ri(n—37")/4 Z k\ (—1)(k)/2
(2m)r/2 r

r=0 r<k<3n

k=n mod 2

Recall thatvy = e~™/4, /Z(aA~ — bA). Write the inner piece as

o k -1 (n—k)/2 .
Py gn—r(7,0) := gmin—3n/d Z <r> (% “qn k(o) - Hy—y <€ ’”/433).
Then e
k/2
« 3n — 20\ (—1)"** .
Pn,k((L', U) = eSWZk/4 Z <3n _ k> ( 2]9}24 . Qn,3n—2£(0) . Hk—QZ (6 /41'> . (515)
/=0

Clearly P, ;(x, o) is a polynomial inz ando with degree at most in z. A short calculation finds that the
coefficient ofz* isi* (%) /((—3)"n!) and so the degree is exactly The complete construction &, ;. (z, o)
is repeated for convenience in (6.1). This finishes the ppbdheorem 5.1. O

If A < 1then the implied constant in Theorem 5.1 may have exttapendence; this can be traced back
to Proposition 2.4. We will use the symmetry (1.19) to fix tisisue in the next section and complete the
proof of Theorem 1.5.

6 The polynomialsP, ;(z, o)

6.1 A functional equation

Recall the Bernoulli, Hermite and De Moivre polynomialsrfr@2.1) and (4.6). Assembling our results, we
may give a complete description &, ;.(z, o) in terms of these polynomials as follows. In (4.8), (4.9) and
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(4.23) we defined

Bpy1(0/2) + (=1)"*' Bnia ((1 - 0)/2)

fa(0) 1= T ) , (6.12)
m % 1
um(0) = (=2)" Y 5 Amk(f1(0), f2(0), ), (6.1b)
k=0
i (l, i) & Ak (1, -2,4,.0)
:Z e > - 203 (o — 1D (6.1c)
n=r k=0
Rearranging (5.13) we may set
1£/3]
Qn,3n—2€(0) = Z um(U) : dn—2m,n—€+m(0) (61d)
m=max(0,{—n)
for 0 < ¢ < |3n/2]. Then as we saw with (5.15),
[k/2] ¢
3mik/4 n—20\ (=1)"F —mi/4
Py i(x,0) = ™/ g <3n _ k)W In3n—20(0) - Hk—2£(€ / 96) (6.1e)

We next show that the polynomial3, ;. (x, o) obey a functional equation as— 1—o. It seems difficult
to prove this directly with (6.1); our proof is based on Traurs.1.

Theorem 6.1. Forall z,0c € Rand alln, k € Z with0 < k < 3n we have

P, i(x,0) =Py p(—z,1—0).

Proof. Recall thatR(s; «, 8) is unchanged under the transformatiprgiven in (1.25). All the components
of the right side of (1.21), except for possibl, i, are also unchanged undgr For example

T(AY2=s) = (1/M\)1/2-(1-%) — A2
TGO (@A +bXA2) = GOOA+ar1;A72) = GO (ad~! +bA;\2)

using (3.11). Hence, by Theorem 5.1 we obtain

Nzl 1 ZG(" (aX~1 +bA; A2)
tn/2 271' r/2

VT NG _ 1
Pn,3n_7«<ﬁ((l/\ —b/\),O' —Pn’3n_7- ﬁ(b)\—a/\ 1),1 — 0 =0 W (62)
where the implied constant depends 8ne Z-, and also om\ and o which we assume are fixed. We
choose\ such that\? is a rationah: /v with (u, v) = 1. If we think of « varying then we have the dependent
relations

X

B:Ea, t:27rga2, a=a-—|al, b="La— LgaJ. (6.3)

u u u u
Supposexr = aq has the correspondingandb valuesay andbg, respectively. Then clearly = ag + u will
have the same andb values. Hence, fot taking values in the sequenge - (oo + ku)? for integersk, the

inner sum in (6.2) is unchanged with= ay andb = by. By letting k£, and hence, become arbitrarily large

we obtain
Pn,3n—7" <ﬁ(a/\_1 - b/\), U) - Pn,3n—r <ﬁ(b/\ - a/\_1)> 1- U)] =0

i": GO (aA™ + bA; A2)

2y 72 V2 V2

r=0
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for a = ag andb = by andn < N — 1. This follows since we may first show that the coefficient o° must
be0. Then the coefficient oI/tl/ 2 must beo, etc. (If asymptotic expansions exist then they are unjque.
Let
fa) :==aX™t + b, gla) = a\~t — b\,

wherea andb depend orx as in (6.3). As we already savfi{«) and g(«) both have periodi. The next
result shows which values they can take and we omit its eleameproof.

Lemma 6.2. For f(«) andg(«) as defined above:
() The functiong(«) is constant orw + v — 1 non-empty intervalge;, «;1) which partition[0, ).

(i) The valuegy(«) takes are

\/i_v forintegers¢with 1 —u<f<v—1. (6.4)
(i) On each interval[z;, z;;1) Whereg(«) is constant, the graph of(«) is a line of slope2/\.

Fix z as one of thg/(«) values in (6.4). By part (iii) of the lemma we have

31 (1) (42 A2 T G
TZ::O % [Pn,3n—7" <%$7 U) - Pn,3n—r <_%$7 1- J)] =0 (65)

for w in some non-empty interval. Since ea6i) (w; \?) is a holomorphic function ofo, it follows that
(6.5) is true for alkw € C.
The linear independence of the derivativegzoshown in Proposition 3.8 implies that

Pos( Vo) = P (- Vo1~ ) (6.6)

is 0 for everyk with 0 < k& < 3n. Hence the numbers (6.4) givet+ v — 1 distinct zeros of the polynomial
(6.6) inz. It has degree at mo8t in z. Returning to our choice of?> = u/v, we may choose a reduced
fraction so that: + v — 1 > 3n. This gives too many zeros and so (6.6) is identically zen@gsired. [

Proof of Theorem 1.5By Theorem 5.1, we know that Theorem 1.5 is true Xog 1, so assume that < 1.
Then by (1.19) we hav&(s; a, f) = R(1 —5;3,«). We may apply Theorem 5.1 tB(1 — 5; 5, «) and
obtain an error that is independent xf All the components of the right side of (1.21) are invarianter
the transformatiory in (1.25), including theP, ;. term by Theorem 6.1. In this way we obtain Theorem 1.5
when\ < 1. This completes our proof of the main theorem. O

6.2 Formulas for the coefficients

With the well-known formula for Hermite polynomials

[n/2] .
=n! Z = 2] (2z)" % (6.7)
we obtain from (5.15)
Lk/2] ntt Lk/zj Y=tk (g yk—2m
_ (3n —20)! (—-1)"* (296)
Pn,k(xﬂf) = ;0 (37’], — k)' 2k 20 * qn,3n— 25 ZZ _ 2m)
n  Lk/2] k m k 2m m
(=D + 0 (3n — 2€
_(Bn—k)!z( —2m'z4 Ty Inan—2el0):
m=0 =0



For0 < m < |3n/2] put

3n—2€
Snm Z * (n,3n— 26( ) (68)
=0
so that 2]
_1\nzk 2 k—2m
Po(a,o) = DTS snmlo) a7 (6.9)

(3n — k)! = (4)m (k —2m)!

An easy calculation with (6.9) gives the next result, sh@gsow Theorem 6.1 may be interpreted at the
level of the coefficients oF, ;(x,0).

Lemma 6.3. Letn be inZ-,. For all integersk with 0 < k < 3n, we haveP, y(z,0) = P, x(—z,1 — 0)
if and only if
Spm(0) = (=1)"spm(1 — o)
for all integersm satisfyingd < m < |3n/2].
Theorem 6.1 and Lemma 6.3 show in particular that,(1/2) = 0 for m odd. Hencem may be
assumed to be even in (6.9) wher= 1/2. We obtain

( )n -k k/4J o Sn.2m 1/2) wk—4m
(3n —k)! < 16m  (k—4m)!

P p(x,1/2) = (6.10)
In the caser = 0 we see thai’, ,(0,1/2) is zero ifk # 0 mod 4. This explains why only every fourth

derivative appears in the classical Riemann-Siegel fam(l.11), (1.24).
The coefficients of the highest powersaoin P, ;.(x,0) may be computed explicitly:

. (—1)"* (3n
zt 2] < L) (6.11a)
2 (=Dm* ! Bn -2\,
T 3T i\ k2 (0 —1/2), (6.11b)
h—d (=D™*  (Bn—4\[3n-1 1
© s ) ( .4 50 2(0 1/2)?], (6.11c)
k6 (=™ Bn—-6), 9n® —20n+9 n-2
A 32—\ k-6 (0 —1/2) 50 5 (0 —1/2)%|. (6.11d)
The general pattern continues with the next coefficient
=y (—=1)"*  (3n -8
' 3n=3(n -3\ k-8
2141 1 22 2 -
[63" 5600" 31 g, 5y 20 43" T3 12 3 1/2)4} (6.11e)

These calculations use (6.9), (6.8) and (6.1). Finding (o) involves the De Moivre polynomials and we
used the explicit expressions fat, ., A,1,, A.2, and so on, given in [O’S, Sect. 2]. The algebra to
obtain the coefficients in (6.11) was carried out with Mathéoa.

7 Examples and numerical work

7.1 The casex =25

The classical case of the Riemann-Siegel formula has tlggherof the partial sums equal, so that= 3
andX = 1. In Theorem 1.5, the next simplest case has the length of amialpsum twice the other:

0=28 — A=13 a:\/z, 5:1\/2
T 2V m
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With a andb the fractional parts o2 and g we obtain

R(5;28,5) = (—1)2AIH exp(mi(aB — 2b8 + a® /4 — b?))

(2SR 2V [N GO (a/vE o VEbi2)
t tn/2 (2m)r/2

. Pn,?m—r (ﬁ(a/2 — b), O')]

o(1—0+3N)/2
+0| 5 |- (D)

n=0 r=0

As we saw in (3.15), wittfly (u) := u?/2 — v2u — 9/8,
-1 . . ‘
G(u;2) = 21/4 —mifa(u) 2—1/4 w62 (u) 141 V2miu ]
(u:2) 2i sin(v/2mu) ‘ ‘ ( e ﬂ

It is easy to see that the polynomidfs s, (z, o) in (7.1) are only evaluated at= 0 if b € [0,1/2) and at
x = —y/m/21f b € [1/2,1). This corresponds to Lemma 6.2 with= 2 andv = 1. Examples of (7.1) for
s = 3/4 4 400i and different values o are displayed in Table 3, correct to the accuracy shown.

N Theorem 1.5

1  0.11628656704 4 0.031020387224

3 0.11503659264 + 0.03134163666%

5 0.11503572670 + 0.031341462291
0.11503572550 + 0.03134146183¢ R

Table 3: The approximations of Theorem 1.58¢= R(3/4 + 400i;20/+/7,10/\/T).

7.2 An example with increasing\

Suppose we take = t¢ in Theorem 1.5 for some > 1/2. Then

" 2ra

The error term in (1.21) i©) (¢~ (¢~ 1/2)(0—1/2)+N(Be=2)~1/2) and so we require < 2/3 for this to decrease
with N. If we takec = 5/8, for example, then Theorem 1 5 gives
R(S;tS/S t3/8/(2ﬂ‘)) _ niA(t)(QW)3/4—st—l/8—s/4

r)(\/t;_t—l/S + by/2mtY/8; 2L/

3n G(
. Z t"/2 Z - 2rm)/2 'Pn,3n—r(gt_1/8 — bﬂtl/s,o—)]

1
+ O<t(N+1+cr)/8> (7.2)

for B 2
A(t) — LtS/SJ Ltg/S/(27T)J +1+ at5/8 _ b2— + 4_75—1/4 _ b27Tt1/4
s 78

anda, b the fractional parts of*/8, t3/8 /(2rr). The derivatives of7 in (7.2) may be expressed in terms of
Hermite polynomials and derivatives @f as in (3.34). Then the derivatives ®f can be computed with
(3.30). Table 4 shows each side of (7.2) wken 1/2 + 256i.

Itis natural to consider the differend®(s; ., ) — R(s; o/, '), as the((s) terms cancel. Witlay = ¢°/8
as above and’ = ¢%/% /2 we may obtain the asymptotics of

61'19(5)( 3 i) B 61'19(1—5)( 3 11 )
s —s |’
BSS eriis s s "

<n<t5/8

for example, with (7.2) minus a similar expression.
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N Theorem 1.5

1 —0.12120812956 4 0.00884587559%
2
4

—0.12075592244 4 0.007894946867
—0.12074208191 + 0.007877297241
—0.12074212743 + 0.00787728177: R

Table 4: The approximations of Theorem 1.5R6= R(1/2 + 256i; 32,4 /7).

7.3 OnthelineRe(s) =

Wheno = 1 there are some simplifications in the definitionff (x, o) in (6.1). With basic properties of
Bernoulli polynomials we find

o Bn+1
fa(1) = n(n + )2t

Also, ford,, (1) in (6.1c), only thek = 0 term can be non-zero. Thef,,_, o(1, 11 .) is zero unless
n = m. Therefore

(1) = Ay (5 =1, 3,/
With this, the first polynomial$’, ;. (x, 1) for 0 < k < 3n are Py 0( 1) =1and

P o(z,1) = —%, P i(z,1) = —iz, Pia(z,1)= — %, P 3(x,1) = §x3 + %w
Forn = 2 we have

Po@l) = d, P l) = te P l)= 3ot +d Poafel)= - %
Poalw, 1) = ga* —iz® + 5, Pps(w,1) = §x5+2x +ix,
Pog(w, 1) = —gga° + gat — ga? + 4. (7.3)

For example, taking = 1, t = 600 and«/ = 5/3 in Theorem 1.5 gives the results in Table 5.

N Theorem 1.5

1 0.07827091811 — 0.07657008324¢

3 0.07798494014 — 0.076932556931

5 0.07798504883 — 0.076932660471
0.07798504890 — 0.07693266040¢ R

Table 5: The approximations of Theorem 1.5%6= R(1 + 600i; /500/7, \/180/7).

7.4 On the critical line

Foro = 1/2 we have already seen with (6.10) that the polynomid|s.(x, o) take a simpler form; only
coefficients of powers af that are congruent tb mod 4 can be non-zero. For examplg, o(z,1/2) =1
and

Pio(x,1/2) = =3, Pua(z,1/2) = —iz, Pia(x,1/2) =2, Pis(z,1/2) = La°. (7.4)

Of course, (7.4) is a special case of (1.23). ket 2 we have

P27()(1', 1/2) = %, P271(x, 1/2) = %1‘, P272(x, 1/2) = —%1‘2 P2 3(% 1/2) = %x?’,
Pyu(x,1/2) = 32t + 3, Pos(x,1/2) = §2° + S, Pag(x,1/2) = —Fab — j22. (7.5)

We give a more detailed numerical example in Table 6fer1/2 4 800: anda/3 = 4.
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N Theorem 1.5

1 —0.07966764263636 — 0.073735049301147¢
3 —0.07957371736089 — 0.07351910859701¢
5
7

—0.07957365182034 — 0.07351897839664 1
—0.07957365178158 — 0.073518978259651
—0.07957365178152 — 0.07351897825948: R

Table 6: The approximations of Theorem 1.58¢= R(1/2 + 800¢;40/+/7,10/\/).

Specializing (6.11) ter = 1/2, and extending the calculation #¢—!'2, shows that the highest degree
terms inp, (x,1/2) are

Py (,1/2) <3n> zF N <3n —4) 3n—1 2k

(—1)nik k ) 3nn! k—4 20 37 2(n — 2)!
3n — 8\ 63n2 — 141n + 31 xk—8
(3n—5)———
k—8 5600 3n=3(n — 3)!
3n — 12\ 567n* — 4374n3 + 1096812 — 9621n + 1280 xh—12
n=3) gy + - (7.6)
k—12 112000 3n—4(n — 4)!

The formulas in (7.6) only make sense fotarge enough. FoP, ;(z,1/2) to containz®~!2 for instance,
we needk > 12 and hence: > 4. It may be verified that the coefficient of ~'2 in (7.6) is always positive
for thesen andk. Similarly, the higher powers af in (7.6) always have positive coefficients. Combining
these calculations with (6.10), we have proved:

Proposition 7.1. The terms inP,, ;. (, 1/2)/((—1)"*) may only contain powers afof the formz*—*" for
0 < m < k/4. For thesem values, the coefficients of —4m are always positive i < m < 3.

To examine this positivity further, e, ;. be the set of all the coefficients of 4™ for0 < m < k/4
in P, x(z,1/2)/((—1)"i*). Let S, be the union of thess,, ;. for k in the ranged < k < 3n. Then further
computations show that all the elementsSgfare positive fo) < n < 50. It seems likely that this positivity
continues for all. This would also imply that the sign pattern f6f,(a) we see in (1.11) continues for all
n, with positive coefficients for, even and negative coefficients ferodd. The signs of the coefficients of
P, 1(x,0) also appear to obey predictable patterns, at least fast too far from1/2.

A
3t t

¥

—31 +

Figure 3: The zeros afs 13(x,1/2)

Another interesting aspect &%, 1 (z, 1/2) is that, in all the cases we have examined, its zeros are on the
lines bisecting the quadrants and are nearly evenly sp&egare 3 shows the zeros of

18 17 .14 18889 xlO 367 .6 5 .2

_ 1 . . 367 5
Psas(w,1/2) = — s5ig57 38880 % 907200 19207 — 3277

Foro nearl/2 the zeros ofP, ,(x, o) appear to have a similar distribution.
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7.5 Conclusion

We have shown that the Riemann-Siegel formula and the Haittdgwood approximate functional equation
are special cases of a shared natural generalization inr@ineh5. The classical Riemann-Siegel coefficients
Cy(a) are given in our reformulation by

3n () X
Cn(a) = Z_;) % : Pn,3n—7‘(0> 1/2) (7'7)

as is seen by comparing (1.10) with (1.24). In the wider cdrié Theorem 1.5, we need the more general
Mordell integral G(u; 7), and the constant terms, ,.(0,1/2) in (7.7) are replaced with the polynomials
P, (xz,0) in z ando. The remarkable properties of Mordell integrals have etité many authors, as we
have seen in Sections 3.1, 3.3. The key symmetrg@f; 7) asT — 1/7 is related through Theorem
1.5 to the functional equation @f(s). The polynomialsP, ;. (x, o) inherit a functional equation from(s),
(Theorem 6.1), and as noted above they also seem to inherésting zeros.

In future work we will examine these componerti§u; ) and P, ,(z,0) in greater detail. Also a
natural extension of the techniques in this paper is to BleicL-functions L(s, x). This would generalize
the treatments in [Sie43] and [Deu67].
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