Mth 30, Homework 7 on sections 3.7, 4.1, 4.2

Due by Wed, Mar 27.

Please use lots of space and explain your answers, showing clearly any work you had to do. Each question is worth 3 points.
(1) Decide if these rational functions have horizontal asymptotes. If they do, give the equation of the horizontal asymptote line (it will be $y=$ a number). No need to graph these functions.
(a) $f(x)=\frac{x^{3}}{x^{2}+4}$
(b) $g(x)=\frac{5 x}{x^{2}+4}$
(c) $h(x)=\frac{5 x^{3}}{x^{3}+4}$
(Hint: the way to find horizontal asymptotes is to first compare the degrees of top and bottom. There are three possibilities...)
(2) Let $f(x)$ be the rational function

$$
f(x)=\frac{x^{2}-1}{x^{3}+9 x^{2}+14 x}
$$

and find
(a) its domain,
(b) the equations of the vertical asymptote lines,
(c) the equation of the horizontal asymptote line.
(Hint: Factor the bottom and see where it is zero to help answer parts (a) and (b). Remember that the equations of vertical lines are $x=$ number, and horizontal lines are $y=$ number.)
(3) For the rational function

$$
g(x)=\frac{-3 x+1}{x+2}
$$

find its x and y intercepts. Find its vertical and horizontal asymptotes. With this information sketch the graph, using a table of values to find more points if needed.
(Remember, finding where the top is zero gives the x-intercepts, and finding where the bottom is zero gives the vertical asymptotes.)
(4) For the rational function

$$
h(x)=\frac{x^{2}-3 x-4}{x^{2}-x-6}
$$

find its x and y intercepts. Find its vertical and horizontal asymptotes. With this information sketch the graph, using a table of values to find more points if needed.
(5) Let $f(x)$ be the exponential function $5 \cdot 3^{x}$. Compute: (a) $f(4)$ and (b) $f(-2)$
(6) Let

$$
g(x)=-8\left(\frac{1}{4}\right)^{x}
$$

and compute: (a) $g(0)$ and (b) $g(3)$
(7) A fast food chain starts with 12 restaurants and every year the number increases by 8%. Explain why and how $f(t)=12(1.08)^{t}$ models this situation. How many restaurants does the chain have after 15 years?
(8) Sketch the graph of $f(x)=4^{x}$ carefully by plotting 5 points corresponding to $x=$ $-2,-1,0,1,2$, including the y-intercept and showing the horizontal asymptote.
(9) By starting with your graph in the last question and using transformations, (like moving up, down, left, right or reflecting through the x axis), sketch the graphs of
(a) $h(x)=4^{x}-1$
(b) $q(x)=-4^{x}$
(c) $r(x)=4^{x-3}$

If you get stuck on a question or aren't sure if you understand it:

- Go over the relevant class notes and section in the textbook.
- Check if you get the right answer for a similar odd-numbered question in the textbook (answers at the back of the book).
- Ask me about it after class.
- Come to my office hours: Mon 12:00-1:00, Wed 12:00-1:00 in CP 317.
- Go to the Math Tutorial Lab in-person in CP 303 or online.

