Mth 30, Homework 4 on sections 2.2, 3.2

Due by Wed, Feb 28.

Please use lots of space and explain your answers, showing clearly any work you had to do. Each question is worth 3 points.
(1) A line passes through the points $(8,-2)$ and $(4,6)$. Give the slope of this line.
(2) Write the equation of the line in the previous question. Give your answer in the form $y=m x+b$.
(3) For the linear function $f(x)=\frac{1}{3} x+2$
(a) Find the y intercept of its graph.
(b) Find the x intercept of its graph.
(c) Sketch the graph using these intercepts. Make sure to label and mark off numbers on the x and y axes.
(4) We have two lines given by the equations $x+2 y=5$ and $2 x-y=5$.
(a) Find the slopes of each line by first writing them in the form $y=m x+b$.
(b) Are these lines parallel, perpendicular or neither?
(c) Find the coordinates of the point where the lines meet.
(5) A line ℓ_{1} has equation $y=\frac{3}{2} x-1$.
(a) Find the equation of the line ℓ_{2} that is parallel to ℓ_{1} and passes through the point $(6,2)$.
(b) Find the equation of the line ℓ_{3} that is perpendicular to ℓ_{1} and passes through the point $(6,2)$.
(The first step is to find the slope of the line ℓ_{1}. You can just read the m value. Then remember that parallel lines have the same slope...)
(6) For the quadratic function $f(x)=2 x^{2}+8 x-10$
(a) Give the coordinates (h, k) of the vertex of this parabola.
(Use the formulas $h=-b / 2 a$ and $k=f(h)$ to do this.)
(b) Write $f(x)$ in the standard (vertex) form $f(x)=a(x-h)^{2}+k$.
(c) Give the equation of the axis of symmetry. (Since it is a vertical line, your answer should be $x=$ a number.)
(7) Give the domain and range of the function in the previous question.
(8) Let $f(x)=-x^{2}-2 x+3$
(a) Find the vertex.
(b) Find the y intercept.
(c) Find the two x intercepts.
(Here you want to solve $f(x)=-x^{2}-2 x+3=0$. To make that easier to solve, multiply both sides by -1 to get $x^{2}+2 x-3=0$.)
(d) Use parts (a), (b), and (c) to sketch the graph of $f(x)$.
(9) Find the x intercepts of the graph of $g(x)=x^{2}-6 x-1$ using these steps:
(a) We want to solve $0=x^{2}-6 x-1$ but the right side does not factor. Instead first write this side in standard (vertex) form to get $0=a(x-h)^{2}+k$.
(b) Put the square on one side: $(x-h)^{2}=-k / a$
(c) That means $x-h$ is plus or minus the squareroot of the right side. Then show that the x intercepts are $x=3-\sqrt{10}$ and $x=3+\sqrt{10}$. (So the graph crosses the x axis at approximately -0.16 and 6.16.)
(10) Find the two real numbers that have the biggest product if their sum is 12 . Use these steps:
(a) To understand what the question is asking you could try some numbers: for example $1 \cdot 11=11$ but $3 \cdot 9=27$ is bigger.
(b) Call the two numbers x and y. Then write the equation that means "their sum is $12^{\prime \prime}$ and then solve for y.
(c) Write the product $x y$ as a function $f(x)$ that only depends on x.
(d) The x we want is the x coordinate of the vertex of the graph of $f(x)$ (since that is where the local maximum is).
(e) Give the two numbers x and y that solve the problem.

If you get stuck on a question or aren't sure if you understand it:

- Go over the relevant class notes and section in the textbook.
- Check if you get the right answer for a similar odd-numbered question in the textbook (answers at the back of the book).
- Ask me about it after class.
- Come to my office hours: Mon 12:00-1:00, Wed 12:00-1:00 in CP 317.
- Go to the Math Tutorial Lab in-person in CP 303 or online.

