Mth 30, Homework 11 on sections 6.1, 6.2, 6.3 Due by Wed, May 1.

Please use lots of space and explain your answers, showing clearly any work you had to do. Each question is worth 3 points.

(1) Use the coordinates of points at the top, bottom, left and right of the unit circle to fill out this table – these are the quarter points:

t	$\cos t$	$\sin t$
0		
$\pi/2$		
π		
$3\pi/2$		
2π		

- (2) For the function $f(x) = 6\sin(x)$, find its amplitude, period, *y*-intercept, domain and range.
- (3) Graph this same function $f(x) = 6\sin(x)$ using the quarter points from question 6. Show at least two periods.
- (4) Graph the function $g(x) = -2\cos(x)$. Use the quarter points and show at least two periods.
- (5) For the function $h(x) = \cos(\pi x + \pi/2)$, find its
 - (a) amplitude,
 - (b) period,
 - (c) phase shift, (you should get a negative number).

(Hint: for $A \sin(Bx - C)$ and $A \cos(Bx - C)$, the amplitude is |A|, the period is $2\pi/|B|$ and the phase shift is C/B.)

- (6) Graph this same function $h(x) = \cos(\pi x + \pi/2)$, showing two periods. To get credit, do this carefully: label and number the axes, show where the quarter points are.
- (7) Draw a clear and neat graph of $y = \tan x$ showing at least two periods and indicating the vertical asymptotes.

(8) We saw in class that there is a problem in getting the inverse function of sine. For example

 $\sin(-7\pi/4) = \sin(-5\pi/4) = \sin(\pi/4) = \sin(3\pi/4) = \sqrt{2}/2.$

So sine sends all of these xs to $\sqrt{2}/2$. The inverse is supposed to reverse this and send $\sqrt{2}/2$ back to x. But which x?

In other words, what is $\sin^{-1}(\sqrt{2}/2)$? Explain.

(Hint: answer must be between $-\pi/2$ and $\pi/2$ for inverse sine.)

- (9) Find the exact value of $\sin^{-1}(1/2)$ (Hint: which special angle *x* has $\sin x = 1/2$.)
- (10) Find $\cos^{-1}(0)$

(Answer should be between 0 and π for inverse cosine.)

- (11) Find $\sin^{-1}(\cos(2\pi))$
- (12) A right triangle has a base of length 5 and a hypotenuse of length 7. What is the size of the angle between the base and the hypotenuse? Give the answer in degrees.

If you get stuck on a question or aren't sure if you understand it:

- Go over the relevant class notes and section in the textbook.
- Check if you get the right answer for a similar odd-numbered question in the textbook (answers at the back of the book).
- Ask me about it after class.
- Come to my office hours: Mon 12:00 1:00, Wed 12:00 1:00 in CP 317.
- Go to the Math Tutorial Lab in-person in CP 303 or online.