Mth 28, Homework 11 on sections 9.3, 5.4

Due by Wed, May 1.

Please use lots of space and explain your answers, showing clearly any work you had to do. Each question is worth 2 points.
(1) State the quadratic formula:

$$
\text { If } a x^{2}+b x+c=0 \quad \text { then } \quad x=\frac{? ? ? \pm ? ? ? ? ? ? ?}{? ? ? ? ?}
$$

(2) Use the quadratic formula to show that the solutions to $19 x^{2}+9 x+1=0$ are:

$$
x=\frac{-9+\sqrt{5}}{38} \quad \text { and } \quad x=\frac{-9-\sqrt{5}}{38}
$$

(3) Use the quadratic formula to solve: $5 x^{2}-4 x=-1$
(4) Use the quadratic formula to solve: $3 x^{2}+2 x=0$
(No points if you solve it by factoring!)
(5) Solve using any method: $(x-2)(x-6)=4$
(6) For this right triangle, find

(a) $\cos A$
(b) $\tan B$
(c) $\sin B$
(7) In this triangle:

(a) Find the length of the hypotenuse using the Pythagorean theorem. Give your answer as a radical, not a decimal.
(b) Evaluate and simplify: $\sin A$
(c) Evaluate and simplify: $\csc B$
(Remember that there should be no radicals in the denominator.)
(8) For this triangle, evaluate and simplify

(a) $\sin B$
(b) $\cot B$
(c) $\sec A$
(9) (a) Draw the 45-45-90 and 30-60-90 triangles with their side lengths.
(b) Find $\cos 30^{\circ}$
(c) Find $\sin 45^{\circ}$
(d) Find $\tan 60^{\circ}$
(10) Add and simplify: $\csc 60^{\circ}+\cot 60^{\circ}$

If you get stuck on a question or aren't sure if you understand it:

- Go over the relevant class notes and section in the textbook.
- Check if you get the right answer for a similar odd-numbered question in the textbook (answers at the back of the book).
- Ask me about it after class.
- Come to my office hours: Mon 12:00-1:00, Wed 12:00-1:00 in CP 317.
- Go to the Math Tutorial Lab in-person in CP 303 or online.

