
Mth 31, Homework 9 on sections 4.3, 4.4

Due by Wed, Nov 12.

Write all your working out and answers clearly and neatly, using lots of space. Each question is worth 3 points.

Section 4.3 How derivatives affect graph shape

- (1) Let $f(x) = -x^2 + 2x + 15$.
 - (a) Use the first derivative to see the xs where f is increasing and decreasing. Give your answer in interval notation.
 - **(b)** Find all the local maximums and minimums: identify which is which and give their coordinates.
- (2) For this graph y = g(x)

- (a) Give the intervals where g is increasing and decreasing.
- **(b)** Identify and locate all local maximums and minimums.
- (c) Give the intervals where g is concave up and down.
- **(d)** Locate all inflection points.
- (3) Let $f(x) = x^3 12x^2 x$.
 - (a) Use the second derivative to see the xs where f is concave up and down. Give your answers in interval notation.
 - **(b)** Locate all inflection points.
- (4) Draw the graph of $\sin x$ on the interval $[0, 2\pi]$. From your graph, find the intervals where it is increasing/decreasing and where it is concave up/down.

1

(5) Let $G(x) = \ln(x^2 + 4)$.

- (a) Give the intervals where G is increasing and decreasing.
- (b) Identify and locate all local maximums and minimums.
- (c) Give the intervals where G is concave up and down.
- (d) Locate all inflection points.
- (e) Sketch the graph of G(x) carefully using the information found in parts (a) (d).
- (6) The latest unemployment numbers show that the number of unemployed people is increasing, but at a decreasing rate. Say what this statement means in terms of the derivatives of the function U(t), where U(t) is the number unemployed at time t.

Section 4.4 Indeterminate forms and l'Hospital's rule

- (7) Suppose f(0)=0 and g(0)=0. Also, at the point (0,0), f(x) has tangent line y=2x and g(x) has tangent line y=3x. Use this to find: $\lim_{x\to 0}\frac{f(x)}{g(x)}$
- (8) Use l'Hospital's rule to calculate: (a) $\lim_{x\to 9} \frac{\sqrt{x}-3}{x-9}$ (b) $\lim_{x\to \infty} \frac{\sqrt{x}-3}{x-9}$
- (9) Use l'Hospital's rule if it applies, or another method, to calculate:

(a)
$$\lim_{x\to 0} \frac{\sin(4x)}{\sin(3x)}$$
 (b) $\lim_{x\to 0} \frac{\cos(4x)}{\cos(3x)}$

- **(10)** Compute: $\lim_{x\to 0} \frac{\cos(x) 1}{x^2}$
- (11) Calculate: $\lim_{\theta \to 0} \frac{\tanh(\theta^2)}{\tan(\theta^2)}$
- (12) Calculate: (a) $\lim_{t\to 0} \frac{6^t e^t}{6t}$ (b) $\lim_{x\to \infty} x^2 \cdot 3^{-x}$ (Those ts are both powers on the top of part (a).)
- **(13)** Find: $\lim_{x\to 0^+} \left(\frac{1}{x} \frac{1}{e^x 1}\right)$

(Hint: combine these using a common denominator first. Then apply l'Hospital.)

2

(14) Find: **(a)** $\lim_{x \to \infty} \frac{\ln(x)}{x}$ **(b)** $\lim_{x \to \infty} x^{1/x}$

If you get stuck on a question or aren't sure if you understand it:

- Go over the relevant class notes and section in the textbook.
- Check if you get the right answer for a similar odd-numbered question in the text-book (answers at the back of the book).
- Ask me about it after class.
- Come to my office hours: Mon 11:30 12:30, Wed 11:30 12:30 in CP 317.
- Go to the Math Tutorial Lab in-person in CP 303 or online.