Chapter 6 Towards algebra
In algebra we use letters like x, y, a, b, c, \ldots to stand for numbers. These letters are called variables.

Combining variables and numbers with addition, subtraction, multiplication, division, roots and powers makes algebraic expressions.

For example

$$
\frac{2 x^{2}-3+\sqrt{x}}{x y+7 y^{3}}
$$

is a complicated algebraic expression.
6.1 Evaluating expressions

If you are told what numbers the variables represent then you can evaluate an algebraic expression.

Steps to evaluate an expression
(A) Replace all the variables by the ir numbers. Use parentheses, especially for negative numbers.
(B) Now use the usual order of operations to simplify the answer to a single number.

Example (1) Evaluate the expression $2 x+y$ if $x=5$ and $y=3$.

Solution: step (A) is called substitution

$$
\begin{aligned}
& \begin{array}{rl}
2 x+y & 2(5)
\end{array}+(3) \\
& \text { means } 2 \text { is }=10+3 \\
& \text { Multiplying } \\
& \text { whatever } x \text { is }=13
\end{aligned}
$$

Example (2) Evaluate $x^{2}-3 x+6$ if
(a) $x=0$
(b) $x=10$
(c) $x=-4$

Solution: For part (a)

$$
\begin{aligned}
x^{2}-3 x+6 & =(0)^{2}-3(0)+6 \\
& =0-3(0)+6 \\
& =0-0+6 \\
& =0+6=6
\end{aligned}
$$

Part (b):

$$
\begin{aligned}
x^{2}-3 x+6 & =(10)^{2}-3(10)+6 \\
& =100-3(10)+6 \\
& =100-30+6 \\
& =70+6=76
\end{aligned}
$$

Part (c): $x^{2}-3 x+6=(-4)^{2}-3(-4)+6$

$$
\begin{aligned}
& =16-3(-4)+6 \\
& =16+12+6 \\
& =34
\end{aligned}
$$

So the expression $x^{2}-3 x+6$ equals different numbers, depending on what x is.
Variables can represent fractions and decimals.
Example (3) Evaluate $x^{2}-3 x+6$ if
(a) $x=\frac{2}{5}$
(b) $x=1.9$

Solution: Part (a)

$$
\begin{aligned}
x^{2}-3 x+6 & =\left(\frac{2}{5}\right)^{2}-3\left(\frac{2}{5}\right)+6 \\
& =\frac{4}{25}-\frac{3}{1} \cdot \frac{2}{5}+\frac{6}{1} \\
& =\frac{4}{25}-\frac{6}{5}+\frac{6}{1} \\
& =\frac{4}{25}-\frac{30}{25}+\frac{6.25}{25} \\
& =\frac{4-30+150}{25}=\frac{124}{25} \\
& =4 \frac{24}{25}
\end{aligned}
$$

Part (b)

$$
x^{2}-3 x+6=(1.9)^{2}-3(1.9)+6
$$

$$
\begin{gathered}
(1.9)^{2}=(1.9)(1.9) \\
1+1=2 p \\
\frac{19}{17}=3.61 \\
\frac{19}{361}= \\
3(1.9)=5.7
\end{gathered}
$$

$$
=3.61-5.7+6
$$

$$
=9.61-5.7
$$

$$
\begin{array}{r}
8.16 \\
9.61 \\
-5.70 \\
\hline 3.91
\end{array}
$$

Ans 3.91

It's easy to make mistakes when substituting negative numbers.

Example (4) Find $a^{2}-a b-b^{2}$ when

$$
a=-3 \text { and } b=-4 \text {. }
$$

Solution: $a^{2}-a b-b^{2}=(-3)^{2}-(-3)(-4)-(-4)^{2}$
Were using
$P \quad(1$
$E \quad$ exponents
$M D \quad x, \div$ left \rightarrow right
$A S \quad+,-$ left \rightarrow right
\uparrow
nothing to do in the parentheses

So exponents first $(-3)^{2}=(-3)(-3)=9$

$$
(-4)^{2}=(-4)(-4)=16
$$

get $9-(\underbrace{-3)(-4)}-16$
M: multiply $\leftarrow a b$ meant

$$
\begin{aligned}
& =\underbrace{9-12-16} \\
& =-3-16=-19
\end{aligned}
$$

a times b

- Examples p169-171.
6.2 Using formulas

Formulas are just algebraic expressions for something we want to find.

We've already seen formulas in geometry:

$$
\text { area }=L W
$$

$$
\text { perimeter }=2 L+2 \omega
$$

$$
\text { area }=\frac{a b}{2}
$$

Example (1) Find the area and perimeter of a rectangle with width 1.2 , length 2.6.

Solution: Here $W=1.2, L=2.6$ and

$$
\begin{aligned}
& \text { area }=L w=(2.6)(1.2)=3.12 \\
& \text { perimeter }=2 L+2 w=2(2.6)+2(1.2) \\
&=5.2+2.4 \\
&=7.6
\end{aligned}
$$

Answer: Area is 3.12 , perimeter is 7.6

Example (2) The Body Mass Index (BM1)
formula is.

$$
B M I=\frac{703 w}{n^{2}}
$$

where $\omega=$ weight in pounds
and $h=$ height in inches.
Find the BMI of someone $5 f_{t} 10$ in tall
and weighing 200 ihs.
Solution: $\omega=200$ and $h=5 \cdot 12+10=70$

$$
\begin{aligned}
& \text { Then the } B M I=\frac{703(200)}{(70)^{2}}=\frac{140600}{4900} \\
&=\frac{1406}{49} \\
& 4 9 \longdiv { 1 4 0 6 . 0 0 } \\
& \frac{-98 \downarrow}{426} \\
& \frac{-392}{340} \\
& \frac{-294}{460} \\
& \frac{441}{19}
\end{aligned}
$$

Answer.
$B M I=28.7$ rounded to nearest tenth.
A healthy BMI is <25 so this person is overweight.

- More examples p173-174.

