4.10 Scientific notation

Scientific notation is a convenient way to express very big numbers and very small decimals.

An example of
An example of
scientific notation is $\quad 7.2 \times 10^{6}$
Written out this is

$$
7.200000 \times 10^{6}=7200000 \text { big number }
$$

Another example is $\quad 4.52 \times 10^{-3}$
(remember that $4.52 \times 10^{-3}=4.52 \div 10^{3}$) written out this is

$$
0004.52 \times 10^{-3}=0.00452 \text { very }
$$

For scientific $\underbrace{7.2 \times 10^{6}}_{\begin{array}{c}\text { notation } \\ \text { between } \\ \text { and } 10\end{array}} \quad \underbrace{4.52}_{\begin{array}{c}\text { between } \\ 1\end{array} \text { and } 10} \times 10^{-3}$
the first number must be 1 or larger and <10. Multiply by a power of 10. This power can he positive or negative (or zero) and is called the order of magnitude.

Example (1) Convert 302.9 into scientific notation.

Solution: To get a number between 1 and 10 we must move the decimal point

$$
302,9 \quad 2 \text { places }
$$

3.029 is 100 times smaller
so $\quad 302.9=3.029 \times 10^{2}$

Example (2) Convert 0.00000015 to scientific notation.

Solution: Move decimal point

$$
0.000000157 \text { places }
$$

1.5 is 10^{7} times bigger
so

$$
\begin{aligned}
0.00000015 & =1.5 \div 10^{7} \\
& =1.5 \times 10^{-7}
\end{aligned}
$$

Formula for scientific notation

$$
\begin{aligned}
& a \times 10^{N} \quad \text { with } 1 \leqslant a<10 \\
& N=\text { order of magnitude }
\end{aligned}
$$

For big numbers N is positive. For small numbers N is negative.
4.11 Percents, conversions

If you see an ad "SALE 30% OFF!" that 30% (thirty percent) is really the fraction $\frac{30}{100}$. And that's what percent means in latin - put over 100.

Example (3) Convert these percents to fractions and simplify
(a) 50%
(b) 100%
(c) 6%
(d) 260%

Solutions:
(a) $50 \%=\frac{50}{100}=\frac{50}{100} \div 50=\frac{1}{2}$
(b) $100 \%=\frac{100}{100}=1$
(c) $6 \%=\frac{6}{100}=\frac{6}{100} \div 2=\frac{3}{50}$
(d) $260 \%=\frac{260}{100}=\frac{260 \div 10}{100 \div 10}=\frac{26 \div 2}{10 \div 2}=\frac{13}{5}$

Note that dividing by $100=10^{2}$ moves the decimal point 2 places left. So converting the percents in example (3) to decimals is very easy

$$
\begin{array}{ll}
50 \% & =0.5
\end{array} \begin{array}{ll}
100 \% & =1 \\
06 \% & =0.06
\end{array} \quad 260 \%=2.6
$$

We see there are lots of ways to write one half (or any fraction)

It is useful to be able to switch between these three representations

Percent \rightarrow fraction $13 \%=\frac{13}{100}$
Percent \longrightarrow decimal $13 \%=0.13$
Decimal \rightarrow Percent $0.13=13 \%$
Decimal \rightarrow fraction $0.13=\frac{13}{100}$

Starting with a fraction we must convert to a decimal first with a division.

Example (4) Convert $\frac{1}{5}$ to a decimal and then a percent.
Solution: $\frac{1}{5}=1 \div 5$ so $5 \sqrt{1.0}$
and $5 \sqrt{1.2}$ then $\frac{1}{5}=0.2$

$$
\begin{aligned}
\frac{-10}{0} & =0.20 \\
& =20 \%
\end{aligned}
$$

fraction $\underset{\text { divide }}{\longrightarrow}$ decimal \longrightarrow percent

Example (5) Convert $\frac{3}{7}$ to a percent, rounded to the nearest tenth of a percent.

Solution: First convert to a decimal

$$
\begin{aligned}
& 7 \longdiv { 3 . 0 0 0 } \\
& \frac{0.4285}{7 \longdiv { 3 . 0 0 0 0 }} \\
& \begin{array}{r}
-28 \downarrow \\
-14 \\
-14
\end{array} \\
& \text { so } \frac{3}{7}=0.4285 \cdots \cdot \\
& =42.85 \mathrm{~K} \\
& -\frac{56}{40} \\
& -\frac{35}{5} \\
& \text { tenth of a } \\
& \text { percent place } \\
& \text { 42. } 8.5 \\
& \begin{array}{c}
\text { rounding next is in } \\
\text { place range } 5-9
\end{array}
\end{aligned}
$$

Answer: $\frac{3}{7}=42.9 \%$ so increase
rounded to nearest tenth of a \% .

In this example we needed to do the decimal division to 4 places to have enough places for the rounding.
4.12 Fractional parts of numbers

Suppose a coat sells for $\$ 40$. How much is it reduced by in a 30% off sale? In other words, what is 30% of 40 ?

To compute this we convert 30% into a number (a fraction or a decimal) and remember that "of" means multiply.

So 30% of $40=\frac{30}{100} \cdot \frac{40}{1}=\frac{1200}{100}$

$$
=12
$$

or $=(0.3)(40)=12$
Either way the sale price of the coat is \$28.

Example (6) Find 6% of 90
Solution: Want $\frac{6}{100} \cdot \frac{90}{1}=\frac{540}{100}=5.4$

- See p 147.

Example (7) Compute five thirds of 120 .
Solution: $\frac{5}{3} \cdot \frac{120}{1}=\frac{5}{3} \cdot \frac{75 \cdot 40}{1}=200$
Example (8) What is 9.2% of 4.7 ?
Solution: $09.2 \%=0.092$
So we need $(0.092)(4.7)=0.4324$

