3.8 Adding and subtracting fractions

Adding and subtracting fractions is easy when the denominators are the same:

$$
\begin{aligned}
& \frac{5}{8}+\frac{2}{8}=\frac{7}{8} \\
& \Pi \| \text { W\|ाय } \\
& \frac{5}{8}-\frac{2}{8}=\frac{3}{8}
\end{aligned}
$$

$\begin{aligned} & \text { The rules are } \\ & \text { simple: }\end{aligned} \quad \frac{a}{c}+\frac{b}{c}=\frac{a+b}{c} \quad \frac{a}{c}-\frac{b}{c}=\frac{a-b}{c}$
Example (1) Find $\frac{3}{10}+\frac{1}{10}$.
Solution: $\frac{3}{10}+\frac{1}{10}=\frac{3+1}{10}=\frac{4}{10}=\frac{4}{10} \div 2=\frac{2}{5}$
We always want the answer in Lowest terms.

- More examples p92.

Avoid the common mistake: $\frac{3}{10}+\frac{1}{10}=\frac{4}{20} N_{0}$

Fractions with the same denominators are called like fractions.

Fractions with different denominators are called unlike fractions.

Adding and subtracting unlike fractions is harder.

Example (2) Find $\frac{5}{8}+\frac{1}{4}$.
Solution: There is no way to do this directly. To use the rule $\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}$ we need a common denominator.

Remember our other rule $\quad \frac{a}{b}=\frac{a \cdot c}{b \cdot c}$
which lets us write fractions in different ways. Here $\frac{1}{4}=\frac{1.2}{4.2}=\frac{2}{8}$ so that

$$
\frac{5}{8}+\frac{1}{4}=\frac{5}{8}+\frac{2}{8}=\frac{7}{8}
$$

(same as our very first example.)

Very common mistake

$$
\frac{5}{8}+\frac{1}{4}=\frac{5+1}{8+4}=\frac{6}{12}=\frac{1}{2} \text { No! }
$$

Rule: To add or subtract unlike fractions we need a common denominator.

Example (3) Add: $\frac{1}{2}+\frac{1}{3}$
Solution - use $\frac{a}{b}=\frac{a \cdot c}{b \cdot c}$ to get equivalent fractions with the same denominator.

$$
\begin{aligned}
\frac{1}{2}+\frac{1}{3} & =\frac{1 \cdot 3}{2 \cdot 3}+\frac{1 \cdot 2}{3 \cdot 2} \\
& =\frac{3}{6}+\frac{2}{6}=\frac{3+2}{6}=\frac{5}{6}
\end{aligned}
$$

Common denominator is 6 .
Answer

Rectangle version:

Example (4) Compute $\frac{3}{7}-\frac{2}{5}$
Solution: We can get a common denominator of 35 . use $\frac{3}{7}=\frac{3.5}{7.5}=\frac{15}{35}$
and $\frac{2}{5}=\frac{2.7}{5.7}=\frac{14}{35}$
So $\frac{3}{7}-\frac{2}{5}=\frac{15}{35}-\frac{14}{35}=\frac{15-14}{35}=\frac{1}{35}$

Example (5) Find $\frac{3}{10}+\frac{1}{4}$
First solution: Use the common denominator 40

$$
\frac{3}{10}+\frac{1}{4}=\frac{3 \cdot 4}{10 \cdot 4}+\frac{1 \cdot 10}{4 \cdot 10}=\frac{12+10}{40}
$$

cancel twos $\longrightarrow=\frac{22}{40}=\frac{11}{20}$

Second solution: There is a smaller common denominator we can use 20

$$
\frac{3}{10}+\frac{1}{4}=\frac{3.2}{10.2}+\frac{1.5}{4.5}=\frac{6}{20}+\frac{5}{20}=\frac{11}{20}
$$

Same answer, but this was better because used smaller numbers.

Is there an even smaller common denominator we can use to add $\frac{3}{10}+\frac{1}{4}$?

If you look at the multiples of the denominators
multiples of $10: 10,20,30,40,0,60, \ldots$
Multiples of $4: 4,8,12,16,20,24,28,32,36,40$,
We see that 20 is the smallest possibility.
So 20 is the Least common multiple (LCM) of 10 and 4 means that

20 is the least common denominator (LCD) of the fractions $\frac{3}{10}$ and $\frac{1}{4}$.

Example (6) Find $\frac{1}{10}+\frac{3}{4}-\frac{7}{20}$
Solution: The $L C D$ is 20 so

$$
\begin{aligned}
\frac{1}{10}+\frac{3}{4}-\frac{7}{20} & =\frac{1 \cdot 2}{10 \cdot 2}+\frac{3 \cdot 5}{4 \cdot 5}-\frac{7}{20} \\
& =\frac{2}{20}+\frac{15}{20}-\frac{7}{20} \\
& =\frac{2+15-7}{20} \\
& =\frac{17-7}{20}=\frac{10}{20}=\frac{10}{20} \div 10=\frac{1}{2}
\end{aligned}
$$

Least common multiples (LCM)
Remember the multiples of a number m are $1 \cdot \mu, 2 \cdot \mu, 3 \cdot \mu, 4-\mu, \ldots$
eg.
Multiples of $6: 6,12,18,24, \frac{30}{76}, \cdots$
You can also get them by adding 6 each time. multiples of $8: 8,16,24,32,40, \ldots$ Can see the LCM of 6 and 8 is 24 .
(Don't confuse with the GCF -GCF of 6 and 8 is 2.)
Example (7) Find the LCM of 6,9 and 12 .
Solution:
Multiples of $6: 6,12,18,24,30,36,42, \ldots$
multiples of $9: 9,18,27,36,45, \ldots$
Multiples of $12: 12,24,36,48,60, \ldots$
The smallest number in all three lists is 36 so that's the LCM.

Second solution: use the prime factorizations of the numbers

$$
\begin{aligned}
6 & =2 \cdot 3 \\
9 & =3 \cdot 3 \\
12 & =2 \cdot 2 \cdot 3
\end{aligned}
$$

To be a multiple of all three numbers you need at least $2 \cdot 2$ and 3.3
so $\mathrm{LCM}=2-2-3-3=36$.

Example (8) Find the LCM of 21 and 35.
Solution: $21=3 \cdot 7$ and $35=5 \cdot 7$
Any common multiple must have at least $3,5,7$ as factors. LCM $=3.5 .7=105$

- See pages 94,95 in book.

Example (9) Find the LCD for $\frac{1}{44}$ and $\frac{32}{33}$. Use this LCD to find $\frac{1}{44}+\frac{32}{33}$.

Solution: 44

So $44=2 \cdot 2 \cdot 11$ and $33=3 \cdot 11$

The LCM needs $2 \cdot 2,3,11$
So its $2 \cdot 2 \cdot 3 \cdot 11=12 \cdot 11=132$.
The LCD is 132 .
Now, to do the addition using this least common denominator we need

$$
\begin{aligned}
& \frac{1}{44}=\frac{10}{440}=\frac{?}{132} \\
& \frac{32}{33}=\frac{32 \cdots}{33 \cdots}=\frac{?}{132}
\end{aligned}
$$

What do you multiply 44 by to get 132? Or how many times does 44 fit into 132? or what is $132 \div 44$. Answer is 3.

Easy way to see $44=2 \cdot 2 \cdot 11,132=2 \cdot 2 \cdot 3 \cdot 11$.
So $\frac{1}{44}=\frac{1-3}{44 \cdot 3}=\frac{3}{132}$
also $\frac{32}{33}=\frac{32.4}{33.4}=\frac{128}{132} \quad(33=3 \cdot 11)$
and $\frac{1}{44}+\frac{32}{33}=\frac{3}{132}+\frac{128}{132}=\frac{131}{132}$

- More examples p 97.

