2.6 Dividing signed numbers

Remember the rule to multiply two signed numbers:

- same sign \rightarrow positive
- different signs \rightarrow negative

The rule for dividing signed numbers (where there is no remainder) is the same:
The Rule for dividing two signed numbers

$$
\left\{\begin{array}{l}
\text { Divide their absolute values and } \\
\text { - same sign answer is positive } \\
\text { o different signs answer is negative. }
\end{array}\right.
$$

The rules about the signs for multiplication and division are the same because they are opposite (inverse) operations.

Example (1): Find $-30 \div 6$
Answer: $30 \div 6=5$ and signs different so -5
Since multiplying by 6 is the opposite of dividing by 6 we see

$$
-30 \div 6=-5 \text { then }-5 \times 6=-30
$$

Example (2) Compute $(-15) \div(-3)$.
$\mathrm{r} \uparrow$
Solution: $15 \div 3=5$ and signs same so 5
Example (3) Divide 28 by -7 .
Solution: This is $28 \div(-7)$. Different signs so the answer is -4 .

Other ways to write this example:

$$
28 /(-7) \text { or } \frac{28}{-7} \text {. }
$$

Example (4) what is $0 \div(-13)$?
Answer: 0 divided by any number is 0 . (well any number except 0 . Dividing anything by 0 is undefined.)

Remember - a negative number divided by a negative number is always positive.
2.7 Powers of signed numbers

We saw that powers look like 2^{3}
for example. Here 2 is the base and 3 is the power (or exponent):

$$
2^{3}=2 \times 2 \times 2=4 \times 2=8
$$

When working out powers of signed numbers you have to be very careful when deciding what the base is. Look at these two cases:
(A) $(-5)^{2}$ base is -5
(B) -5^{2} base is 5

So (A) gives $(-5)(-5)=25$ and (B) really means $-\left(5^{2}\right)=-(25)=-25$. I hope you see the difference:

$$
\begin{aligned}
& (-5)^{2}=25 \\
& -5^{2}=-25
\end{aligned}
$$

Example (1) Find $(-3)^{3}$.
Solution: Base is -3 and $(-3)^{3}=(-3)(-3)(-3)$

$$
\begin{aligned}
& =(9)(-3) \\
& =-27
\end{aligned}
$$

Example (2) Find $(-2)^{6}$.
Solution: Bare is -2 and $(-2)^{6}=(-2)(-2)(-2)(-2)(-2)(-2)$

$$
\begin{aligned}
& =(4)(4)(4) \\
& =64
\end{aligned}
$$

Note that multiplication is associative so we can multiply in pairs like this.

Example (3) Compute -2^{6}.
Solution: Now the base is $2.2^{6}=64$ and

$$
-2^{6}=-\left(2^{6}\right)=-64 .
$$

We saw last time that a product is positive if there are an even number of negative factors and negative if there are an odd number of negative factors.

So we have

- even power of a negative is positive - odd power of a negative is negative

Look at examples (1), (2) again. Why is the answer to example (3) negative?

Example (4) is $(-12)^{10001}$ a positive or negative number?

Solution: Since the power is odd it must be negative.

Example (s) find $-(-2)^{3}$.
Solution: The base is -2 and $(-2)^{3}=-8$.

But there is another minus sign to deal with. The minus sign on the left means take the opposite of -8 :

$$
-(-2)^{3}=-\left((-2)^{3}\right)=-(-8)=8
$$

Example (6) Calculate $-\left(-3^{4}\right)$.
Solution: The base is 3 and $3^{4}=81$ so

$$
-\left(-3^{4}\right)=\underbrace{-(-81)}_{\text {opposite of }-81}=81
$$

Example (7) find $(-1324)^{0}$.
Solution: Remember that any number to the power 0 equals 1 (well 0° undefined) so

$$
(-1324)^{\circ}=1
$$

Example (8) find $(-1)^{300}$.
Solution: An even power of a negative is positive. Multiply the absolute values to get $1^{300}=1$. So $(-1)^{300}=1$.

Example (9) what is -16° ?
Do you see why the answer is -1 ?
2.8 Square roots and signed numbers

We saw that square roots are the opposite (inverse) of squares

In fact 9 has another square root

$$
(-3)^{2}=(-3)(-3)=9
$$

Every positive number has two square roots, a positive one and a negative one.

Example: 5 and -5 are square roots of 25 . zero just has one square root, itself. How about negative numbers?

Example:

No number (from the number line) works so we say that negative numbers do not have square roots - or they're undefined:

$$
\sqrt{-16} \text { is undefined. }
$$

We use the radical symbol $\sqrt{ }$ for square roots and it always means the positive square root:

$$
\sqrt{9}=3
$$

Use a minus sign to write the other square root of 9 :

$$
-\sqrt{9}=-3
$$

Example (1) The two square roots of 100 are $\sqrt{100}=10$ and $-\sqrt{100}=-10$.

Many mistakes are possible!

$$
\begin{align*}
& \sqrt{100}=50 \tag{No.}\\
& \sqrt{100}=10 \times 10 \\
& \sqrt{100}=\sqrt{10}
\end{align*}
$$

And if you write $10 \sqrt{100}$ then you're confusing square roots and long division.
Example (2) Find $-\sqrt{144}$.
Answer: -12
Example (3) find $\sqrt{-144}$.
Answer: That's undefined.

