1.7 Order of operations

We've looked at the operations $, x_{1}, x_{2} \div$ and powers (sometimes represented with $八$). Now we combine them.

A simple example is when we just have t, as in

- compile $3+9-2+4$

The rule is to go from left to right and work out the 3 operations in this order

$$
3+9-2+4
$$

(1) (2) (3)
we get

$$
\begin{gathered}
=12-2+4 \\
=10+4 \\
=14 .
\end{gathered}
$$

So answer is 14
Note that you don't always add before subtercting.

- compute 13-1-8+2

You should get 6 .
The rule for combining multiplication and division is the same - do them in order left to right

- Find $12 \div 6 \times 2$ Solution: $\frac{12 \div 6 \times 2}{2}$ $=4$.
- Evaluate $3 \times 10 \div 3 \times 5$

Parentheses and brackets are called grouping symbols and can be used to change the usual order of operations. The rule is to do what is inside the grouping symbols first:

- $10-5+1=6$
-10-(5+1)=4
Here is the full rule for the order of operations
(P) Do operations inside grouping symbols first
(E) Exponents and roots next
(MD) Multiplication, division next (left to right) (AS) Addition, subtraction last (left to right).

Examples
(1) Calculate 3×2^{3}

Solution: No grouping symbols. There is an exponent so do that first $2^{3}=8$. Then the multiplication $3 \times 8=24$. Answer 24 .
(2) Find $4+2 \times 6$

Solution: Do the unltiplication first $2 \times 6=12$ and addition last $4+12=16$. Ans 16.
(3) Find $5(3-1)^{2}+4 \div 4^{\circ}$

Solution: Using the order of operations rule, check that the correct order is

$$
5(3-1)^{(2)}+4 \div 4^{(3)} 4^{(3)}
$$

(4) multiplication
and you get 24.
See more examples in the book, section 1.7. Do them slowly, step by step.

Note that the radical symbol for square roots counts as a grouping symbol. So always work out what is inside the radical before taking the root.
Example $\sqrt{9+16}=\sqrt{25}=5$

$$
\sqrt{9+16}=3+4=7 \quad \text { No }
$$

1.8 Averages

A simple application that combines addition, division and parentheses is that of taking an average.
To take the auerege of a list of numbers you add them all and then druide by the number of numbers in the list.

For example, take the list $3,2,6,4,5$

The sum is $3+2+6+4+5=20$ and $20 \div 5=4$. So average is 4. The average is one statistic used to represent a data list with a single number. In a single expression

$$
(3+2+6+4+5) \div 5=4
$$

Exercise 5 p 40 . A baseball team had 7 games cancelled in 2010. The number of cancelled games in $2002-2009$ were

$$
5,6,2,10,9,4,6,5
$$

What was the average number of cancelled games for them for 2002-2010?
$\begin{aligned} \text { Solution: Average is }(5+6+2+10+9+4+6+5+7) & =9 \\ & =6 \text { }\end{aligned}$
1.9 Perimeter, Area and the Pythagorean Theorem.

Probably the simplest shape is the rectangle
width w
tenge L
The perimeter is the length around the shape

perimeter P

$$
=2 L+2 w .
$$

The area measures the space inside using square units
 area $A=\bar{L} \times w$. L

Example (1) A rectangle has length 10 feet and width 5 feet. Find using the correct units (a) its perimeter and (b) its area.
(a) Perimeter $\quad p=2 L+2 \omega$

$$
\begin{aligned}
& =2 \times 10+2 \times 5 \\
& =20+10=30 \mathrm{ft}
\end{aligned}
$$

(b) Area $A=L \times w=10 \times 5=50 \mathrm{ft}^{2}$.

The correct units for the perimeter here are feet

The correct units for the area here are square feet (notation $f_{t}{ }^{2}$)
 one square foot

Example (2) A rectangle has width 3 km and length 7 km . Find its cree and perimeter with the correct units.

Answer: area $=21 \mathrm{~km}^{2}$, perimeter $=20 \mathrm{~km}$.

Putting two rectangles together gives an L - shape.

Example (3) Find the perimeter and area of this shape:

Solution: First find the missing side lengths. The base must be $7+3=10$ units long (units not specified here). Also the short vertical side must he $q-5=4$.

Add all these sides to get the perimeter

$$
10+5+3+4+7+9=38
$$

Break the shape into two rectangles to see the area

Area top rectangle $=7 \times 4=28$
$\begin{aligned} & \text { Area hotter rectagle }=10 \times 5=50 \\ & \text { toter }\end{aligned}$
Answer perimeter $=38$, area $=78$

The next simplest shape is the triangle.
A right-angled triangle has a 90° angle inside

Area $A=(a \times b) \div z$

The Pythagorean theorem says $a^{2}+b^{2}=c^{2}$ and taking square roots of both sides \uparrow shows that $c=\sqrt{a^{2}+b^{2}}$. This formula gives the length of the hypotenuse in terms of the two short sides (called legs).

Example (4) find the ares and perimeter of this right-angled triangle

Solution: Here $a=5, b=12$ and the area

$$
A=(a \times b) \div 2=(5 \times 12) \div 2=60 \div 2=30 \mathrm{~cm}^{2}
$$

The missing side $c=\sqrt{a^{2}+b^{2}}=\sqrt{5^{2}+12^{2}}=\sqrt{25+144}$

$$
\begin{aligned}
& =\sqrt{169}=13 \mathrm{~cm} \text { So the perimeter }=5+12+13=30 \\
& \text { Answer: } 1 \text { Area }=30 \mathrm{~cm}^{2} \text { perimeter }=30
\end{aligned}
$$

Answer: Area $=30 \mathrm{~cm}^{2}$, perimeter $=30 \mathrm{~cm}$

