6.4 Binomial coefficients and identities

A binomial is something with 2 terms, like $x+y$ or 3-a. What do powers of binomials look like?

$$
\begin{aligned}
(x+y)^{\prime} & =x+y \\
(x+y)^{2} & =(x+y)(x+y)= \\
= & x^{2}+x y+y x+y^{2} \\
& =x^{2}+2 x y+y^{2} \\
(x+y)^{3} & =(x+y)\left(x^{2}+2 x y+y^{2}\right) \\
& =x^{3}+2 x^{2} y+x y^{2}+y x^{2}+2 x y^{2}+y^{3} \\
& =x^{3}+3 x^{2} y+3 x y^{2}+y^{3}
\end{aligned}
$$

For this third power we have

$$
(x+y)^{3}=1 x^{3}+3 x^{2} y+3 x y^{2}+1 y^{3}
$$

Is there a formula for these coefficients 1,3,3,1? Yes, these are the numbers $C(3,0), C(3,1), C(3,2), C(3,3)$ or as they are usually written $\binom{3}{0},\binom{3}{1},\binom{3}{2},\binom{3}{3}$ (binomial coefficients).

Recall that

$$
\begin{aligned}
\binom{n}{r}=c(n, r) & =\frac{n(n-1) \cdots(n-r+1)}{r(r-1) \cdots 2 \cdot 1} \\
& =\frac{n!}{(n-r)!r!}
\end{aligned}
$$

Note that $\binom{n}{0}=\frac{n!}{(n-0)!0!}=\frac{n!}{n!}=1$
and $\quad\binom{n}{n}=\frac{n!}{(n-n)!n!}=\frac{n!}{n!}=1$.
Example (1) what is the coefficient of $x^{5} y^{2}$ in $(x+y)^{7}$?

Solution: When we multiply out

$$
(x+y)(x+y)(x+y)(x+y)(x+y)(x+y)(x+y)
$$

we choose either an x or a y from each factor. To get an $x^{5} y^{2}$ term we must choose 5 Xs from the 7 factors. There are $\binom{7}{5}$ ways to do this.
So the coefficient is $\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=21$.

$$
\text { (also }=\binom{7}{2} \text {) }
$$

The Binomial Theorem
In general we have

$$
\begin{aligned}
(x+y)^{n} & =\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1} \\
& +\binom{n}{n} y^{n} \\
& =\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}
\end{aligned}
$$

in summation notation.
Here $n \geqslant 0$ is an integer.

Example (2) Use the binomial theorem to expand $(x+y)^{5}$.

Solution: The theorem says

$$
(x+y)^{5}=\binom{5}{0} x^{5}+\binom{5}{1} x^{4} y+\binom{5}{2} x^{3} y^{2}+\binom{5}{3} x^{2} y^{3}+\binom{5}{4} x y^{4}
$$

Working out these coefficients: $+\binom{5}{5} y^{5}$.

$$
\left.\begin{array}{rlrl}
\binom{5}{0}=1 & \binom{5}{1} & =\frac{5}{1}=5 & \binom{5}{2}
\end{array}=\frac{\frac{5 \cdot 4}{2 \cdot 1}=10}{=\binom{5}{5}}{5} \\
{4}
\end{array}\right) \quad=\binom{5}{3} \quad l
$$

So we get $1 x^{5}+5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}$

$$
+1 y^{5}
$$

We have shown the identity

$$
(x+y)^{5}=1 x^{5}+5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+1 y^{5}
$$

This is true for all real numbers x, y.
For example, when $x=1$ and $y=1$ it says

$$
\begin{aligned}
2^{5} & =1+5+10+10+5+1 \\
& =\binom{5}{0}+\binom{5}{1}+\binom{5}{2}+\binom{5}{3}+\binom{5}{4}+\binom{5}{5} .
\end{aligned}
$$

When $x=1, y=-1$ it says

$$
\begin{aligned}
0 & =1-5+10-10+5-1 \\
& =\binom{5}{0}-\binom{5}{1}+\binom{5}{2}-\binom{5}{3}+\binom{5}{4}-\binom{5}{5} .
\end{aligned}
$$

In general

$$
\sum_{j=0}^{n}\binom{n}{j}=2^{n} \quad(x=1, y=1 \text { in binomid theoven }) \text {. }
$$

and

$$
\sum_{j=0}^{n}\binom{n}{j}(-1)^{j}=0 \quad(x=1, y=-1 \text { in binomial the. })
$$

Example (3) what is the coefficient of $x^{4} y^{5}$ in $(3 x-2 y)^{9}$?
Solution: Instead of x we have $3 x$ and instead of y we have $-2 y$. By the binomial theorem

$$
\begin{aligned}
((3 x)+(-2 y))^{9} & =\cdots+\binom{9}{4}(3 x)^{4}(-2 y)^{5}+\cdots \\
& =\cdots+\underbrace{\binom{9}{4} 3^{4}(-2)^{5}} x^{4} y^{5}+\cdots \\
\binom{9}{4}=\frac{9 \cdot 8 \cdot 7 \cdot 6}{4 \cdot 3 \cdot 2 \cdot 1} & =\frac{9 \cdot 8 \cdot 7 \cdot 8^{2}}{4 \cdot x \cdot 7 \cdot 1}=126 \\
3^{4}=81 \quad(-2)^{5} & =-32
\end{aligned}
$$

The coefficient we want is $126.81(-32)$

$$
=-326592
$$

- See examples 2,3,4 p416.

Pascal's identity and triangle
If you add two consecutive binomial coefficients you get another one:

$$
\binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1}
$$

this is called Pascal's identity.
One way to prove it is using our formulas

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!} \quad\binom{n}{k+1}=\frac{n!}{(n-k-1)!(k+1)!}
$$

so

$$
\begin{aligned}
\binom{n}{k}+\binom{n}{k+1} & =\frac{n!(k+1)}{(n-k)!(k+1)!}+\frac{n!(n-k)}{(n-k)!(k+1)!} \\
& =\frac{n!(k+1+n-k)}{(n-k)!(k+1)!} \\
& =\frac{(n+1)!}{(n-k)!(n+1)!}=\binom{n+1}{k+1}
\end{aligned}
$$

as we wanted.

Example (4) Check that $\binom{8}{3}+\binom{8}{4}=\binom{9}{4}$.
Solution: $\binom{8}{3}=\frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1}=56$

$$
\begin{array}{rlrl}
& \begin{array}{l}
\binom{8}{4}
\end{array} & =\frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1}=\frac{8 \cdot 7 \cdot 8^{2} \cdot 5}{4 \cdot x \cdot x \cdot 1}=70 \\
\text { also } \quad\binom{9}{4} & =\frac{9 \cdot 8 \cdot 7 \cdot 6}{4 \cdot 3 \cdot 2 \cdot 1}=\frac{9 \cdot 8 \cdot 7 \cdot 8^{2}}{4 \cdot 8 \cdot x \cdot 1}=126 \\
\text { and } s 6+70 & =126 \text { is true. }
\end{array}
$$

Drawing the binomial coefficients like this makes Pascal's triangle:
$\binom{0}{0}$
$\binom{1}{0} \quad\binom{1}{1}$
$\binom{2}{0}\binom{2}{1}\binom{2}{2} \rightarrow 1 \quad 2 \quad 1$
$\binom{3}{0}\binom{3}{1} \quad\binom{3}{2} \quad\binom{3}{3} \quad 1 \quad 3 \quad 3 \quad 1$
and adding two coefficients gives the one below

$$
\begin{aligned}
& \binom{n}{n}+\binom{n}{n+1} \\
& =\binom{n+1}{k+1}^{k}
\end{aligned}
$$

Pascal's identity

So the row after
$15 \quad 10 \quad 10 \quad 5 \quad 1$
is $1.6 \quad 15 \quad 20$ 15 $6 \quad 1$ for example.

- See p419 for more of the triangle.

