2.3 functions (continued)

We saw that a function f from a set A to a set B sends every element of A to a unique element of B

$$
f: A \rightarrow B \quad f(a)=b
$$

Example (1) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}$. Then $f(7)=49, f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$.

If S is any subset of the domain then we can make a set $f(S)$ with elements $f(x)$ for $x \in S$

$$
f(S)=\{f(x) \mid x \in S\} .
$$

for example using of from (1) and taking $S=\left\{0, \frac{1}{2},-7,7\right\}$ we get

$$
f(s)=\left\{0, \frac{1}{4}, 49\right\} .
$$

If $f: A \rightarrow B$ with doreen A and codorein B then $f(A)$ is called the range of f.

Remember that a function is onto if the codomain of the function equals its range.

A function is one-to-ome if different elements
of the domain always get sent to different elements in the codor-ir.

Inverse functions
Let f be a function from A to B with $f(a)=b$. If f is one-to-one and onto then we can make a new function from B to A called the inverse of f with notation f^{-1}. The inverse reverses f so that

$$
f^{-1}(b)=a \text { whenever } f(a)=b \text {, }
$$

and $\quad f^{-1}: B \rightarrow A$.
So the inverse function reverses the direction of all the arrows. This only makes a new function if we start with a function f that is one-to-one and onto (a one-to-one correspondance).

Example (2) Let $A=\{0,1,3\}$ and $B=\{2,8,9\}$.
Let $f: A \rightarrow B$ he given by $f(0)=2, f(1)=9, f(3)=8$. Find f^{-1}, the inverse of f.

Solution: Since f is one-to-ore and onto it makes sense that the inverse exists. We have $f^{-1}: B \rightarrow A$ given by

$$
f^{-1}(2)=0, \quad f^{-1}(9)=1, \quad f^{-1}(8)=3 .
$$

In pictures

- See examples $19,20,21$ on p146 in the bock.

In example 19 it is shown that $f: \mathbb{Z} \rightarrow \mathbb{Z}$ given thy $f(x)=x+1$ is invertible (has an inverse) and

$$
f^{-1}(y)=y-1
$$

Note that the -1 here does not mean reciprocal

$$
f^{-1}(y) \neq \frac{1}{f(y)}=\frac{1}{y+1}
$$

Composition of functions
If $f: A \rightarrow B$ and $g: B \rightarrow C$ then we can make a new function
$h: A \rightarrow C$ out of f and g
h is called the composition of f and g with notation $h=g \circ f$ " g after f "
and $h(a)=g(f(a))$ for all $a \in A$.

Example (3) Let $A=\{3,4,5\}, B=\{a, b, c, d\}$, $C=\{0,4\}$ with $f(3)=b, f(4)=d, f(5)=a$ and $g(a)=0, g(b)=4, g(c)=0, g(d)=0$

composition $g \circ f$

Here $f: A \rightarrow B, g: B \rightarrow C$ and their composition got: $A \rightarrow C$ is found by following the arrows.

- See example 23 p147.

Definition: The identity function on a set A is the function from A to A that sends every element to itself.

If you compose a function with its inverse you always get the identity function. For example go back to ex (2) and check that
$f^{-1} \circ f$ is the identity function on A $f \circ f^{-1}$ is the identity] function on B.

Ceiling and floor functions
The floor function is a useful function from the real numbers to the integers. It sends any real to the biggest integer that is less than or equal to it. Notation is L」 so

$$
L\lrcorner: \mathbb{R} \rightarrow \mathbb{Z}
$$

and $\lfloor x\rfloor=n$ for $n \leqslant x$ and integer n as his as possible.

Examples: $\lfloor 13.4\rfloor=13$

$$
\begin{aligned}
& \lfloor 13\rfloor=13 \\
& \lfloor-4.1\rfloor=-5
\end{aligned}
$$

The ceiling function is similes

$$
\Gamma T: \mathbb{R} \rightarrow \mathbb{Z}
$$

and sends any real to the smallest integer that is greater then or equal to it.

Examples: $\lceil 13.4\rceil=14$

$$
\begin{aligned}
& \lceil 8\rceil=8 \\
& \lceil-4.1\rceil=-4
\end{aligned}
$$

- See examples 26,27 for more.

