2.2 Set operations

If you have two sets there are different ways to combine them.

A simple thing you can do is put all their elements together and make a bigger set:

Definition: The union of sets A and B is the set that has all the elements that are in A or B or both. Notation $A \cup B$.

Example (1) If $S=\{1,2,4\}$ and $T=\{2,7\}$ then $S \cup T=\{1,2,4,7\}$.

We can also write our definition as

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

or, even better (more precise)

$$
A \cup B=\{x \mid x \in A \vee x \in B\}
$$

Ven diagram for example (1)

and in general

Definition: The intersection of sets A, B is the set that has all the elements in both A and B. Notation $A \wedge B$

$$
A \wedge B=\{x \mid x \in A \wedge x \in B\}
$$

Vern diagram

Example (2) If $S=\{1,2,4\}$ and $T=\{2,7\}$ then $S \wedge T=\{2\}$.

From examples (1) and (2) we see that cardinality $|S \cup T|=|S|+|T|-|S \wedge T|$ $4=\underbrace{3+2}_{\begin{array}{c}\text { elements in intersection } \\ \text { counted twice }\end{array}}$
This is true for any two finite sets A and B

$$
|A \cup B|=|A|+|B|-|A \wedge B|
$$

Inclusion -exclusion principle

If the intersection of two sets is empty then the sets are called disjoint.

If A and B are disjoint then

$$
|A \cup B|=|A|+|B| .
$$

More set operation 5
Definition: The difference of sets A and B is the set containing all the elements of A that are not in B. Notation $A-B$

$$
A-B=\{x \mid x \in A \wedge x \notin B\}
$$

Definition: The symmetric difference of sets A and B is the set of elements that are in A or B but not booth: $A \oplus B$

$$
A \oplus B=\{x \mid x \in A \oplus x \in B\}
$$

Definition: The complement of a set A (with respect to the universal set U) is $U-A$. Notation \bar{A}

$$
\bar{A}=\{x \mid x \in u \wedge x \notin A\}
$$

So the complement means the elements that are not in A.

We see the

\quad| Union |
| :--- |
| intersection |
| connections |
| symmetric difference (t) |
| complement | | or \vee |
| :--- |
| |

- Examples 6-9 on pages 128,129 in broke.

All the laws of logic we saw in Chapter 1 correspond to laws of sets here.

- for example $11 p \equiv p$ corresponds
to $\quad \overline{\bar{A}}=A$
(here P is the proposition $x \in A$).

Some Laws of sets (more on p 130)

- $\quad \overline{\bar{A}}=A$
- $A \cup B=B \cup A$
- $A \cup(B \cup C)=(A \cup B) \cup C$
- $\overline{A \cap B}=\bar{A} \cup \bar{B}$

0
$\overline{A \cup B}=\bar{A} \cap \bar{B}$

$$
\frac{C a n y o u ~ s e e ~ w h y ~}{A \cup B}=\bar{A} \cap \bar{B} \text { ? }
$$

Computer representation of sets
A useful way to represent a set is using bit strings with I meaning an element is in the set and 0 meaning it is not. If the universal set u has n elements then we need bit strings of length n.

Example (3) Let $U=\{1,2,3,4,5,6\}$ then all possible subsets of U correspond to bit strings of length 6
$S=\{1,2,4\}$ has representation 110100

$$
\begin{array}{lllll}
1 & \uparrow & \uparrow & \uparrow & \uparrow \\
1 & \uparrow & \uparrow \\
1 & 4 & 5 & 6
\end{array}
$$

Example (4) Let $u=\{1,2, \ldots, 6\}$ again and
let $A=\{2,3,6\}$ and $B=\{3,4,6\}$.
Write the bit string representations of A and B. Then use bitwise. $O R, A N D$ and $X O R$ to find $A \cup B, A \cap B, A \oplus B$.

Solution: we have

$$
\begin{aligned}
& A=011001 \\
& B=001101
\end{aligned}
$$

$A=011001$

$$
B=001101
$$

OR 011101
so $A \cup B=\{2,3,4,6\}$

$$
\begin{aligned}
& A=011001 \\
& B=\frac{0}{0} 11101 \\
& \hline 0011001
\end{aligned}
$$

so $A \wedge B=\{3,6\}$

$$
A=011001
$$

$$
B=001101
$$

XOR 010100 So $A \oplus B=\{2,4\}$

It is easy to find the complement using bit strings - just change 0 to 1 and 1 to 0 .

