Review of sections $2.1,2.2,2.3,2.6,3.1$
2.1 Set 5

Sets are collections of objects. For example $S=\{5,6,10,13\}$ is a set containing the objects (elements) 5,6,10 and 13 .

Notation
ϵ is an element of
\subseteq is a subset of
c proper subset
ϕ empty set
Also $P(5)$ means the power set of S which is the set of all subsets.

For example

$$
P(\{1,2\})=\{\phi,\{1\},\{2\},\{1,2\}\} .
$$

Also $|S|$ means the cardinality of S which is the number of its elements. So $|s|=4$ here. Note that $|P(\{1,2\})|=4$ as well.

We also looked at the Cartesian product of two sets A and B :

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

set builder notation pairs.
2.2 Set operations

There are different ways to combine two sets A and B
$A \cup B$
$A \cap B$ intersection
$A-B$ difference
$A \oplus B$ symmetric difference

Example (1) For $A=\{1,2,3\}, B=\{3,4\}$
find $A \cup B, B-A, A \oplus B, A \wedge B$.
Solution:

$$
\begin{aligned}
& A \cup B=\{1,2,3,4\} \\
& B-A=\{4\} \\
& A \oplus B=\{1,2,4\} \\
& A \wedge B=\{3\} .
\end{aligned}
$$

Example (2) For $A=\{1,2,3\}, B=\{3,4\}, C=\{1,4\}$ find $A \cap B \wedge C$.

Solution: Can write this as $(A \cap B) \wedge C$ (since intersection is associative)
and $A \wedge B=\{3\}$ so

$$
(A \wedge B) \wedge C=\{3\} \wedge\{1,4\}=\phi .
$$

Therefore $A \wedge B \cap C=\phi$ and there are no elements common to all 3 sets.
2. 3 Functions

Definition: A function f from set A to set B sends every element of A to a unique element of B.

Then we write $f: A \rightarrow B$
Example (3) Let $A=\{2,4,6\}, B=\{4,5\}$.
Define f by saying $f(z)=4, f(4)=5$.
Define g by saying $g(2)=5, g(4)=5, g(6)=4$ and $g(4)=4$.
Are f and g functions from A to B ?
Solution: It is helpful to draw there:

We see clearly that f is not a function from A to B because it doesn't send 6 to an element of B.
Also g is not a function because it doesn't send 4 to a unique elerent of B.

Example (4) Show the h given by $h(4)=6$, $h(5)=2$ is a function from B to A.

Solution:

codomain
We see that h does send every element of B to a unique element of A so it is a function from B to A.

For this h its range is $\{2,6\}$ and not equal to the codomain so h is not onto.
h is one-to-one because it never sends different elements of the domain to the same place.

If a function $f: A \rightarrow B$ is both onto and one-to-one then it is called a une-to-une correspundance. In that case you can reverse all the arrows and get a new function called the inverse with notation f^{-1}.

Example (5) The function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by $g(x)=2 x+5$ is a one-to-one correspondance. Find $g(-1)$ and $g^{-1}(1)$.

Solution: $g(-1)=2(-1)+5=-2+5=3$
So $\underset{\substack{\text { input } \\ g(-1)}}{ }=\begin{aligned} & 3 \\ & \text { output }\end{aligned}$

If $g^{-1}(1)=x$ then $g(x)=1$

we can solve $g(x)=1$:

$$
\begin{aligned}
2 x+5=1 \quad \text { so } \quad 2 x & =1-5=-4 \\
x & =-2
\end{aligned}
$$

Therefore $g^{-1}(1)=-2$.

We also looked at composition of functions.

$$
(f \circ g)(x) \text { means } f(g(x))
$$

"f after g " or "composition of f and g ".
2. 6 Matrices

Example $M=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right] \quad$ is a $\underset{\substack{~}}{\substack{2 \\ \text { rows }}} \begin{aligned} & 3 \\ & \end{aligned}$ rows columns.
If N is another 2×3 matrix then we can compute $M+N$ and $M-N$ just by adding, subtracting corresponding entries.

To multiply two matrices is more complicated. You multiply the rows of the first by the columns of the second.

For example with $M=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right], N=\left[\begin{array}{cc}0 & 2 \\ -1 & 0 \\ 4 & 5\end{array}\right]$

$$
\begin{aligned}
& \text { we get }=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cc}
0 & 2 \\
-1 & 0 \\
4 & 5
\end{array}\right] \\
&=\left[\begin{array}{ll}
1 \cdot 0+2(-1)+3 \cdot 4 & 1 \cdot 2+2 \cdot 0+3 \cdot 5 \\
4 \cdot 0+5(-1)+6 \cdot 4 & 4 \cdot 2+5 \cdot 0+6 \cdot 5
\end{array}\right] \\
&=\left[\begin{array}{ll}
10 & 17 \\
19 & 38
\end{array}\right] \\
& 2 \times 3 \\
& \text { sizes }
\end{aligned}
$$

The Boolean product of two zero-one matrices is found the same way - just replace multiplication by \wedge (AND) and addition by $V(O R)$.
3.1 Algorithms

These are precise instructions to perform a task. Instead of using a particular programming language, we can write our algorithms in psendocode.

We studied the simple algorithms:
Max : finds largest integer in a list
Linear search: finds location of a given integer in a list or outputs o if not found.
binary search: finds location of a given integer in an ordered list.
bubble sort: puts a list of real numbers into increasing order
insertion sort: uses a different method to put numbers into increasing order.
change: uses a greedy algorithm to to mate change, starting with largest value coins.

As in the homework, you could be asked to show all the steps an algorithm uses for a specific input.

