Math 32, Homework 9 on sections 7.5, 7.8, 8.1

Do these 11 questions and check that your answers match the solutions on page 2. They will not be collected, but similar questions could appear on the next quiz.
(1) Compute:

$$
\int e^{\sqrt{t}} d t
$$

(2) Find:

$$
\int \frac{d \theta}{1+\cos ^{2} \theta}
$$

This is a difficult one. Try first rewriting the integrand as $\frac{\sec ^{2} \theta}{\sec ^{2} \theta+1}$ and then use a trigonometric identity.
(3) Is this integral convergent or divergent? Evaluate it if it is convergent:

$$
\int_{1}^{\infty} \frac{1}{x^{5}} d x
$$

(4) Is this integral convergent or divergent? Evaluate it if it is convergent:

$$
\int_{3}^{\infty} \frac{1}{x^{2 / 3}} d x
$$

(5) Is this integral convergent or divergent? Compute it if it is convergent:

$$
\int_{e}^{\infty} \frac{d x}{x(\ln x)^{2}}
$$

(6) Is this integral convergent or divergent? Compute it if it is convergent:

$$
\int_{-\infty}^{0} 3^{x} d x
$$

(7) Is this integral convergent or divergent? Calculate it if it is convergent:

$$
\int_{0}^{9} \frac{d x}{\sqrt{x}}
$$

(8) Is this integral convergent or divergent? Calculate it if it is convergent:

$$
\int_{-2}^{4} \frac{d x}{(x-1)^{3}}
$$

(9) Set up an integral to give the length of the curve $y=\tan x$ for $-\pi / 4 \leqslant x \leqslant \pi / 4$. Don't try to compute the integral (probably impossible).
(10) Find the length of the curve $y=2 x^{3 / 2}$ for $0 \leqslant x \leqslant 11$.
(11) Find the length of the curve $y=\frac{x^{2}}{4}-\frac{\ln x}{2}$ for $1 \leqslant x \leqslant 2$. For this it is useful to notice that:

$$
\frac{x^{2}}{4}+\frac{1}{2}+\frac{1}{4 x^{2}}=\left(\frac{x}{2}+\frac{1}{2 x}\right)^{2}
$$

You can also try questions from sections $7.5,7.8,8.1$ in the book listed on the syllabus.

Answers to questions (1)-(11):

(1) $2 \sqrt{t} e^{\sqrt{t}}-2 e^{\sqrt{t}}+C$
(2) $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\tan (\theta)}{\sqrt{2}}\right)+C$
(3) This integral is convergent and equals $1 / 4$.
(4) This integral is divergent.
(5) This integral is convergent and equals 1.
(6) This integral is convergent and equals $1 / \ln (3)$.
(7) This integral is convergent and equals 6.
(8) This integral is divergent.
(9) $\int_{-\pi / 4}^{\pi / 4} \sqrt{1+\sec ^{4}(x)} d x$
(10) 74
(11) $\frac{3}{4}+\frac{\ln 2}{2}$

