Do these 10 questions and *check that your answers match the solutions on page* 2. They will not be collected, but similar questions could appear on the next quiz.

(1) Prove that

$$\frac{d}{dx}\tanh(x) = \operatorname{sech}^2(x)$$

and state any definitions and results you used.

(2) Find:

(2) Find:	$\lim_{x \to \infty} \frac{x + 2000}{3x + 1}$
(3) Compute:	
	$\lim_{x \to 0} \frac{\sin(4x)}{\sin(3x)}$
(4) Compute:	$\cos(4\pi)$
	$\lim_{x \to 0} \frac{\cos(4x)}{\cos(3x)}$
(5) Calculate:	$tanh(r^2)$
	$\lim_{x \to 0} \frac{\tanh(x^2)}{\tan(x^2)}$
(6) Calculate:	$x \cdot 2^x$
	$\lim_{x \to 0} \frac{x \cdot 2^x}{2^x - 1}$
(7) Find:	
	$\lim_{x \to \infty} x^2 \cdot 3^{-x}$
(8) Find:	$\ln(x)$
	$\lim_{x \to \infty} \frac{\ln(x)}{x}$
(9) Compute:	$\lim x^{1/x}$
	$\lim_{x \to \infty} x^{-r}$
(10) Compute:	$\cos(x) = 1$
	$\lim_{x \to 0} \frac{\cos(x) - 1}{x^2}$

You can also try questions from sections 6.7, 6.8 in the book listed on the syllabus.

Answers to questions (1)-(10):

- (1) See similar proofs in section 6.7.
- (2) 1/3
- (3) 4/3
- (4) 1
- (5) 1
- (6) $1/\ln 2$
- (7) 0
- (8) 0
- (9) 1
- (10) -1/2