Math 32, Homework 3 on sections 5.3, 6.1, 6.2

Do these 10 questions and check that your answers match the solutions on page 2. They will not be collected, but similar questions could appear on the next quiz.
(1) Sketch the region enclosed by the following curves and lines

$$
y=x^{2}, \quad y=0, \quad x=1, \quad x=2
$$

Then use the method of cylindrical shells to find the volume of the solid obtained by rotating this region about the y-axis.
(2) Sketch the region enclosed by the following curve and line

$$
y=4 x-x^{2}, \quad y=x
$$

Then use the method of cylindrical shells to set up the integral to find the volume of the solid obtained by rotating this region about the y-axis. (No need to compute the integral.)
(3) Is the function $f(x)=2+\cos (x)$ one-to-one? Is it one-to-one on the domain $0 \leqslant x \leqslant \pi$?
(4) Let $g(x)=3 x+1$. Find $g^{-1}(x)$ and graph both g and its inverse together.
(5) Let

$$
f(x)=\frac{x+1}{2 x-3}
$$

Find the inverse of f. Then give the domain and range of f and the domain and range of f^{-1}.
(6) (a) Use the formula you found in Q5 to compute $\left(f^{-1}\right)^{\prime}(1)$. (b) Use the formula

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

to compute $\left(f^{-1}\right)^{\prime}(1)$.
(7) Graph the exponential function $h(x)=(0.4)^{x}$. Give the domain and range of h and state whether it is increasing or decreasing. Also find $\lim _{x \rightarrow \infty} h(x)$ and $\lim _{x \rightarrow-\infty} h(x)$.
(8) Find:

$$
\text { (a) } \lim _{x \rightarrow \infty} \frac{2 e^{x}-1}{e^{x}+1}, \quad \text { (b) } \quad \lim _{x \rightarrow \infty} e^{-x} \sin (x)
$$

(9) Differentiate:

$$
\text { (a) } e^{4 \tan (x)}, \quad \text { (b) } \quad e^{x /(x-1)}
$$

(10) Differentiate:
(a) $\sqrt{1+e^{x^{2}}}$,
(b) $3 x^{2} e^{\cos (x)}$.

You can also try questions from sections 5.3, 6.1, 6.2 in the book listed on the syllabus.

Answers to questions (1)-(10):

(1) The volume is $15 \pi / 2$.
(2) The integral giving the volume is

$$
2 \pi \int_{0}^{3}\left(3 x^{2}-x^{3}\right) d x
$$

(3) With the horizontal line test, $f(x)$ is not one-to-one. But it is one-to-one on the domain $0 \leqslant x \leqslant \pi$.
(4) $g^{-1}(x)=(x-1) / 3$. The graphs of g and g^{-1} are symmetric about the line $y=x$.
(5) We have

$$
f^{-1}(x)=\frac{3 x+1}{2 x-1}
$$

and

$$
\begin{aligned}
\text { domain of } f & =\mathbb{R} /\{3 / 2\}, & & \text { range of } f=\mathbb{R} /\{1 / 2\} \\
\text { domain of } f^{-1} & =\mathbb{R} /\{1 / 2\}, & & \text { range of } f^{-1}=\mathbb{R} /\{3 / 2\} .
\end{aligned}
$$

(6) With both methods $\left(f^{-1}\right)^{\prime}(1)=-5$.
(7) We have

$$
\text { domain of } h=\mathbb{R}, \quad \text { range of } h=(0, \infty)
$$

This function is decreasing and $\lim _{x \rightarrow \infty} h(x)=0, \lim _{x \rightarrow-\infty} h(x)=\infty$.
(8) We have

$$
\text { (a) } \quad \lim _{x \rightarrow \infty} \frac{2 e^{x}-1}{e^{x}+1}=2, \quad \text { (b) } \quad \lim _{x \rightarrow \infty} e^{-x} \sin (x)=0
$$

(9) We have

$$
\text { (a) } \frac{d}{d x} e^{4 \tan (x)}=4 \sec ^{2}(x) e^{4 \tan (x)}, \quad \text { (b) } \quad \frac{d}{d x} e^{x /(x-1)}=\frac{-1}{(x-1)^{2}} e^{x /(x-1)} \text {. }
$$

(10) We have

$$
\text { (a) } \quad \frac{d}{d x} \sqrt{1+e^{x^{2}}}=\frac{x e^{x^{2}}}{\sqrt{1+e^{x^{2}}}}, \quad \text { (b) } \quad \frac{d}{d x} 3 x^{2} e^{\cos (x)}=3 x(2-x \sin (x)) e^{\cos (x)} \text {. }
$$

