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Introduction

Differential geometry can be described as the application of the tools of calculus
to questions of geometry. Beginning with the verification of age-old geometrical
measurements like the circumference and area of a circle, the new techniques of
calculus showed their power by quickly dispensing with questions that had long
engaged thinkers from antiquity through the 17th and 18th centuries.

In the 19th century, Gauss displayed the extent to which calculus (in particular,
the first two derivatives) determines basic properties of curves and surfaces, at least
locally. These results can properly be called the beginning of “classical” differential
geometry.

Gauss’s student Riemann introduced the notion of a manifold, which brought
differential geometry into its own. In particular, the first notions of the tangent
space would allow the techniques of linearization and ultimately the tools of linear
algebra to be brought to bear on geometric questions.

Perhaps most prominently, Einstein used the notion of a manifold to frame the
general theory of relativity. Another conceptual milestone accomplished with the
notion of a manifold concept was allowing a common framework for the new, non-
Euclidean geometries that were struggling to gain currency in the 19th century.
Both of these developments occurred by generalizing the notion of distance and
imposing more general metric structures on a manifold. This is what is today
known as riemannian geometry.

To lesser fanfare, the notion of a manifold allowed a whole new way of generaliz-
ing geometry. Sophus Lie, under the influence of Felix Klein, introduced the notion
of transformation groups in the course of investigating differential equations. Later,
into the early 20th century through the continued work of F. Engel and E. Cartan,
these notions led to what are today known as symplectic and contact structures on
manifolds, which like the metric structures of riemannian geometry, are defined by
referring to the tangent space.

It is impossible to overstate the impact of this latter development for the field of
differential geometry. In fact, today it is possible to describe differential geometry
as “the study of smoothly-varying structures on the tangent space.” It is the aim
of this text to develop this point of view.

For that reason, the development here is somewhat different than the classical
introductory texts in differential geometry, for example the works of Struik [41],
do Carmo [12], O’Neill [34] or Kühnel [26]. Those texts are aimed at introducing
riemannian geometry, and especially the metric tensor and its derived concepts like
curvature.

Here, our goal is to develop the architecture necessary to introduce contact
and symplectic geometry alongside their riemannian cousin. After presenting some
preliminary material needed from linear algebra, we spend more time than usual in
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iv INTRODUCTION

presenting the definition of the tangent space and notions immediately connected
to it, like vector fields. We then present a chapter on differential forms and tensors,
which are the “structures” on the tangent space referred to above.

The first three chapters are really a prelude to the core of the book, which
is an exposition of the differential geometry of a symmetric, positive-definite 2-
tensor (riemannian geometry), a nondegenerate one-form (contact geometry), and
a closed, nondegenerate two-form (symplectic geometry). There will be no attempt
to give an exhaustive treatment of any of these vast areas of current mathematical
research. Rather, the goal is to introduce students early in their mathematical
careers to this broader view of geometry.

It is rare to present these three geometric structures side by side as we do here.
We do so to emphasize one of the text’s major themes: differential geometry as the
study of tensor structures on the tangent space. In each case, we will show how a
tensor structure determines not only certain key geometric objects, but also singles
out special functions or transformations that “preserve the structure.”

Differential geometry offers a smooth transition from the standard univer-
sity mathematics sequence of the first four semesters—calculus through differential
equations and linear algebra—to the higher levels of abstraction and proof encoun-
tered at the upper division by mathematics majors. Topics introduced or hinted at
in calculus and linear algebra are used concretely, but in a new setting. Granted, the
simplicity and ab initio nature of first courses in abstract algebra or number theory
make them ideal settings for students to learn the practice of proofs. Elementary
differential geometry sacrifices these in favor of the familiar ground of derivatives
and linear transformations, emphasizing instead the importance of proper definition
and generality in mathematics.

Indeed, here lies another main goal of this book: to bring the student who
has finished two years with a solid foundation in the standard mathematics cur-
riculum into contact with the beauty of “higher” mathematics. In particular, the
presentation here emphasizes the consequences of a definition and the careful use
of examples and constructions in order to explore those consequences.

This goal places certain limitations on the presentation. The notion of a mani-
fold, which is the basic setting for modern differential geometry, implies a significant
role for topology. A manifold is “locally euclidean,” in the same sense that the sur-
face of the earth looks flat to the typical human observer on earth.

This text, however, will steer clear of topology as much as possible in order to
give center stage to the role of calculus. For the more advanced reader, this will
mean that virtually the entire text is “local.” Important theorems about global
riemannian geometry like the Gauss-Bonnet theorem are thus missing from this
presentation. This is an even more severe limitation in the cases of contact and
symplectic geometry, as we will discuss in their respective chapters.

For this reason, we will avoid the use of the term “manifold” altogether. This
will have some unfortunate consequences in terminology. For example, we will refer
to submanifolds as “geometric sets.”

As a text aimed at a “transitional” audience, students who have completed the
traditional calculus and linear algebra sequence but who have not necessarily been
exposed to the more abstract formulations of pure mathematics, we should say a
word about the role of proofs. The body of the text is structured to include proofs,
or ideas of proof, of most of the main statements and results. This is done not
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just for the sake of mathematical rigor. Rather, it is premised on the perspective
that proofs provide more than deductive logical justifications; they also provide
a showcase where the main techniques and concepts can be put on display. In
addition, in some cases the reader will be asked to supply proofs or details of a
proof as a way to exercise this vital mathematical skill.

Most exercises, however, will be designed to present and explore examples of
the mathematical constructions involved. This is based on the point of view that
mathematics, and geometry in particular, is not merely a deductive undertaking.
There is a rich content to mathematics, the appreciation of which requires intuition
and familiarity.





CHAPTER 0

Basic objects and notation

Most of modern mathematics is expressed using the language of sets and func-
tions. This can be a significant hurdle for the student whose mathematical experi-
ence, possibly through the entire calculus sequence, has not included any emphasis
on sets or set operations. For that reason, we review these basic ideas in this chap-
ter with the goal of both establishing the notation and serving as a quick reference
when proceeding through the main part of the text.

0.1. Sets

The basic concept that the notion of a set is meant to capture is that of inclusion
or exclusion. Unfortunately, there are inherent logical difficulties in writing a formal
definition of a set. We can resort to one standard “definition:” “A set is a collection
of objects.” This gives a sense of both the distinction between the objects under
consideration and the collection of objects, as well as the sense of being “included”
in the collection or “not included.” Unfortunately, it leaves undefined what is meant
exactly by the terms “collection” and “object,” and so leaves much to be desired
from the perspective of a mathematical definition.

For that reason, we will not try to be too precise in defining a set. Rather,
we will call the objects under consideration elements, and we think of a set as
“something that contains elements.”

We will generally write a set using an upper-case letter: A, B, S, etc. We will
write elements using small-case letters: a, b, x, y, etc. We express the relation that
“x is an element of A” by writing

x ∈ A.
If, on the contrary, an element y is not an element of the set A, we write y /∈ A.

The basic assumption that we make about sets is that they are well-defined :
For every element x and every set A,

Either x ∈ A or x /∈ A,
and the statement “x ∈ A and x /∈ A” is false for all x.

In any particular problem, the context will imply a universal set, which is the
set of all objects under consideration. For example, a team of statisticians might
be concerned with a data set of measurements of heights in a given population
of people. A team of geometers might be concerned with properties of the set of
points in three-dimensional space. When the statisticians ask whether an element
is in a particular set, they will only consider elements in their “universe,” and so
in particular will not even ask the question of whether the geometers’ points are in
the statisticians’ sets.

1



2 0. BASIC OBJECTS AND NOTATION

While the universal set for a given discussion or problem may or may not be
explicitly stated, it should always be able to be established from the context. From
a logical point of view, in fact, the universal set is the context.

There are several standard ways of describing sets. The most basic way is by
listing the elements, written using brackets to enclose the elements of the set. For
example, a set A with three elements a, b and c is written

A = {a, b, c} .
The statement b ∈ A is read, “b is an element of A,” or just “b is in A.” Note that
the order in which the elements are listed is not important, so that for example
{a, b, c} is the same set as {b, a, c}.

Describing a set by means of a list is also possible in the case of (countably)
infinite sets, at least when there is a pattern involved. For example, the set of even
natural numbers can be expressed as

E = {2, 4, 6, . . .} .
Here, the ellipsis (. . . ) expresses a pattern which should be obvious to the reader
in context.

Most often, however, sets will be described in a form known as set-builder
notation. In this notation, a set is described as all elements (of the universal set)
having a certain property or properties. These properties are generally given in the
form of a logical statement about an element x, which we can write as P (x). In
other words, P (x) is true if x has property P and P (x) is false if x does not have
property P . Hence we write

{x ∈ X | P (x)}
to represent the set of all x in the universal set X for which the statement P (x)
is true. When the universal set is clear from the context, we often simply write
{x | P (x)}. In this notation, for example, the set of even natural numbers can be
written

E = {n | There exists a natural number k such that n = 2k} .
Here the property P (n) is the statement, “There exists a natural number k such
that n = 2k.” P (4) is a true statement since 4 = 2(2), and so 4 ∈ E. On the other
hand, P (5) is false since there is no natural number k such that 5 = 2k, and so
5 /∈ E.

We will also encounter sets of elements decribed by several properties. For
example, the set

{x | Pi(x), i = 1, . . . , r}
means the set of all elements for which the r distinct statements

P1(x), P2(x), . . . , Pr(x)

are all true.
Set builder notation has a number of advantages. First, it gives a way to

effectively describe very large or infinite sets without having to resort to lists or
cumbersome patterns. For example, the set of rational numbers can be described
as {

x
∣∣ There are integers p and q such that x = p

q

}
.

More importantly, the notation makes explicit the logical structure that is im-
plicit in the language of sets. Since this structure underlies the entire development
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of mathematics as statements which can be proven according to the rigors of logic,
we will emphasize this here.

One special set deserves mention. The empty set, denoted ∅, is the set with no
elements. There is only one such set, although it may appear in many forms. For
example, if for some set X , a statement P (x) is false for all x ∈ X , then

∅ = {x | P (x)} .
We now consider relations and operations among sets. For this purpose, we

suppose that we are given two sets A and B with the universal set X . We will
suppose that both A and B are described in set builder notation

A = {x | PA(x)} , B = {x | PB(x)} ,
where PA and PB are properties describing the sets A and B respectively.

We will say that A is a subset of B, written A ⊂ B, if for all a ∈ A, we also
have a ∈ B. Hence,

To prove A ⊂ B, show that if PA(x) is true, then PB(x) is true.

In fact, there are two standard ways of proving that A ⊂ B. In the direct
method, one assumes that PA(x) is true and then deduces, by definitions and
previously-proved statements, that PB(x) must also be true. In the indirect method,
by contrast, one assumes that PA(x) is true and that PB(x) is false, and then at-
tempts to derive a contradiction. This is what is known as “proof by contradiction.”

It is a consequence of formal logic that the empty set is a subset of all sets: For
any set X , ∅ ⊂ X .

There are several basic set operations corresponding to the basic logical con-
nectives “and,” “or,” and “not.” The intersection of A and B, written A ∩ B, is
the set

A ∩B = {x | x ∈ A and x ∈ B} .
We have:

To prove x ∈ A ∩B, show that PA(x) is true AND PB(x) is true.

Also, the union of A and B is the set

A ∪B = {x | x ∈ A or x ∈ B} ,
and

To prove x ∈ A ∪B, show that either PA(x) is true OR PB(x) is true.

The difference of A and B is the set

A\B = {x | x ∈ A and x /∈ B} ,
so

To prove x ∈ A\B, show that PA(x) is true AND PB(x) is false.

In particular, the complement of A is the set Ac = X\A. So
To prove x ∈ Ac, show that PA(x) is false.

There is yet another set operation which is of a somewhat different nature than
the previous operations. The Cartesian product of sets A and B is a set A × B
whose elements are ordered pairs of the form (a, b). More precisely,

A×B = {(x, y) | x ∈ A and y ∈ B} , i.e.
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To prove (x, y) ∈ A×B, show that PA(x) is true AND PB(y) is true.

In this case, the separate entries in the ordered pair are referred to as components,
and if there is need for specificity, the A-component and the B-component.

Notice the distinction between the logical statements corresponding to A ∩B,
where statements PA(x) and PB(x) must be true about the same element x, whereas
for A×B, statements PA(x) and PB(y) must be true of different elements, one in
A and the other in B.

Finally, we list several common sets of numbers along with the standard nota-
tion:

N, the set of natural numbers,

Z, the set of integers,

Q, the set of rational numbers,

R, the set of real numbers, and

C, the set of complex numbers.

We will be especially concerned with the set Rn = R× · · · ×R:

Rn = {(x1, . . . , xn) | xi ∈ R for i = 1, . . . , n} .
Many times we will encounter special subsets of the real numbers which are

defined by the order relations <, ≤, > and ≥. These are the intervals, and we use
the special notation

[a, b] = {r ∈ R | a ≤ r ≤ b} ,
(a, b) = {r ∈ R | a < r < b} ,

(−∞, b) = {r ∈ R | r < b} ,
(−∞, b] = {r ∈ R | r ≤ b} ,
(a,∞) = {r ∈ R | r > a} ,
[a,∞) = {r ∈ R | r ≥ a} ,

where in all cases a < b. We can similarly define the half-open intervals (a, b], etc.

0.2. Functions

Most readers will recall the definition of a function that is typically presented,
for example, in a precalculus course. A function is defined to be a rule assigning to
each element of one set (the domain) exactly one element of another set (the range).
The advantage of this definition is that it emphasizes the relationship established
between elements of the domain and those of the range by means of the rule. It has
the disadvantage, however, of lacking mathematical precision, especially by relying
on the imprecise term “rule.”

In order to be more precise, mathematicians in the 1920s established the fol-
lowing definition of a function. Given two sets A and B, a function f is defined to
be a subset f ⊂ A×B with the following two properties: first, for all a ∈ A there is
b ∈ B such that (a, b) ∈ f and second, if (a1, b1) ∈ f and (a2, b2) ∈ f with a1 = a2,
then b1 = b2. The logical structure of this definition implies a clear distinction be-
tween the sets A and B, with a statement about elements of A (a1 = a2) implying
a statement about elements of B (b1 = b2). The set A is called the domain and the
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S f(S)

T
f−1(T )

f

Figure 0.1. A representation of the image and preimage of a function f

set B is called the codomain. We will reserve the term “range” for a special subset
of B defined below.

Despite this formal definition, throughout this text we will rely on the standard
notation for functions. In particular, for a function f with domain A and codomain
B, we use the notation

f : A→ B

to represent the function; the arrow points from the domain to the codomain. We
write f(a) to represent the unique element of B such that (a, f(a)) ∈ f . We will
occasionally use the notation

a �→ f(a).

As a central concept in mathematics, a number of different terms have emerged
to describe a function. We will use the words function, map and transformation
interchangeably.

Given a function f : A → B and a set S ⊂ A, the image of S (under f) is
defined to be the set

f(S) = {y ∈ B | There is x ∈ S such that f(x) = y} .
The range of f is defined to be the set f(A). For a subset T ⊂ B, the preimage of
T (under f) is the (possibly empty) set

f−1(T ) = {x ∈ A | f(x) ∈ T} .
A function f : A→ B is onto is f(A) = B, i.e. if the range of f coincides with

the codomain of f . To demonstrate that a function is onto, it is necessary then
to show that B ⊂ f(A) (since f(A) ⊂ B by definition). In other words, for any
element b ∈ B, it is necessary to produce a ∈ A such that f(a) = b.

A function f : A → B is one-to-one if for any two elements a1, a2 ∈ A, the
condition f(a1) = f(a2) implies that a1 = a2. There are two basic approaches
to show that a function is one-to-one. The direct method is to assume that there
are two elements a1, a2 with the property that f(a1) = f(a2) and to show that
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this implies that a1 = a2. The indirect method is to suppose that there are two
different elements a1, a2 ∈ A such that a1 �= a2 and to show that this implies that
f(a1) �= f(a2).

Given any set A, there is always a distinguished function IdA : A→ A defined
by IdA(a) = a for all a ∈ A. This function is called the identity map of A.

Suppose there are two functions f : A → B and g : C → D with the property
that f(A) ⊂ C. Then it is possible to define a new function g ◦ f : A → D by
(g ◦ f)(a) = g(f(a)). This function is called the composition of g with f . This
operation on functions is associative, i.e.

(h ◦ g) ◦ f = h ◦ (g ◦ f),
assuming that all compositions are defined. A function f : A → B is one-to-one
if and only if it has an inverse defined on the image of A, i.e. there is a function
g : f(A)→ A such that f ◦ g = Idf(A) and g ◦ f = IdA. We normally write f−1 to
denote the inverse of f .

In addition, for real-valued functions f : A→ R, i.e. functions whose codomain
is a set of real numbers, there are a number of operations inherited from the normal
operations on real numbers. For example, if f and g are real-valued functions, then
f + g, f − g, f · g and f/g are defined pointwise. For example, f + g is the function
whose domain is defined to be the intersection of the domains of f and g and whose
value (f + g)(a) is given by f(a) + g(a).



CHAPTER 1

Linear algebra essentials

When elementary school students first leave the solid ground of arithmetic for
the more abstract world of algebra, the first objects they encounter are generally lin-
ear expressions. Algebraically, linear equations can be solved using elementary field
properties, namely the existence of additive and multiplicative inverses. Geometri-
cally, a nonvertical line in the plane through the origin can be described completely
by one number—the slope. Linear functions f : R → R enjoy other nice proper-
ties: they are in general invertible, and the composition of linear functions is again
linear.

Yet marching through the progression of more complicated functions and ex-
pressions—polynomial, algebraic, transcendental—many of these basic properties of
linearity can become taken for granted. In the standard calculus sequence, sophis-
ticated techniques are developed which seem to yield little new information about
linear functions. Linear algebra is generally introduced after the basic calculus se-
quence has been completed, and is presented in a self-contained manner, with little
reference to what has been seen before. A fundamental insight is lost or obscured:
that differential calculus is the study of nonlinear phenomena by “linearization.”

The main goal of this chapter is to present the basic elements of linear algebra
needed to understand this insight of differential calculus. We also present some
geometric applications of linear algebra with an eye toward later constructions in
differential geometry.

While this chapter is written for readers who have already been exposed to
a first course in linear algebra, it is self-contained enough that the only essential
prerequisites will be a working knowledge of matrix algebra, Gaussian elimination
and determinants.

1.1. Vector spaces

Modern mathematics can be described as the study of sets with associated
structure. In linear algebra, the sets under consideration have enough “structure”
to allow elements to be added and multiplied by scalars. These two operations
should behave and interact in familiar ways.

Definition 1.1.1.
A (real) vector space consists of a set V together with two operations, addition

and scalar multiplication. Scalars are understood here as real numbers. Elements
of V are called vectors and will often be written in bold type v. Addition is written
using the conventional symbol v+w. Scalar multiplication is denoted as sv or s ·v.

The triple (V,+, ·) must satisfy the following axioms:

(V1) For all v,w ∈ V , v +w ∈ V .
(V2) For all u,v,w ∈ V , (u+ v) +w = u+ (v +w).

7



8 1. LINEAR ALGEBRA ESSENTIALS

(V3) For all v,w ∈ V , v +w = w+ v.
(V4) There exists a distinguished element of V , denoted 0, with the property

that for all v ∈ V , 0+ v = v.
(V5) For all v ∈ V , there exists an element denoted −v with the property that

(−v) + v = 0.
(V6) For all s ∈ R and v ∈ V , sv ∈ V .
(V7) For all s, t ∈ R and v ∈ V , s(tv) = (st)v.
(V8) For all s, t ∈ R and v ∈ V , (s+ t)v = sv + tv.
(V9) For all s ∈ R and v,w ∈ V , s(v +w) = sv + sw.
(V10) For all v ∈ V , 1v = v.

We will often suppress the explicit ordered triple notation (V,+, ·) and simply
refer to “the vector space V .”

In an elementary linear algebra course, a number of familiar properties of vector
spaces are derived as consequences of the 10 axioms. We list several of them here.

Theorem 1.1.2. Let V be a vector space. Then:

(a) The identity element 0 is unique.
(b) For all v ∈ V , the additive inverse −v of v is unique.
(c) For all v ∈ V , 0 · v = 0.
(d) For all v ∈ V , (−1) · v = −v.
Idea of proof. The proofs of (a) and (b) follow the standard method of proof

of uniqueness, namely assuming to the contrary that there are two elements with
the given properties and then showing that the two elements must in fact be equal.
The proof of (c) follows by writing a scalar s as s+0 and applying axioms (V8) and
(V4) in combination with the uniqueness results proved in (a). Finally, the proof
of (d) is a consequence of writing 0 = 1+ (−1), axioms (V8) and (V10), along with
the previous statements in this theorem.

�

Physics texts often discuss vectors in terms of the two properties of magnitude
and direction. These are not in any way related to the vector space axioms. Both
of these concepts arise naturally in the context of inner product spaces, which we
treat in Section 9.

In a first course in linear algebra, a student is exposed to a number of examples
of vector spaces, familiar and not-so-familiar, in order to gain better acquaintance
with the axioms. Here we introduce just two examples.

Example 1.1.3. (Euclidean space) For any positive integer n, define the set
Rn to be the set of all n-tuples of real numbers:

Rn = {(a1, . . . , an) | ai ∈ R for i = 1, . . . , n}
Define vector addition componentwise as

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn),

and likewise define scalar multiplication

s(a1, . . . , an) = (sa1, . . . , san)
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It is a straightforward exercise to show that Rn with these operations satis-
fies the vector space axioms. These vector spaces (for different n) will be called
euclidean spaces.

Rn can be thought of as the “model” finite-dimensional vector space in at least
two senses. First, it is the most familiar example, generalizing the set R2 that
is the setting for the most elementary analytic geometry that most students first
encounter in high school. Second, we show later that all finite-dimensional vector
spaces are “equivalent” (in a sense we will make precise) to Rn for some n.

Much of the work in later chapters will concern R3, R4 and other Euclidean
spaces. We will be relying on additional structures of these sets that go beyond the
bounds of linear algebra. Nevertheless, the vector space structure remains essential
to the tools of calculus that we will employ later.

The following example gives a class of vector spaces that are in general not
equivalent to euclidean spaces.

Example 1.1.4. (Vector spaces of functions) Given any set X, let F(X) be
the set of all real-valued functions with domain X:

F(X) = {f : X → R}.
For any two such f, g ∈ F(X), define the sum f + g pointwise as (f + g)(x) =

f(x)+g(x). Likewise, define scalar multiplication (sf)(x) = s(f(x)). The set F(X)
equipped with these operations is a vector space. The zero vector is the function
O : X → R which is identically zero: O(x) = 0 for all x ∈ X. Confirmation of
the axioms depends on the corresponding field properties in the codomain, the set
of real numbers.

We will return to this class of vector spaces in the next section.

1.2. Subspaces

A mathematical structure on a set distinguishes certain subsets of special sig-
nificance. In the case of a set with the structural axioms of a vector space, the
distinguished subsets are those which are themselves vector spaces under the same
operations of vector addition and scalar multiplication as in the larger set.

Definition 1.2.1. Let W be a subset of a vector space (V,+, ·). Then W is a
vector subspace (or just subspace) of V if (W,+, ·) satisfies the vector space axioms
(V1)–(V10).

A subspace can be pictured as a vector space “within” a larger vector space.
See Figure 1.1.

Before illustrating examples of subspaces, we immediately state a theorem that
insures most of the vector space axioms are in fact inherited from the larger ambient
vector space.

Theorem 1.2.2. Suppose W ⊂ V is a subset of a vector space V satisfying the
following two properties:

(W1) For all v,w ∈W , v +w ∈W .
(W2) For all w ∈ W and s ∈ R, sw ∈W .

Then W is a subspace of V .
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Figure 1.1. Subspaces in R3

Idea of proof. The reader will note that the closure axioms (W1)–(W2) cor-
respond to the vector space axioms (V1) and (V6); these two properties are not
consequences of the fact that W is a subset of V . Many of the rest of the vector
space axioms, however, are simply consequences of considering the elements of W
as vectors in V and relying on the fact that V is assumed to be a vector space. The
only two axioms which require special attention are the existence axioms (V4) and
(V5), verifying that 0 and −w are vectors in W . The existence of these special
elements is a consequence of the fact that V is a vector space. To show that they
are in fact elements of W requires Theorem 1.1.2.

�

We note that for any vector space V , the set {0} is a subspace of V , known
as the trivial subspace. Similarly, V is a subspace of itself, which is known as the
improper subspace.

We now illustrate some nontrivial, proper subspaces of the vector space R3.

Example 1.2.3. Let W1 = {(s, 0, 0) | s ∈ R}. Then W1 is a subspace of R3.

Example 1.2.4. Let v = (a, b, c) �= 0 and let

W2 = {sv | s ∈ R}.
To see that W2 is a subspace of R3, we rely on Theorem 1.2.2. Take w1,w2 ∈W2.
That is, there are scalars s1, s2 ∈ R such that w1 = s1v and w2 = s2v. To show
that w1 +w2 ∈W2, it is necessary to find a scalar s such that w1 +w2 = sv. The
reader can check that s = s1 + s2 is the required scalar.

To show that W2 is closed under scalar multiplication, choose w ∈ W2 and
s ∈ R. To show that sw ∈ W2 requires finding a scalar u ∈ R such that sw = uv.
But since w ∈ W2, there is a scalar t such that w = tv. So choose u = st.

Note that Example 1.2.3 is a special case of this example when v = (1, 0, 0).

Example 1.2.5. Let W3 = {(s, t, 0) | s, t ∈ R}. Then W3 is a subspace of R3.

Example 1.2.6. As in Example 1.2.4, let v = (a, b, c) �= 0. Relying on the
usual “dot product” in R3, define
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W4 = {x ∈ R3 | v · x = 0}
= {(x1, x2, x3) | ax1 + bx2 + cx3 = 0}.

Choose x1,x2 ∈ W4; that means that v · x1 = 0 and v · x2 = 0. Choose s ∈ R.
To show that x1 + x2 and sx1 are in W4, we need to show that v · (x1 + x2) = 0
and that v · (sx1) = 0. Both of these follow from the properties of the dot product
and the fact that x1,x2 ∈W4.

Note that Example 1.2.5 is a special case of this example when v = (0, 0, 1).

We will show at the end of Section 4 that all proper, nontrivial subspaces of
R3 can be realized either in the form of W2 or W4.

Example 1.2.7 (Subspaces of F(R)). We list here a number of vector subspaces
of F(R), the space of real-valued functions f : R→ R. The verifications that they
are in fact subspaces are straightforward exercises using the basic facts of algebra
and calculus.

• Pn(R), the subspace of polynomial functions of degree n or less;
• P (R), the subspace of all polynomial functions (of any degree);
• C(R), the subspace of functions which are continuous at each point in
their domain;
• Cr(R), the subspace of functions whose first r derivatives exist and are
continuous at each point in their domain;
• C∞(R), the subspace of functions all of whose derivatives exist and are
continuous at each point in their domain.

Our goal in the following section will be to exhibit a method for constructing
vector subspaces of any vector space V .

1.3. Constructing subspaces I: Spanning sets

The two vector space operations give a way to produce new vectors from a
given set of vectors. This, in turn, gives a basic method for constructing subspaces.

Definition 1.3.1. Suppose S = {v1,v2, . . . ,vn} is a finite set of vectors in
a vector space V . A vector w is a linear combination of S if there are scalars
c1, . . . , cn such that

w = c1v1 + · · ·+ cnvn

A basic question in a first course in linear algebra is: Given a vector w and a
set S as in Definition 1.3.1, decide whether or not w is a linear combination of S.
In practice, this can be answered using the tools of matrix algebra.

Example 1.3.2. Let S = {v1,v2} ⊂ R3, where v1 = (1, 2, 3) and v2 =
(−1, 4, 2). Let us decide whether w = (29,−14, 27) is a linear combination of S.
To do this means solving the vector equation w = s1v1 + s2v2 for the two scalars
s1, s2, which in turn amounts to solving the system of linear equations⎧⎪⎨⎪⎩

s1(1) + s2(−1) = 29

s1(2) + s2(4) = −14
s1(3) + s2(2) = 27

.

Gaussian elimination of the corresponding augmented matrix yields
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[
1 0 17
0 1 −12
0 0 0

]
,

corresponding to the unique solution s1 = 17, s2 = −12. Hence, w is a linear
combination of S.

The reader will notice from this example that deciding whether a vector is
a linear combination of a given set ultimately amounts to deciding whether the
corresponding system of linear equations is consistent.

We will now use this definition to obtain a method for constructing subspaces.

Definition 1.3.3. Let V be a vector space and let S = {v1, . . . ,vn} ⊂ V be a
finite set of vectors. The span of S, denoted Span(S), is defined to be the set of all
linear combinations of S:

Span(S) = {s1v1 + · · ·+ snvn | s1, . . . , sn ∈ R}
We note immediately the utility of this construction.

Theorem 1.3.4. Let S ⊂ V be a finite set of vectors. Then W = Span(S) is a
subspace of V .

Proof. The proof is an immediate application of Theorem 1.2.2.
�

Example 1.3.5. Let S = {0}. Then Span(S) = S is the trivial subspace.

Example 1.3.6. Let
S = {v1} ⊂ R3,

where v1 = (1, 0, 0). Then Span(S) = {s(1, 0, 0) | s ∈ R} = {(s, 0, 0) | s ∈ R}.
Compare to Example 1.2.3.

Example 1.3.7. Let S = {v1,v2} ⊂ R4, where v1 = (1, 0, 0, 0) and v2 =
(0, 0, 1, 0). Then

Span(S) = {s(1, 0, 0, 0) + t(0, 0, 1, 0) | s, t ∈ R} = {(s, 0, t, 0) | s, t ∈ R}.
Example 1.3.8. Let S = {v1,v2,v3} ⊂ R3 where v1 = (1, 0, 0), v2 = (0, 1, 0)

and v3 = (0, 0, 1). Then

Span(S) = {s1(1, 0, 0) + s2(0, 1, 0) + s3(0, 0, 1) | s1, s2, s3 ∈ R}
= {(s1, s2, s3) | s1, s2, s3 ∈ R}
= R3.

Example 1.3.9. Let S = {v1,v2,v3,v4} ⊂ R3, where v1 = (1, 1, 1), v2 =
(−1, 1, 0), v3 = (1, 3, 2) and v4 = (−3, 1,−1). Then

Span(S) = {s1(1, 1, 1) + s2(−1, 1, 0)
+ s3(1, 3, 2) + s4(−3, 1,−1) | s1, s2, s3, s4 ∈ R}

= {(s1 − s2 + s3 − 3s4, s1 + s2 + 3s3 + s4,

s1 + 2s3 − s4) | s1, s2, s3, s4 ∈ R}.
For example, consider w = (13, 3, 8) ∈ R3. Then w ∈ Span(S), since w =

v1 − v2 + 2v3 − 3v4. We return to this example below.
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Example 1.3.10. Note that the set of four vectors S in R3 from Example 1.3.9
does not span R3. To see this, take an arbitrary w ∈ R3, w = (w1, w2, w3).
If w is a linear combination of S, then there are scalars s1, s2, s3, s4 such that
w = s1v1 + s2v2 + s3v3 + s4v4. In other words, if w ∈ Span(S), then the system⎧⎪⎨⎪⎩

s1 − s2 + s3 − 3s4 = w1

s1 + s2 + 3s3 + s4 = w2

s1 + 2s3 − s4 = w3

is consistent: we can solve for s1, s2, s3, s4 in terms of w1, w2, w3. Gaussian elimi-
nation of the corresponding augmented matrix⎡⎣ 1 −1 1 −3 w1

1 1 3 1 w2

1 0 2 −1 w3

⎤⎦
yields ⎡⎣ 1 0 2 −1 w3

0 1 1 2 −w1 + w3

0 0 0 0 w1 + w2 − 2w3

⎤⎦ .
Hence for any vector w such that w1+w2−2w3 �= 0, the system is not consistent

and w /∈ Span(S). For example (1, 1, 2) /∈ Span(S).

Given a subspace W , a finite set S is said to be a spanning set for W if
Span(S) =W . Note that a given subspace may have many different spanning sets.
For example, consider S = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} ⊂ R3. The reader may verify
that S is a spanning set for R3. But in Example 1.3.8, we exhibited a different
spanning set for R3.

1.4. Linear independence, basis, and dimension

In the preceding section, we started from a finite set S ⊂ V in order to generate
a subspace W = Span(S) in V . This procedure prompts the following question:
Given a subspace W , can we find a spanning set for W? If so, what is the “small-
est” such set? These questions lead naturally to the notion of a basis. Before
defining that notion, however, we introduce the concepts of linear dependence and
independence.

Given a vector space V , a finite set of vectors S = {v1, . . .vn}, and a vectorw ∈
V , we have already seen the question of whether or not w ∈ Span(S). Intuitively,
we might say that w “depends linearly” on S if w ∈ Span(S), i.e. if w can be
written as a linear combination of elements of S. In the simplest case, for example,
that S = {v}, then w “depends on” S if w = sv, or, what is the same, w is
“independent” of S is w is not a scalar multiple of v.

The following definition aims to make this sense of dependence precise.

Definition 1.4.1. A finite set of vectors S = {v1, . . .vn} is linearly dependent
if there are scalars s1, . . . , sn, not all zero, such that

s1v1 + · · ·+ snvn = 0.

If S is not linearly dependent, then it is linearly independent.
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The positive way of defining linear independence, then, is that a finite set of
vectors S = {v1, . . .vn} is linearly independent if the condition that there are
scalars s1, . . . , sn satisfying s1v1 + · · ·+ snvn = 0 implies that

s1 = · · · = sn = 0.

Example 1.4.2. We refer back to the set of four vectors S ⊂ R3 in Exam-
ple 1.3.9; see also Example 1.3.10. We will show that the set S is linearly dependent:
we will find scalars s1, s2, s3, s4, not all zero, such that s1v1+s2v2+s3v3+s4v4 = 0.

This amounts to solving the homogeneous system:⎧⎪⎨⎪⎩
s1 − s2 +s3 − 3s4= 0

s1 + s2 +3s3 + s4 = 0

s1 +2s3 − s4 = 0

Gaussian elimination of the corresponding augmented matrix[
1 −1 1 −3 0
1 1 3 1 0
1 0 2 −1 0

]
yields [

1 0 2 −1 0
0 1 1 2 0
0 0 0 0 0

]
.

In other words, introducing free variables t, u, the system has nontrivial solu-
tions of the form s1 = −2t + u, s2 = −t − 2u, s3 = t, s4 = u. The reader can
verify, for example, that

(−1)v1 + (−3)v2 + (1)v3 + (1)v4 = 0.

Hence S is linearly dependent.

Example 1.4.2 illustrates the fact that deciding whether a set is linearly de-
pendent or independent amounts to deciding whether or not a corresponding ho-
mogeneous system of linear equations has nontrivial solutions or only the trivial
solution.

The following facts are immediate from Definition 1.4.1. The reader is invited
to supply proofs.

Theorem 1.4.3. Let S be a finite set of vectors in a vector space V . Then:

(1) If 0 ∈ S, then S is linearly dependent.
(2) If S = {v} and v �= 0, then S is linearly independent.
(3) S is a linearly dependent set of nonzero vectors if and only if one vector

in S can be written as a linear combination of the others.

Linear dependence or independence has important consequences related to the
notion of spanning sets. For example, the following theorem asserts that enlarging
a set by adding linearly dependent vectors does not change the spanning set.

Theorem 1.4.4. Let S be a finite set of vectors in a vector space V . Let
w ∈ Span(S), and let S′ = S ∪ {w}. Then Span(S′) = Span(S).
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Proof. Let S = {v1, . . . ,vn} and suppose w = s1v1 + · · · + snvn. Showing
that two sets are equal requires showing that each one is a subset of the other. In
this case, we show that if v ∈ Span(S′) then v ∈ Span(S) and conversely that if
v ∈ Span(S), then v ∈ Span(S′).

First assume that v ∈ Span(S′). Then there are scalars c1, . . . , cn+1 such that

v = c1v1 + · · ·+ cnvn + cn+1w

= c1v1 + · · ·+ cnvn + cn+1(s1v1 + · · ·+ snvn)

= (c1 + cn+1s1)v1 + · · ·+ (cn + cn+1sn)vn

and so v ∈ Span(S).
Now assume that v ∈ Span(S). Then there are scalars c1, . . . , cn such that

v = c1v1 + · · · cnvn. Rewriting this as

v = (c1 − s1)v1 + · · ·+ (cn − sn)vn + (s1v1 + · · · snvn)
= (c1 − s1)v1 + · · ·+ (cn − sn)vn +w

shows that v ∈ Span(S′).
Hence Span(S′) = Span(S).

�

Generating “larger” subspaces requires adding linearly independent vectors to
the set of vectors from which we create the spanning set.

We return to a version of the question at the outset of this section: Given a
subspace, what is the “smallest” subset which can serve as a spanning set for this
subspace? This motivates the definition of a basis.

Definition 1.4.5. Let V be a vector space. A basis of V is a set B ⊂ V such
that

• Span(B) = V ; and
• B is a linearly independent set.

Example 1.4.6. For the vector space V = Rn, the set B0 = {e1, . . . , en},
where e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) is a basis for
Rn. B0 is called the standard basis for Rn. We leave it as an exercise to check
that B0 has the two properties of a basis.

Example 1.4.7. Let V = R3 and let S = {v1,v2,v3} where v1 = (1, 4,−1),
v2 = (1, 1, 1) and v3 = (2, 0,−1). To show that S is a basis for R3, we need to
show that S spans R3 and that S is linearly independent. To show that S spans
R3 requires choosing an arbitrary vector w = (w1, w2, w3) ∈ R3 and finding scalars
c1, c2, c3 such that w = c1v1 + c2v2 + c3v3. To show that S is linearly independent
requires showing that the equation c1v1+c2v2+c3v3 = 0 has only the trivial solution
c1 = c2 = c3 = 0.

Both requirements involve analyzing systems of linear equations with coefficient
matrix

A =
[
v1 v2 v3

]
=

⎡⎣ 1 1 2
4 1 0
−1 1 −1

⎤⎦ ,
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in the first case the equation Ac = w (to determine whether it is consistent for
all w) and in the second case Ac = 0 (to determine whether it only has the triv-
ial solution). Here c = (c1, c2, c3) is the vector of coefficients. Both conditions
are established by noting that det(A) �= 0. Hence S spans R3 and S is linearly
independent, so S is a basis for R3.

Just as we noted earlier that a vector space may have many spanning sets, the
previous two examples illustrate that a vector space does not have a unique basis.

By definition, a basis for a vector space V spans V , and so every element of V
can be written as a linear combination of elements of B. However, the requirement
that B is a linearly independent set has an important consequence.

Theorem 1.4.8. Let B be a finite basis for a vector space V . Then each vector
v ∈ V can be written uniquely as a linear combination of elements of B.

Proof. Suppose that there are two different ways of expressing a vector v as
a linear combination of elements of B = {b1, . . . ,bn}, so that there are scalars
c1, . . . , cn and d1, . . . , dn such that

v = c1b1 + · · ·+ cnbn

v = d1b1 + · · ·+ dnbn.

Then

(c1 − d1)b1 + · · ·+ (cn − dn)bn = 0.

By the linear independence of the set B, this implies that

c1 = d1, . . . , cn = dn;

in other words, the two representations of v were in fact the same.
�

The discussion in Example 1.4.7 hints at a powerful technique for determining
whether a set of vectors in Rn forms a basis for Rn.

Theorem 1.4.9. A set of n vectors S = {v1, . . . ,vn} ⊂ Rn forms a basis for
Rn if an only if det(A) �= 0, where A = [v1 · · ·vn] is the matrix formed by the
column vectors vi.

Proof. See the argument in Example 1.4.7.
�

The preceding theorem, in turn, is a reflection of a more general fact, although
the proof is quite similar to the discussion in Example 1.4.7.

Theorem 1.4.10. Let V be a vector space and let B be a basis for V which
consists of n vectors. Then no set with less than n vectors spans V , and no set with
more than n vectors is linearly independent.

Proof. Let S = {v1, . . . ,vm}, and let A = [aij ], where, for j = 1, . . . ,m,

vi = ai1b1 + · · ·+ ainbn.

In other words, A is the matrix of components of the vectors vi relative to the basis
B. Then if m < n, the row echelon form of A has a row of zeros, so that there are
vectors w ∈ Rn such that the vector equation Ac = w, where c = (c1, . . . , cm), has
no solution. Hence S cannot span V .
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Likewise, if m > n, then the row echelon form of A must have at most n leading
ones, and so the vector equation Ac = 0 has nontrivial solutions. Hence S cannot
be linearly independent.

�

Corollary 1.4.11. Let V be a vector space and let B be a basis for V which
consists of n vectors. Then every other basis B′ of V must also have n elements.

Definition 1.4.12. Let V be a vector space. If there is no finite subset of
V which spans V , then V is said to be infinite dimensional. On the other hand,
if V has a basis of n vectors (and hence, by Corollary 1.4.11, every basis has n
vectors), then V is finite-dimensional, We call n the dimension of V and we write
dim(V ) = n.

We say that the trivial vector space {0} is zero-dimensional:

dim({0}) = 0.

Most of the examples we consider here will be finite dimensional. However, of
the vector spaces listed in Example 1.2.7, only Pn is finite dimensional.

We conclude this section by considering the dimension of a subspace. Since a
subspace is itself a vector space, Definition 1.4.12 makes sense in this context.

Theorem 1.4.13. Let V be a finite-dimensional vector space and let W be a
subspace of V . Then W has finite dimension. Further, dim(W ) ≤ dim(V ), with
dim(W ) = dim(V ) if and only if W = V .

Proof. Exercise.
�

Example 1.4.14. Recall W2 ⊂ R3 from Example 1.2.4:

W2 = {(sa, sb, sc) | s ∈ R}
where (a, b, c) �= 0. Clearly W2 = Span({(a, b, c)}) and the set {(a, b, c)} is linearly
independent by Theorem 1.4.3, so dim(W2) = 1.

Example 1.4.15. Recall W4 ⊂ R3 from Example 1.2.6:

W4 = {(x, y, z) | ax+ by + cz = 0}
for some (a, b, c) �= 0. Assume without loss of generality that a �= 0. ThenW4 can be
seen, for example by Gaussian elimination and the introduction of free variables, to
be spanned by the set S = {(−b, a, 0), (−c, 0, a)}. Since S is a linearly independent
set, dim(W4) = 2.

Example 1.4.16. We now justify the statement at the end of Section 3: Every
proper, nontrival subspace of R3 is of the form W2 or W4 above. Let W be a
subspace of R3; if it is a proper subspace, then dim(W ) = 1 or dim(W ) = 2. If
dim(W ) = 1, then W has a basis consisting of one element a = (a, b, c), and so W
has the form of W2.

If dim(W ) = 2, then W has a basis of two linearly independent vectors {a,b},
where a = (a1, a2, a3) and b = (b1, b2, b3). Let

c = a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1),
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obtained using the vector cross product in R3. Note that c �= 0 by virtue of the
linear independence of a and b. The reader may verify that w = (x, y, z) ∈ W
exactly when

c ·w = 0

and so W has the form W4 above.

Example 1.4.17. Recall the set S = {v1,v2,v3,v4} ⊂ R3, where v1 = (1, 1, 1),
v2 = (−1, 1, 0), v3 = (1, 3, 2) and v4 = (−3, 1,−1) from Example 1.3.9. We
already showed that S cannot be a basis for R3: In Example 1.4.2 we showed
that S is linearly dependent, and in Example 1.3.10 we showed that S does not
span R3. A closer look at Example 1.4.2 shows that the rank of the matrix A =[
v1 v2 v3 v4

]
is two, since the row-echelon form of A after Gaussian elimina-

tion has two leading ones. A basis for W = Span(S) can be obtained by choosing
vectors in S whose corresponding column in the row-echelon form has a leading one.
In this case, S′ = {v1,v2} is a basis for W and so dim(W ) = 2.

1.5. Linear transformations

Given a a set along with some extra structure, the next notion to consider are
functions between the sets that in some suitable sense “preserve the structure.” In
the case of linear algebra, such functions are known as linear transformations. The
structure they preserve should be the vector space operations of addition and scalar
multiplication.

In what follows, we consider two vector spaces V and W . The reader might
benefit at this point from reviewing Section 0.2 on functions in order to review the
terminology and relevant definitions.

Definition 1.5.1. A function T : V →W is a linear transformation if

(1) For all u,v ∈ V , T (u+ v) = T (u) + T (v);
(2) For all s ∈ R and v ∈ V , T (sv) = sT (v).

The two requirements for a function to be a linear transformation correspond
exactly to the two vector space operations—the “structure”—on the sets V andW .
The correct way of understanding these properties is to think of the function as
“commuting” with the vector space operations: performing the operation first (in
V ) and then applying the function yields the same result as applying the function
first and then performing the operations (in W ). It is in this sense that linear
transformations “preserve the vector space structure.”

Example 1.5.2. Consider the map T : R3 → R2 given by

T (x, y, z) = (2x+ y − z, x+ 3z).

To show that T is a linear transformation, choose arbitrary vectors u,v ∈ R3,
where u = (x1, y1, z1) and v = (x2, y2, z2), and let s ∈ R be an arbitrary scalar.

We have

T (u+ v) = T (x1 + x2, y1 + y2, z1 + z2)

=
(
2x1 + 2x2 + y1 + y2 − z1 − z2, x1 + x2 + 3z1 + 3z2

)
and

T (u) + T (v) = (2x1 + y1 − z1, x1 + 3z1) + (2x2 + y2 − z2, x2 + 3z2)

= (2x1 + y1 − z1 + 2x2 + y2 − z2, x1 + 3z1 + x2 + 3z2)
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Figure 1.2. The two conditions defining a linear transformation.

Comparing components verifies property (1) of Definition 1.5.1.
Likewise,

T (su) = T (sx1, sy1, sz1)

=
(
2(sx1) + (sy1)− (sz1), (sx1) + 3(sz1)

)
and

sT (u) = s(2x1 + y1 − z1, x1 + 3z1)

= (2sx1 + sy1 − sz1, sx1 + 3sz1)

This verifies property (2) of Definition 1.5.1, which together with the prior calcu-
lation, shows that T is a linear transformation.

We recall some elementary properties of linear transformations which are con-
sequences of Definition 1.5.1.

Theorem 1.5.3. Let V and W be vector spaces with corresponding zero vectors
0V and 0W . Let T : V →W be a linear transformation. Then

(a) T (0V ) = 0W ;
(b) For all u ∈ V , T (−u) = −T (u).
Idea of proof. Keeping in mind Theorem 1.1.2, both of these statements are

consequences of the scalar multiplication condition in Definition 1.5.1, using s = 0
and s = −1 respectively.

�
It is worth stating the contrapositive of part (a) of Theorem 1.5.3 separately

as a corollary.

Corollary 1.5.4. If T (0) �= 0, then T is not a linear transformation.
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This shows in particular that the traditional definition of linear functions
f : R → R, i.e. polynomial functions of degree one, are not necessarily linear
transformations in the sense of linear algebra, thinking of R = R1 with the usual
vector space structure. For example, f(x) = 2x + 1 is not a linear transformation
since f(0) = 1. From the perspective of linear algebra, a real-valued function of one
variable is a linear transformation if it has the form f(x) = ax. Graphs of linear
transformations are lines through the origin. We will see this again in the following
section.

The one-to-one, onto linear transformations play a special role in linear algebra.
They allow one to say that two different vector spaces are “the same.”

Definition 1.5.5. Suppose V and W are vector spaces. A linear transforma-
tion T : V →W is a linear isomorphism if it is one-to-one and onto.

Theorem 1.5.6. Suppose that V and W are finite-dimensional vector spaces,
and suppose there is a linear isomorphism T : V →W . Then dimV = dimW .

Idea of Proof. If {v1, . . . ,vn} is a basis for V , the reader can show that
{T (v1), . . . , T (vn)} is a basis for W and that T (v1), . . . , T (vn) are distinct.

�

1.6. Constructing linear transformations

In this section we present two theorems that together generate a wealth of
examples of linear transformations. In fact, for pairs of finite dimensional vec-
tor spaces, these give a method that generate all possible linear transformations
between them.

The first theorem should be familiar to readers who have been exposed to a first
course in linear algebra. It establishes the basic correspondence between (m × n)
matrices and linear transformations from Rn to Rm.

Theorem 1.6.1. Every linear transformation T : Rn → Rm can be expressed
in terms of matrix multiplication in the following sense: There exists an m × n
matrix AT = [T ] such that T (x) = ATx, where x is understood as a n× 1 column
vector. Conversely, every m × n matrix A gives rise to a linear transformation
TA : Rn → Rm by defining TA(x) = Ax.

The proof of the first, main, statement of this theorem will emerge in the course
of this section. The second statement, however, is obvious from the basic properties
of matrix multipliciation.

The most important of several basic features of the correspondence between
matrices and linear transformations is that matrix multiplication corresponds to
composition of linear transformations:

[S ◦ T ] = [S] [T ] .

We also note from the outset that the matrix representation of a linear trans-
formation is not unique, as it will be seen to depend on a choice of basis in both
the domain and codomain. We return to this point later in the section.

Example 1.6.2. The linear transformation T : R3 → R2 given by

T (x, y, z) = (2x+ y − z, x+ 3z)
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(see Example 1.5.2) can be expressed as T (x) = ATx, where

AT =

[
2 1 −1
1 0 3

]
.

Example 1.6.3. The identity transformation Id : Rn → Rn given by

Id(x) = x

is a linear transformation whose standard matrix representation is given by

AId = In =

⎡⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤⎥⎥⎥⎦ ,
the n× n identity matrix.

Example 1.6.4. The zero transformation Z : Rn → Rm given by Z(x) = 0
for all x ∈ Rn is also a linear transformation. It can be expressed as Z(x) = Ox,
where O is the m× n matrix all of whose entries are 0.

The second theorem on its face gives a far more general method for constructing
linear transormations, in the sense that it applies to the setting of linear transfor-
mations between arbitrary vector spaces, not just between Euclidean spaces. It
says that a linear transformation is uniquely defined by its action on a basis. The
reader should compare this theorem to Theorem 1.5.6.

Theorem 1.6.5. Let V be a finite-dimensional vector space with basis B =
{ei, . . . , en}. Let W be a vector space, and let B′ = {w1, . . . ,wn} be any set of n
vectors in W , not necessarily distinct. Then there is a unique linear transformation
T : V →W such that T (ei) = wi for i = 1, . . . , n.

If the set B′ is in fact a basis for W , then T is a linear isomorphism.

Idea of proof. By Theorem 1.4.8, every element v ∈ V can be uniquely
written as a linear combination of elements of the basis B, which is to say there
exist unique scalars v1, . . . , vn such that v = v1e1+ · · ·+vnen. Then define T (v) =
v1w1 + · · ·+ vnwn and check that it satifies the required properties.

If B′ is a basis, then T so defined is one-to-one and onto. Both statements follow
from the fact that if w ∈W is written according to B′ as w = s1w1 + · · ·+ snwn,
then the vector v = s1e1 + · · ·+ snen can be shown to be the unique vector such
that T (v) = w.

�
Example 1.6.6. The reader may confirm that B = {e1, e2} where e1 = (−1, 1)

and e2 = (2, 1) is a basis for R2. Define a linear transformation T : R2 →
R4 in the manner of Theorem 1.6.5 by setting T (e1) = (1, 2, 3, 4) and T (e2) =
(−2,−4,−6,−8). More explicitly, let v = (v1, v2) be an arbitrary vector in R2.
Writing v = c1e1 + c2e2 uniquely as a linear combination of e1, e2 amounts to
solving the system {

c1(−1) + c2(2)=v1

c1(1) + c2(1)=v2

to obtain c1 = 1
3 (−v1 + 2v2) and c2 = 1

3 (v1 + v2). Hence:
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T (v) = c1T (e1) + c2T (e2)

=
1

3

(− v1 + 2v2
)(

1, 2, 3, 4
)
+

1

3
(v1 + v2)

(
− 2,−4,−6,−8

)
=

1

3

(− 3v1,−6v1,−9v1,−12v1
)

= (−v1,−2v1,−3v1,−4v1).
As a matrix, T (v) = ATv where

AT =

⎡⎢⎢⎣
−1 0
−2 0
−3 0
−4 0

⎤⎥⎥⎦ .
Note that the method of Theorem 1.6.5 illustrated in Example 1.6.6 gives rise

to a general method of representing linear transformations between general vector
spaces as matrices, as we did in the case of Euclidean spaces in Theorem 1.6.1.

Suppose we are given a linear transformation T : V → W as well as a basis
B = {e1, . . . , en} for V and a basis B′ = {e′1, . . . , e′m} for W . Each of the vectors
T (ei) can be written uniquely as a linear combination of elements of B′:

(1.1)

T (e1) = a11e
′
1 + · · ·+ a1me′m

...

T (en) = an1e
′
1 + · · ·+ anme′m

It is a straightforward exercise to verify that if x ∈ V where x = x1e1 + · · ·+
xnen and if y = T (x) = y1e

′
1 + · · · + yme′m, then y = Ax, where y =

[ y1

...
ym

]
,

x =

[
x1

...
xn

]
, and A = [aij ] where aij are given in (1.1) above. A is called the matrix

of T relative to the bases B,B′ and will be denoted A = [T ]B′,B.

Example 1.6.7. Recall again the linear transformation T : R3 → R2 from
Example 1.5.2 defined by T (x, y, z) = (2x + y − z, x + 3z). Let B = {e1, e2, e3}
where e1 = (1, 0, 0), e2 = (1, 1, 0) and e3 = (1, 1, 1), and let B′ = {e′1, e′2} where
e′1 = (−1, 1) and e′2 = (2, 1). It is an exercise to check that B is a basis for R3 and
B′ is a basis for R2.

We now compute [T ]B′,B.

Note that for a general vector w = (w1, w2) ∈ R2, writing w as a linear
combination of B′, w = c1e

′
1 + c2e

′
2 amounts to solving the system{

c1(−1) + c2(2) = w1

c1(1) + c2(1) = w2.

This is precisely the calculation we performed in Example 1.6.6. However,
to illustrate an efficient general method for finding the matrix representation of a
linear transformation, let us solve this system simultaneously for T (e1) = (2, 1),
T (e2) = (3, 1), and T (e3) = (2, 4) by Gaussian elimination of the matrix
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[
−1 2 2 3 2
1 1 1 1 4

]
,

yielding [
1 0 0 −1/3 2

0 1 1 4/3 2

]
.

In other words, T (e1) = 0e′1 + 1e′2, T (e2) = (−1/3)e′1 + (4/3)e′2, and T (e3) =
2e′1 + 2e′2. Hence the matrix for T relative to the bases B,B′ is

[T ]B′,B =

[
0 −1/3 2
1 4/3 2

]
.

A number of conclusions can be drawn from this example. First, comparing
the matrix for T in Example 1.6.7 with the matrix for the same T in Example 1.6.2
illustrates the dependence of the matrix for T on the bases involved. In particular,
it illustrates the comment immediately following Theorem 1.6.1, that the matrix
representation of a linear transformation is not unique.

Second, Theorem 1.6.5 in fact provides the proof for Theorem 1.6.1. The stan-
dard matrix representation of a linear transformation T : Rn → Rm is obtained by
applying Theorem 1.6.5 using the standard bases for Rn and Rm.

1.7. Constructing subspaces II: Subspaces and linear transformations

There are several subspaces naturally associated to a linear transformation
T : V →W .

Definition 1.7.1. The kernel of T , ker(T ) ⊂ V , is defined to be the set

ker(T ) = {v ∈ V | T (v) = 0}.
Definition 1.7.2. The range of T , R(T ) ⊂W , is defined to be the set

R(T ) = {w ∈W | There is v ∈ V such that T (v) = w}.
Theorem 1.7.3. Let T : V → W be a linear tranformation. Then the sets

ker(T ) and R(T ) are subspaces of V and W respectively.

Proof. By Theorem 1.2.2, we need only show that the two subsets are closed
under vector addition and scalar multiplication. We will illustrate one closure
axiom for each of the two subsets and leave the other as an exercise for the reader.
For example, to show that ker(T ) is closed under vector addition, choose v1,v2 ∈
ker(T ), i.e. T (v1) = 0 and T (v2) = 0. Then T (v1+v2) = T (v1)+T (v2) = 0+0 =
0, and so v1 + v2 ∈ ker(T ).

Likewise, to show that R(T ) is closed under scalar multiplication, choose w ∈
R(T ) and take s ∈ R. To show that sw ∈ R(T ), we need to produce v ∈ V such
that T (v) = sw. But since w ∈ R(T ), there is v0 ∈ V such that T (v0) = w. Take
v = sv0, so that T (v) = T (sv0) = sT (v0) = sw. Hence sw ∈ R(T ), and so R(T )
is closed under scalar multiplication.

�

We present an example of a standard technique for finding a basis for the kernel
of a linear transformation.
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Example 1.7.4. Let T : R3 → R be given by T (x, y, z) = ax+ by + cz, where
a, b, c are not all zero. Then

ker(T ) = {(x, y, z) | ax+ by + cz = 0},
the subspace we encountered in Example 1.2.6. Suppose that a �= 0. Introducing
free variables, we can write x = (−b/a)s+ (−c/a)t, y = s, and z = t, so that

ker(T ) =

{(− sb

a
− tc

a
, s, t

) | s, t ∈ R

}
.

Note that for x ∈ ker(T ), we can write x = s
(
(−b/a), 1, 0) + t

(
(−c/a), 0, 1).

In other words, x can be written as a linear combination of the vectors b1 =
(−b/a, 1, 0) and b2 = (−c/a, 0, 1). The reader can verify that S = {b1,b2} is
linearly independent, a reflection of the fact that s and t were independent free
variables. Hence S is a basis for ker(T ) and so dim(ker(T )) = 2.

For a linear transformation T : V → W , the subspaces ker(T ) and R(T ) are
closely related to basic properties of T as a function. For example, by definition,
T is onto if R(T ) = W . Recall that T is a one-to-one function if T (x1) = T (x2)
implies that x1 = x2.

The following example highlights what might be thought of as the prototypical
onto and one-to-one linear transformations.

Example 1.7.5. Consider euclidean spaces Rn, Rm for m < n. The projection
map Pr : Rn → Rm, given by

Pr(x1, . . . , xn) = (x1, . . . , xm),

is a linear transformation that is onto but not one-to-one. The inclusion map
In : Rm → Rn given by

In(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0)

is a linear transformation which is one-to-one but not onto.

There is a powerful characterization of one-to-one linear transformations which
has no parallel for general functions. We prove the theorem below in detail; the
reader is encouraged to pay close attention to where the fact that T is a linear
transformation comes into play.

Theorem 1.7.6. A linear transformation T : V →W is one-to-one if and only
if ker(T ) = {0}.

Proof. Fiirst, assume T is one-to-one. By Theorem 1.5.3, T (0) = 0 and so
0 ∈ ker(T ). Moreover, if v ∈ ker(T ) then

T (v) = 0 = T (0)

and so v = 0, since T is one-to-one. Hence ker(T ) = {0}.
Conversely, assume now that ker(T ) = {0}. Suppose that T (x1) = T (x2).

Then
0 = T (x1)− T (x2) = T (x1 − x2)

which says that x1 − x2 ∈ ker(T ) = {0}. So x1 = x2 and T is one-to-one.
�

There is an important relationship between the dimensions of the kernel and
range of a given linear transformation.
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Theorem 1.7.7. Let T : V → W be a linear transformation, where V is finite
dimensional. Then

dim(R(T )) + dim(ker(T )) = dim(V ).

Proof. The proof involves a standard technique in linear algebra of completing
a basis. Let {e1, . . . en} be a basis for V . Then {T (e1), . . . , T (en)} spans R(T ) and
so dim(R(T )) ≤ n.

Let {f ′1, . . . , f ′r} be a basis for R(T ). There is a corresponding set

E = {e′1, . . . e′r} ⊂ V
such that T (e′i) = f ′i for each i = 1, . . . , r. The reader may check that E must be
linearly independent.

Supposing that r < n, we now “complete” E by adding (n − r) elements{
e′r+1, . . . , e

′
n

}
to E in such a way that first, the new set

E′ =
{
e′1, . . . , e

′
r, e

′
r+1, . . . , e

′
n

}
forms a basis for V , and second, that the set

{
e′r+1, . . . , e

′
n

}
forms a basis for

ker(T ). We illustrate the first step of this process. Choose br+1 /∈ Span {e′1, . . . , e′r}.
Since {f ′1, . . . , f ′r} is a basis for R(T ), write T (br+1) =

∑
aif

′
i and define e′r+1 =

br+1 −
∑
aie

′
i. Then the reader can verify that e′r+1 is still independent of E and

that T (e′r+1) = 0, so e′r+1 ∈ ker(T ). Add e′r+1 to E. Repeated application of this

process yields E′. We leave the verification that
{
e′r+1, . . . , e

′
n

}
forms a basis for

ker(T ) to the reader.
�

We will frequently refer to the dimension of the range of a linear transformation,
or, alternately, to the rank of the matrix considered as a linear transformation:

Definition 1.7.8. The rank of a linear transformation T : V → W is defined
to be the dimension of R(T ).

The following example illustrates both the statement of the theorem and the
notion of completing a basis used in the proof of Theorem 1.7.7.

Example 1.7.9. Let V be a vector space with dimension n and let W be a
subspace of V with dimension r. Let B′ = {e1, . . . er} be a basis for W . Complete
this basis to a basis B = {e1, . . . , er, er+1, . . . , en} for V .

We define a linear transformation PrB′,B : V → V as follows: For any vector
v ∈ V , there are unique scalars v1, . . . , vn such that v = v1e1 + · · ·+ vnen. Define

PrB′,B(v) = v1e1 + · · ·+ vrer.

We leave it as an exercise to show that PrB′,B is a linear transformation. Clearly
W = R(PrB′,B) and so dim(R(PrB′,B)) = r. Theorem 1.7.7 then implies that
dim(ker(PrB′,B)) = n − r, a fact which is also seen by noting that {er+1, . . . , en}
is a basis for ker(PrB′,B).

As the notation implies, the map PrB′,B depends on the choices of bases B′

and B, not just on the subspace W .
Note that this example generalizes the projection defined in Example 1.7.5

above.

Theorem 1.7.7 has a number of important corollaries for finite-dimensional
vector spaces. We leave the proofs to the reader.
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Corollary 1.7.10. Let T : V → W be a one-to-one linear transformation
between finite-dimensional vector spaces. Then

dim(V ) ≤ dim(W ).

Corollary 1.7.11. Let T : V →W be an onto linear transformation between
finite-dimensional vector spaces. Then

dim(V ) ≥ dim(W ).

Note that these two corollaries combined yield a proof of Theorem 1.5.6.
Finally, we mention a partial converse to Theorem 1.5.6 which holds for linear

transformations between finite-dimensional vector spaces, although not to more
general functions or to linear transformations between infinite-dimensional vector
spaces.

Corollary 1.7.12. Let T : V →W be a linear transformation with dim(V ) =
dim(W ) <∞. Then T is one-to-one if and only if T is onto.

The concept of linear isomorphism gives a first example of a recurring notion
in this text. The fact that an isomorphism between vector spaces V and W is
one-to-one and onto says that V and W are the same as sets ; there is a pairing
between vectors in V and W . The fact that a linear isomorphism is in fact a
linear transformation further says that V and W have the same structure. Hence
when V and W are isomorphic as vector spaces, they have the “same” sets and the
“same” structure, making them mathematically the same (different only possibly
in the names or characterizations of the vectors). This notion of isomorphism as
sameness pervades mathematics. We shall see it again later in a geometric context.

One important feature of one-to-one functions is that they admit an inverse
function from the range of the original function to the domain of the original
function. In the case of a one-to-one, onto function T : V → W , the inverse
T−1 : W → V is defined on all of W , where T ◦ T−1 = IdW and T−1 ◦ T = IdV
(where IdV and IdW are the identity transformations of V and W described in
Example 1.6.3). We summarize this in the following theorem.

Theorem 1.7.13. Let T : V → W be a linear isomorphism. Then there is a
unique linear isomorphism T−1 :W → V such that T ◦ T−1 = IdW and T−1 ◦ T =
IdV . Moreover, if B is a basis for V and B′ is a basis for W , then

[
T−1

]
B,B′ =

[T ]
−1
B′,B, using the notation of Theorem 1.6.1.

Proof. The most important fact to be proved in this theorem is that the
inverse of a linear transformation, which exists purely on set-theoretic grounds, is
in fact a linear transformation. We leave this as an exercise.

�
Theorem 1.5.6 shows that if two vector spaces are isomorphic, then they have

the same dimension. The converse is also true, again only for finite-dimensional
vector spaces.

Theorem 1.7.14. Let V and W be vector spaces with same finite dimension n.
Then V and W are isomorphic.

Proof. Let {e1, . . . , en} be a basis for V and let {e′1, . . . , e′n} be a basis for
W . Define a linear transformation according to Theorem 1.6.5 by T (ei) = e′i. It is
an exercise to show that this T is one-to-one and hence, by Corollary 1.7.12, onto.
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�

The above theorem justifies the statement following Example 1.1.3: Every n-
dimensional vector space is isomorphic to the familiar example Rn.

We remind the reader of the following basic result from matrix algebra, ex-
pressed in these new terms.

Theorem 1.7.15. Let T : V → W be a linear transformation between n-dim-
ensional vector spaces and let B be a basis for V and B′ be a basis for W . Let
A = [T ]B′,B be the matrix representing T relative to B,B′. Then T is a linear

isomorphism if and only if det(A) �= 0.

Finally, we recall that for linear transformations T : V → V , the determinant
of T is independent of the basis in the following sense.

Theorem 1.7.16. Let V be a finite-dimensional vector space, and let T : V →
V be a linear transformation. Then for any two bases B1, B2 of V , we have

det [T ]B1,B1
= det [T ]B2,B2

.

Proof. The result is a consequence of the fact that

[T ]B2,B2
= [I]B2,B1

[T ]B1,B1
[T ]B1,B2

,

and that [I]B2,B1
= [I]

−1
B1,B2

, where I : V → V is the identity transformation. �

For this reason, we refer to the determinant of the linear transformation T and
write det(T ) to be the value of det(A), where A = [T ]B,B for any basis B.

1.8. The dual of a vector space, forms, and pullbacks

This section, while fundamental to linear algebra, is not generally presented in
a first course on linear algebra. However, it is the algebraic foundation for the basic
objects of differential geometry, differential forms and tensors. For that reason, we
will be more explicit with our proofs and explanations.

Given a vector space V , we will construct a new vector space V ∗. Further,
given vector spaces V and W along with a linear transformation Ψ : V → W , we
will construct a new linear transformation Ψ∗ :W ∗ → V ∗ associated to Ψ.

Let V be a vector space. Define the set V ∗ to be the set of all linear transfor-
mations from V to R:

V ∗ = {T : V → R | T is a linear transformation} .
Note that an element T ∈ V ∗ is a function. Define the operations of addition and
scalar multiplication on V ∗ pointwise in the manner of Example 1.1.4. In other
words, for T1, T2 ∈ V ∗, define T1 + T2 ∈ V ∗ by (T1 + T2)(v) = T1(v) + T2(v) for
all v ∈ V , and for s ∈ R and T ∈ V ∗, define sT ∈ V ∗ by (sT )(v) = sT (v) for all
v ∈ V .

Theorem 1.8.1. The set V ∗ equipped with the operations of pointwise addition
and scalar multiplication is a vector space.
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Proof. The main item requiring proof is to demonstrate the closure axioms.
Suppose T1, T2 ∈ V ∗. Then for any v1,v2 ∈ V , we have

(T1 + T2)(v1 + v2) = T1(v1 + v2) + T2(v1 + v2)

= (T1(v1) + T1(v2)) + (T2(v1) + T2(v2)) T1, T2 are linear

= (T1(v1) + T2(v1)) + (T1(v2) + T2(v2))

= (T1 + T2)(v1) + (T1 + T2)(v2).

Also, for any c ∈ R and v ∈ V ,

(T1 + T2)(cv) = T1(cv) + T2(cv)

= cT1(v) + cT2(v) T1, T2 are linear

= c(T1(v) + T2(v))

= c(T1 + T2)(v).

Hence T1 + T2 ∈ V ∗. The fact that sT1 is also linear for any s ∈ R is proved
similarly. Note that the zero covector O ∈ V ∗ is defined by O(v) = 0 for all v ∈ V .

�

V ∗ is called the dual vector space to V . Elements of V ∗ are variously called
dual vectors, linear one-forms, or covectors.

The proof of the following theorem, important in its own right, includes a
construction that we will rely on often: the basis dual to a given basis.

Theorem 1.8.2. Suppose that V is a finite-dimensional vector space. Then

dim(V ) = dim(V ∗).

Proof. Let B = {e1, . . . , en} be a basis for V . We will construct a basis of
V ∗ having n covectors.

Define covectors Ei ∈ V ∗ by how they act on the basis B according to The-
orem 1.6.5: Ei(ei) = 1 and Ei(ej) = 0 for j �= i. In other words, for v =
v1e1 + · · ·+ vnen,

Ei(v) = vi.

We show that B∗ = {E1, . . . , En} is a basis for V ∗. To show that B∗ is
linearly independent, suppose that c1E1 + · · · + cnEn = O (an equality of linear
transformations). That means that for all v ∈ V ,

c1E1(v) + · · ·+ cnEn(v) = O(v) = 0.

In particular, for v = ei,

0 = c1E1(ei) + · · ·+ cnEn(ei)

= ciEi(ei)

= ci

for all i = 1, . . . , n. Hence B∗ is a linearly independent set.
To show that B∗ spans V ∗, choose an arbitrary T ∈ V ∗, i.e. T : V → R is

a linear transformation. We need to find scalars c1, . . . , cn such that T = c1E1 +
· · ·+ cnEn. Following the idea of the preceding argument for linear independence,
define ci = T (ei).

We need to show that for all v ∈ V ,
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T (v) = c1E1(v) + · · ·+ cnEn(v).

Let v = v1e1 + · · ·+ vnen. On the one hand,

T (v) = T (v1e1 + · · ·+ vnei)

= v1T (e1) + · · ·+ vnT (en)

= v1c1 + · · ·+ vncn.

On the other hand,

(c1E1 + · · ·+ cnEn)(v) = c1E1(v) + · · ·+ cnEn(v)

= c1v1 + · · ·+ cnvn.

Hence T = c1E1 + · · ·+ cnEn, and B
∗ spans V ∗.

�

Definition 1.8.3. Let B = {e1, . . . , en} be a basis for V . The basis B∗ =
{E1, . . . , En} for V ∗, where Ei : V → R are linear transformations defined by their
action on the basis vectors as

Ei(ej) =

{
1 if i = j;

0 if i �= j

is called the basis of V ∗ dual to the basis B.

Example 1.8.4. Let B0 be the standard basis for Rn, i.e.

ei = (0, . . . , 0, 1, 0, . . . , 0)

with 1 in the ith component (see Example 1.4.6). The basis B∗
0 = {E1, . . . , En} dual

to B0 is known as the standard basis for (Rn)∗. Note that if v = (v1, . . . , vn), then
Ei(v) = vi. In other words, in the language of Example 1.7.5, Ei is the projection
onto the ith component.

We note that Theorem 1.6.1 gives a standard method of writing a linear trans-
formation T : Rn → Rm as an m × n matrix. Linear one-forms T ∈ (Rn)∗,
T : Rn → R are no exception, when the codomain of scalars is considered as a
1-dimensional vector space. In this way, elements of (Rn)∗ can be thought of as
1 × n matrices, i.e. as row vectors. For example, the standard basis B∗

0 in this
notation would appear as:

[E1] =
[
1 0 · · · 0

]
...

[En] =
[
0 0 · · · 1

]
.

We now show how to apply the “dual” construction to linear tranformations
between vector spaces V and W . Given a linear transformation Ψ : V → W , we
will construct a new linear transformation

Ψ∗ :W ∗ → V ∗.

(Note this construction “reverses the arrow” of the transformation Ψ.)
Take an element of the domain T ∈ W ∗, i.e. T : W → R is a linear trans-

formation. We wish to assign to T a linear transformation S = Ψ∗(T ) ∈ V ∗, i.e.
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S : V → R. In other words, given T ∈ W ∗, we want to be able to describe
S(v) = (Ψ∗(T ))(v) for all v ∈ V in such a way that S has the properties of a linear
transformation.

To do so, define Ψ∗ :W ∗ → V ∗ as

(Ψ∗(T ))(v) = T (Ψ(v)).

Ψ∗(T ) is called the pullback of T by Ψ.

Theorem 1.8.5. Let Ψ : V →W be a linear transformation and let Ψ∗ :W ∗ →
V ∗ be given by

(Ψ∗(T ))(v) = T (Ψ(v))

for all T ∈ W ∗ and v ∈ V . Then Ψ∗ is a linear transformation.

Proof. The first point to be verified is that for a fixed T ∈ W ∗, we have in
fact Ψ∗(T ) ∈ V ∗. In other words, we need to show that if T : W → R is a linear
transformation, then Ψ∗(T ) : V → R is a linear transformation. For v1,v2 ∈ V ,
we have

(Ψ∗(T ))(v1 + v2) = T (Ψ(v1 + v2))

= T (Ψ(v1) + Ψ(v2)) since Ψ is linear

= T (Ψ(v1)) + T (Ψ(v2)) since T is linear

= (Ψ∗(T ))(v1) + (Ψ∗(T ))(v2).

The proof that for a fixed T and for any vector v ∈ V and scalar s ∈ R,
(Ψ∗(T ))(sv) = s(Ψ∗(T ))(v) is similar.

To prove linearity of Ψ∗ itself, suppose that s ∈ R and T ∈ W ∗. Then for all
v ∈ V ,

(Ψ∗(sT ))(v) = (sT )(Ψ(v))

= sT (Ψ(v))

= s((Ψ∗(T ))(v)),

and so Ψ∗(sT ) = sΨ∗(T ).
We leave the remaining details, including the verification that for all T1, T2 ∈

W ∗ that Ψ∗(T1 + T2) = Ψ∗(T1) + Ψ∗(T2), as an exercise.
�

It is worth mentioning that the definition of the pullback in Theorem 1.8.5 is
the sort of “canonical” construction typical of abstract algebra. It can be expressed
by the diagram

V
Ψ � W

R

T

�

Ψ ∗
T

�

Note also, in other notation, that Ψ∗(T ) = T ◦Ψ.
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Example 1.8.6 (The matrix form of a pullback). Let Ψ : R3 → R2 be given
by Ψ(x, y, z) = (2x + y − z, x + 3z) and T ∈ (R2)∗ be given by T (u, v) = u − 5v.
Then Ψ∗(T ) ∈ (R3)∗ is given by

(Ψ∗T )(x, y, z) = T (Ψ(x, y, z))

= T (2x+ y − z, x+ 3z)

= (2x+ y − z)− 5(x+ 3z)

= −3x+ y − 16z.

In the standard matrix representation of Theorem 1.6.1, we have

[Ψ] =

[
2 1 −1
1 0 3

]
,

[T ] =
[
1 −5] and [Ψ∗T ] =

[−3 1 −16] = [T ] [Ψ]. Thus the pullback operation
by Ψ on linear one-forms corresponds to matrix multiplication of a given row vector
on the right by the matrix of Ψ.

This fact may seem strange to the reader who has become accustomed to linear
transformations represented as matrices acting by multiplication on the left. It
reflects the fact that all the calculations in the preceding paragraph were carried out
by relying on the standard bases in Rn and Rm as opposed to the dual bases for
(Rn)∗ and (Rm)∗.

Let us reconsider these calculations, this time using the dual basis from Ex-
ample 1.8.4 and the more general matrix representation from the method following
Theorem 1.6.5. Using the standard bases B0 = {E1, E2} for (R2)∗ and B′

0 =
{E′

1, E
′
2, E

′
3} for (R3)∗, where E1 =

[
1 0

]
, E2 =

[
0 1

]
, E′

1 =
[
1 0 0

]
,

E′
2 =

[
0 1 0

]
, and E′

3 =
[
0 0 1

]
, we note that Ψ∗(E1) = 2E′

1 + E′
2 − E′

3

and Ψ∗(E2) = E′
1 + 3E′

3. Hence

[Ψ∗]B′
0,B0

=

⎡⎣ 2 1
1 0
−1 3

⎤⎦ = [Ψ]T .

In other words, the proper way to see the matrix for a pullback is using the dual
basis. Now, when the calculations for the pullback of T (u, v) = u − 5v by Ψ are

written using the column vector [T ]B0
=

[
1
−5
]
, we see that

[Ψ∗(T )]B′
0
= [Ψ∗]B′

0,B0
[T ]B0

=

⎡⎣ 2 1
1 0
−1 3

⎤⎦[ 1
−5
]

=

⎡⎣ −31
−16

⎤⎦ .
Note that the construction of the dual space V ∗ is a special case of a more

general construction. Suppose we are given several vector spaces V1, . . . , Vk. Recall
from Section 0.1 that the Cartesian product of V1, . . . , Vk is the set of ordered n-
tuples of vectors:

V1 × · · · × Vk = {(v1, . . . ,vk) | vi ∈ Vi for all i = 1, . . . , k} .
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The set V = V1 × · · · × Vk can be given the structure of a vector space by
defining vector addition and scalar multiplication componentwise.

Definition 1.8.7. Let V1, . . . , Vk and W be vector spaces. A function

T : V1 × · · · × Vk →W

is multilinear if it is linear in each component:

T (x1 + y,x2, . . . ,xk) = T (x1,x2, . . . ,xk) + T (y,x2, . . . ,xk)

...

T (x1,x2, . . . ,xk−1,xk + y) = T (x1,x2, . . . ,xk) + T (x1,x2, . . . ,xk−1,y)

and

T (sx1,x2, . . . ,xk) = sT (x1,x2, . . . ,xk)

...

T (x1,x2, . . . , sxk) = sT (x1,x2, . . . ,xk).

In the special case that all the Vi are the same and W = R, then a multilinear
function T : V × · · · × V → R is called a multilinear k-form on V .

Example 1.8.8 (The zero k-form on V ). The trivial example of a k-form on a
vector space V is the zero form. Define O(v1, . . . ,vk) = 0 for all v1, . . . ,vk ∈ V .
We leave it to the reader to show that O is multilinear.

Example 1.8.9 (The determinant as an n-form on Rn). For any a1, . . . , an ∈
Rn, let A be the matrix whose columns are given by the vectors ai:

A = [a1 · · ·an] .
Define the map Ω : Rn × · · · ×Rn → R by

Ω(a1, . . . , an) = detA.

The fact that Ω is an n-form follows from properties of the determinant of matrices.

In the work that follows, we will see several important examples of bilinear
forms on Rn.

Example 1.8.10. Let G0 : Rn ×Rn → R be the function defined by

G0(x,y) = x1y1 + · · ·+ xnyn.

for any x = (x1, . . . , xn) and y = (y1, . . . , yn). Then G0 is a bilinear form. (Readers
should recognize G0 as the familiar “dot product” of vectors in Rn.) We leave it as
an exercise to verify the linearity of G0 in each component. Note that G0(x,y) =
G0(y,x) for all x,y ∈ Rn.

Example 1.8.11. Let A be an n× n matrix and let G0 be the bilinear form on
Rn defined in the previous example. Then define GA : Rn ×Rn → R by

GA(x,y) = G0(Ax, Ay).

Bilinearity of GA is a consequence of the bilinearity of G0 and the linearity of
matrix multiplication:
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GA(x1 + x2,y) = G0(A(x1 + x2), Ay)

= G0(Ax1 +Ax2, Ay)

= G0(Ax1, Ay) +G0(Ax2, Ay)

= GA(x1,y) +GA(x2,y).

Likewise,

GA(sx,y) = G0(A(sx), Ay)

= G0(sAx, Ay)

= sG0(Ax, Ay)

= sGA(x,y).

Linearity in the second component can be shown in the same way, or the reader
may note that GA(x,y) = GA(y,x) for all x,y ∈ Rn.

Example 1.8.12. Define S : R2 × R2 → R by S(x,y) = x1y2 − x2y1, where
x = (x1, x2) and y = (y1, y2). For z = (z1, z2), we have

S(x+ z,y) = (x1 + z1)y2 − (x2 + z2)y1

= (x1y2 − x2y1) + (z1y2 − z2y1)
= S(x,y) + S(z,y).

Similarly, for any c ∈ R, S(cx,y) = cS(x,y). Hence S is linear in the first
component. Linearity in the second component then follows from the fact that
S(y,x) = −S(x,y) for all x,y ∈ R2. This shows that S is a bilinear form.

Given a vector space V of dimension n and a bilinear form b : V × V → R,
there is a standard way to represent b by means of an (n× n) matrix B, assuming
a basis is specified.

Proposition 1.8.13. Let V be a vector space with basis {e1, . . . , en} and let
b : V × V → R be a bilinear form. Let B = [bij ], where bij = b(ei, ej). Then, for
any v,w ∈ V , we have

b(v,w) = wTBv,

where the product on the right is the matrix product of the transpose of w with the
matrix product Bv. Here v and w are written as column vectors relative to the
basis.

Proof. On each side, write v and w as linear combinations of the basis vectors
e1, . . . , en. The result follows from the bilinearity of b and the linearity of matrix
multiplication.

�

This proposition allows us to study properties of the bilinear form b by means
of properties of its matrix representation B, a fact that we will use in the future.
Note that the matrix representation for GA in Example 1.8.11 is B = ATA.

Finally, the pullback operation can be extended to multilinear forms. We il-
lustrate this in the case of bilinear forms, although we will return to this topic in
more detail in Chapter 3.
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Definition 1.8.14. Suppose T : V → W is a linear transformation between
vector spaces V and W . Let B : W ×W → R be a bilinear form on W . Then the
pullback of B by T , denoted T ∗B, is the bilinear form T ∗B : V × V → R defined
by

(T ∗B)(v1,v2) = B(T (v1), T (v2)).

Proposition 1.8.15. Let U , V and W be vector spaces and let T1 : U → V
and T2 : V →W be linear tranformations. Let B :W ×W → R be a bilinear form
on W . Then

(T2 ◦ T1)∗B = T ∗
1 (T

∗
2B).

Proof. For any vectors u1,u2 ∈ U ,

((T2 ◦ T1)∗B)(u1,u2) = B((T2 ◦ T1)(u1), (T2 ◦ T1)(u2))

= B(T2(T1(u1)), T2(T1(u2))),

and

(T ∗
1 (T

∗
2B))(u1,u2) = (T ∗

2B)(T1(u1), T1(u2))

= B(T2(T1(u1)), T2(T1(u2))).

�

1.9. Geometric structures I: Inner products

There are relatively few traditional geometric concepts that can be defined
strictly within the axiomatic structure of vector spaces and linear transformations
as presented above. One that we might define, for example, is the notion of two
vectors being parallel: Given two vectors v,w in a vector space V , say that v is
parallel to w if there is a scalar s ∈ R such that w = sv.

The notion of vectors being perpendicular can also be defined, but only in a very
crude way. Let W be a subspace of a vector space V . Further, let B′ be a basis for
W and B be a basis for V such that B′ ⊂ B; in this case we can say B extends B′.
Then we might say that a vector v ∈ V is vertical to W relative to the bases (B′, B)
if PrB′,B(v) = 0, where PrB′,B is the projection onto W (see Example 1.7.9). Said
in another way, v is vertical to W relative to (B′, B) if v ∈ ker(PrB′,B). We could
then say that v is perpendicular to a vector w ∈ V if v is vertical to the subspace
W = Span{w}, assuming we had made choices of bases (B′, B) for W and V .

The reader should note that both these definitions of basic geometric notions are
somewhat stilted, since we are defining the terms parallel and perpendicular without
reference to the notion of angle. The above definition of verticality is especially
awkward, since it is completely dependent on the choice of bases involved. In fact,
it should be noted again that in the entire presentation of linear algebra up to this
point, two notions traditionally associated with vectors—magnitude and direction—
have not been defined at all. These notions do not have a natural description using
the vector space axioms alone.

The notions of magnitude and direction can be described easily by means of
an additional mathematical structure which generalizes the familiar “dot product”
(Example 1.8.10).

Definition 1.9.1. An inner product on a vector space V is a function G :
V × V → R with the following properties:

(I1) G is a bilinear form;
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(I2) G is symmetric: For all v,w ∈ V , G(v,w) = G(w,v);
(I3) G is positive definite: For all v ∈ V , G(v,v) ≥ 0 with G(v,v) = 0 if and

only if v = 0.

The pair (V,G) is called an inner product space.

We mention that the conditions (I1)–(I3) imply that the matrix A correspond-
ing to the bilinear form G according to Proposition 1.8.13 must be symmetric and
positive definite.

Recall that bilinear means linear in each component. In view of the symmetry
condition (I2), in practice this requires checking linearity in just one component.
Property (I3), relatively simple to state, has important geometric consequences that
we will see shortly.

Example 1.9.2 (The dot product). On the vector space Rn, define G0(v,w) =
v1w1 + · · · + vnwn, where v = (v1, . . . , vn) and w = (w1, . . . , wn). We saw in
Example 1.8.10 that G0 is a bilinear form on Rn. The reader may verify property
(I2). To see property (I3), note that G0(v,v) = v21 + · · ·+ v2n, a quantity which is
always nonnegative and is zero exactly when v1 = · · · = vn = 0, i.e. when v = 0.

Note that Example 1.9.2 can be generalized to any finite-dimensional vector
space V . Given a basisB = {e1, . . . , en} for V , defineGB(v,w) = v1w1+· · ·+vnwn,
where v = v1e1 + · · · + vnen and w = w1e1 + · · · + wnen. This function GB is
well-defined because of the unique representation of v and w in the basis B. This
observation proves the following:

Theorem 1.9.3. Every finite-dimensional vector space carries an inner product
structure.

Of course, there is no unique inner product structure on a given vector space.
The geometry of an inner product space (V,G) will be determined not by the
existence of an inner product on V , but by the choice of inner product G.

Note that it is easy to construct new inner products from a given inner product
structure.

Example 1.9.4. Let A be any invertible n× n matrix. Define a bilinear form
GA on Rn as in Example 1.8.11: GA(v,w) = G0(Av, Aw), where G0 is the stan-
dard inner product from Example 1.9.2. GA is symmetric since G0 is symmetric.
Similarly, GA(v,v) ≥ 0 for all v ∈ V because of the corresponding property of
G0. Now suppose that GA(v,v) = 0. Since 0 = GA(v,v) = G0(Av, Av), we have
Av = 0 by property (I3) for G0. Since A is invertible, v = 0. This completes the
verification that GA is an inner product on Rn.

To see how this construction looks in a simple example in R2, consider the

matrix A =

[
2 −1
1 0

]
. Then if v = (v1, v2) and w = (w1, w2), we have

GA(v,w) = G0(Av, Aw)

= G0

(
(2v1 − v2, v1), (2w1 − w2, w1)

)
= (2v1 − v2)(2w1 − w2) + v1w1

= 5v1w1 − 2v1w2 − 2v2w1 + v2w2.

Given an inner product, it is possible to define geometric notions like length,
distance, magnitude and direction.
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Definition 1.9.5. Let (V,G) be an inner product space. The magnitude (also
called the length or the norm) of a vector v ∈ V is given by

||v|| = G(v,v)1/2.

The distance between vectors v and w is given by

d(v,w) = ||v −w|| = G(v −w,v −w)1/2.

To define the notion of direction, or angle between vectors, we first state a
fundamental property of inner products.

Theorem 1.9.6 (Cauchy-Schwarz). Let (V,G) be an inner product space. Then
for all v,w ∈ V ,

|G(v,w)| ≤ ||v|| · ||w||.
The standard proof of the Cauchy-Schwarz inequality relies on the non-intuitive

observation that the discriminant of the quadratic expression (in t) G(tv+w, tv+w)
must be nonpositive by property (I3).

Definition 1.9.7. Let (V,G) be an inner product space. The angle ∠ between
two nonzero vectors v,w ∈ V is defined to be

∠(v,w) = cos−1

(
G(v,w)

||v|| · ||w||
)
.

Note that the definition of angle makes sense as a result of Theorem 1.9.6.
As a consequence of this definition of angle, it is possible to define a notion of

orthogonality: two vectors v,w ∈ V are orthogonal if G(v,w) = 0. The notion
of orthogonality, in turn, distinguishes “special” bases for V as well as a further
method for producing new subspaces of V from a given set of vectors in V .

Theorem 1.9.8. Let (V,G) be an inner product space with dim(V ) = n. There
exists a basis B = {u1, . . . ,un} satisfying the following two properties:

(O1) For i = 1, . . . , n, G(ui,ui) = 1;
(O2) For i �= j, G(ui,uj) = 0.

Such a basis is known as an orthonormal basis.

The proof relies on an important procedure, similar to the proof of Theo-
rem 1.7.7, known as Gram-Schmidt orthogonalization. Beginning with any given
basis, the procedure constructs a new basis satisfying (O1) and (O2). We refer the
reader to any elementary linear algebra text for the standard proof. In the next
section, we will carry out the details in a similar context.

We also state without proof a kind of converse to Theorem 1.9.8. This theorem
is actually a restatement of the comment following Example 1.9.2.

Theorem 1.9.9. Let V be a vector space and let B = {e1, . . . , en} be a basis
for B. Define a function GB by requiring that

GB(ei, ej) =

{
1 if i = j;

0 if i �= j

and extending linearly in both components in the manner of Theorem 1.6.5. Then
GB is an inner product.
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Figure 1.3. The orthogonal subspace to v = (1, 0) in Example 1.9.12.

Given a vector w in an inner product space (V,G), the set W of all vectors
orthogonal to w can be seen to be a subspace of V . One could appeal directly to
Theorem 1.2.2, or one could note that W is the kernel of the linear transformation
iw : V → R given by iw(v) = G(w,v).

More generally, we have the following theorem. For any set S, define

S⊥ = {w ∈ V | For all v ∈ S, G(v,w) = 0} .
Theorem 1.9.10. Let S be any set of vectors in an inner product space (V,G).

The set S⊥ is a subspace of V .

Proof. Exercise.
�

S⊥ is called the orthogonal subspace to S.

Example 1.9.11. Let S = {v} ⊂ R3, where v = (a, b, c) �= 0. Let G0 be the
standard inner product on R3 (see Example 1.9.2). Then

S⊥ = {(x, y, z)| ax+ by + cz = 0} .
See Example 1.2.4.

Example 1.9.12. Let A =

[
2 −1
1 0

]
and let GA be the inner product defined on

R2 according to Example 1.9.4. Let v = (1, 0), and let S = {v}. Then the reader
may verify that

S⊥ = {(w1, w2) | 5w1 − 2w2 = 0} ,
which is spanned by the set {(2, 5)}. See Figure 1.3.

Theorem 1.9.13. Let (V,G) be an inner product space. Let

S = {w1, . . . ,wk} ⊂ V
be a finite subset of V and let W = Span(S). Then W⊥ = S⊥.
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Proof. Take a vector v ∈ W⊥, so that G(w,v) = 0 for all w ∈ W . In
particular, for w = wi ∈ S, G(wi,v) = 0. So v ∈ S⊥ and

W⊥ ⊂ S⊥.

Now take a vector v ∈ S⊥. Let w ∈W , so w = c1w1 + · · ·+ ckwk. Relying on
the linearity of G in the first component,

G(w,v) = G(c1w1 + · · ·+ ckwk,v)

= G(c1w1,v) + · · ·+G(ckwk,v)

= c1G(w1,v) + · · ·+ ckG(wk,v)

= c1(0) + · · ·+ ck(0) since v ∈ S⊥

= 0.

Hence v ∈W⊥ and so S⊥ ⊂W⊥.
Together, these two statements show that W⊥ = S⊥.

�

Corollary 1.9.14. Let B be a basis for a subspace W ⊂ V . Then W⊥ = B⊥.

The following theorems discuss the relationship between a vector subspace W
and its orthogonal complement W⊥.

Theorem 1.9.15. Let W be a subspace of an inner product space (V,G). Then
W ∩W⊥ = {0} .

The proof is an immediate consequence of the positive definite condition Defi-
nition 1.9.1 (I3) of inner products.

Theorem 1.9.16. Let W be a subspace of an inner product space (V,G) with
dim(V ) = n. Then

dim(W ) + dim(W⊥) = n.

Proof. Let B′ be an orthonormal basis for W , extended to an orthonormal
basis B for V , which may be chosen according to Theorem 1.9.8. Consider the
function PrB′,B : V → V given by the projection of a vector v onto the subspace
W relative to the bases (B′, B) (see Example 1.7.9). It is an exercise to show that
W⊥ = ker(PrB′,B) and that W = R(PrB′,B). The theorem is then a consequence
of Theorem 1.7.7.

�

We now turn our attention to linear transformations of an inner product space
which preserve the additional inner product structure.

Definition 1.9.17. Let (V,G) be an inner product space. A linear transfor-
mation T : V → V is a linear isometry if for all v,w ∈ V ,

G(T (v), T (w)) = G(v,w).

Stated in the language of Section 8, T is a linear isometry if T ∗G = G.

Note that a linear isometry preserves all quantities defined in terms of the inner
product: distance, magnitude, the angle between vectors, and orthogonality.

The following property of linear isometries is easily verified.
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Proposition 1.9.18. Let (V,G) be an inner product space. If T1, T2 are linear
isometries of V , then T2 ◦ T1 is a linear isometry.

The following theorem, which we state without proof, gives a matrix charac-
terization of linear isometries.

Theorem 1.9.19. Let (V,G) be an inner product space, and let T : V → V
be a linear isometry. Then the matrix representation A = [T ] of T relative to any
orthonormal basis of V satisfies ATA = In, where In is the n× n identity matrix.

Corollary 1.9.20. Let T : V → V be a linear isometry. Then det(T ) = ±1.
In particular, T is invertible.

In R3, this implies in geometric language that linear isometries consist of rota-
tions (with determinant 1) composed with reflections (with determinant −1).

Proposition 1.9.21. Let T : V → V be a linear isometry. Then its inverse
T−1 is also a linear isometry.

Proof. Assuming T is a linear isometry, apply Proposition 1.8.15 to G =
(Id)∗G = (T ◦ T−1)∗G and use the assumption that T ∗G = G.

�

We conclude this section with an important technical theorem, a consequence
of the positive definite property of inner products. Recall that V and V ∗ have the
same dimension by Theorem 1.8.2, and so by Theorem 1.7.14, the two vector spaces
are isomorphic. A choice of an inner product on V , however, induces a distinguished
or canonical isomorphism between them.

Theorem 1.9.22. Let G be an inner product on a finite-dimensional vector
space V . Then the function

Φ : V → V ∗

defined by Φ(v) = Tv, where Tv(w) = G(v,w), is a linear isomorphism.

Proof. The fact that Φ is linear is a consequence of the fact that G is
bilinear. For example, for v ∈ V and s ∈ R, Φ(sv) = Tsv and so for all
w ∈ V , Tsv(w) = G(sv,w) = sG(v,w) = sTv(w). Hence Tsv = sTv and so
Φ(sv) = sΦ(v). Likewise, Φ(v +w) = Φ(v) + Φ(w) for all v,w ∈ V .

To show that Φ is one-to-one, we show that ker(Φ) = {0}. Let v ∈ ker(Φ).
Then Φ(v) = O, i.e. G(v,w) = 0 for all w ∈ V . In particular, G(v,v) = 0 and so
v = 0 by positive definiteness. Hence ker(Φ) = {0} and so by Theorem 1.7.6, Φ is
one-to-one.

The fact that Φ is onto now follows from the fact that a one-to-one linear
map between vector spaces of the same dimension must be onto (Corollary 1.7.12).
However, we will show directly that Φ is onto in order to exhibit the inverse trans-
formation Φ−1 : V ∗ → V .

Let T ∈ V ∗. We need to find vT ∈ V such that Φ(vT ) = T . Let {u1, . . . ,un}
be an orthonormal basis for (V,G), as guaranteed by Theorem 1.9.8. Define ci by
ci = T (ui), and define vT = c1u1 + · · · + cnun. By the linearity of G in the first
component, we have Φ(vT ) = T , or, what is the same, vT = Φ−1(T ). Hence Φ is
onto.

�
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The reader should notice the similarity between the construction of Φ−1 and
the procedure outlined in the proof of Theorem 1.8.2.

The fact that the map Φ in Theorem 1.9.22 is one-to-one can be rephrased by
saying that the inner product G is nondegenerate: If G(v,w) = 0 for all w ∈ V ,
then v = 0. We will encounter this condition again in the symplectic setting shortly.

1.10. Geometric structures II: Linear symplectic forms

In this section, we outline the essentials of linear symplectic geometry, which
will in turn form the basis for one of the main differential geometric structures that
we will pursue later in the text. The presentation here will parallel the development
of inner product structures in Section 9 in order to emphasize the similarities and
differences between the two structures, both of which are defined by bilinear forms.
We will discuss more about the background of symplectic geometry in Chapter 7.

Unlike most of the material in this chapter so far, what follows is not generally
presented in a first course in linear algebra. As in Section 8, we will be more detailed
in the presentation and proof of the statements in this section.

Definition 1.10.1. Let V be a vector space. Let ω : V × V → R be a function
satisfying the following properties:

(S1) ω is a bilinear form on V ;

(S2) ω is skew-symmetric: For all v,w ∈ V , ω(v,w) = −ω(w,v);

(S3) ω is nondegenerate: If ω(v,w) = 0 for all w ∈ V , then v = 0.

Then ω is a linear symplectic form on V . The pair (V, ω) is called a symplectic
vector space.

Note the main difference between (S1)–(S3) and (I1)–(I3) in Definition 1.9.1 is
that a linear symplectic form is skew-symmetric, or anti-commutative, compared to
the symmetric inner product. We can summarize properties (S1) and (S2) by saying
that ω is an alternating bilinear form on V . We will discuss the nondegeneracy
condition (S3) in more detail below. Note that in sharp contrast to inner products,
for all v ∈ V , ω(v,v) = 0 as a consequence of (S2).

Example 1.10.2. On the vector space R2, define ω0(v,w) = v1w2 − v2w1,
where v = (v1, v2) and w = (w1, w2). The reader may recognize this as the determi-
nant of the matrix whose column vectors are v,w. That observation, or direct veri-
fication, will confirm properties (S1) and (S2). To verify (S3), suppose v = (v1, v2)
is such that ω0(v,w) = 0 for all w ∈ R2. In particular, 0 = ω0(v, (1, 0)) =
(v1)(0) − (1)(v2) = −v2, and so v2 = 0. Likewise, 0 = ω0(v, (0, 1)) = v1. To-
gether, these show that v = 0 and so (S3) is satisfied. In this case, ω0 measures
the oriented area of the parallelogram defined by two vectors. See Figure 1.4.

Example 1.10.3. Generalizing Example 1.10.2, consider the euclidean vector
space R2n. Define the function

ω0(v,w) = (a1t1 − b1s1) + · · ·+ (antn − bnsn),
where v = (a1, b1, . . . , an, bn) and w = (s1, t1, . . . , sn, tn). The verification that ω0

is a symplectic form proceeds exactly as in Example 1.10.2; it will be called the
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Figure 1.4. The standard symplectic form on R2.

standard symplectic form on R2n. Similarly, the pair (R2n, ω0) will be called the
standard symplectic vector space.

Before proceeding to more examples, we immediately prove in detail a conse-
quence of the existence of a linear symplectic form on a finite-dimensional vector
space: the dimension must be even. This is the first significant difference between
symmetric and skew-symmetric bilinear forms. Theorem 1.10.4 below should be
read alongside Theorems 1.9.3 and 1.9.8, which show that every finite-dimensional
vector space carries an inner product, to which corresponds distinguished orthonor-
mal bases.

Theorem 1.10.4. Let (V, ω) be a finite-dimensional symplectic vector space.
Then V has a basis {e1, f1, . . . , en, fn} with the properties

(SO1) ω(ei, fi) = 1 for all i = 1, . . . , n;

(SO2) ω(ei, ej) = 0 for all i, j = 1, . . . , n;

(SO3) ω(fi, fj) = 0 for all i, j = 1, . . . , n;

(SO4) ω(ei, fj) = 0 for i �= j.

In particular, the dimension of V is even.

Proof. The inductive process of constructing a basis with properties (SO1)–
(SO4) is a modified version of the Gram-Schmidt orthogonalization process that is
at the heart of the proof of Theorem 1.9.8. The reader should also compare the
technique here with the technique in the proof of Theorem 1.7.7.

Choose any nonzero v ∈ V and define e1 = v.
Since e1 �= 0, property (S3) guarantees the existence of a vector w1 such that

ω(e1,w1) = c1 �= 0. Define f1 = (1/c1)w1. By the bilinearity condition (S1),
we have ω(e1, f1) = 1. Note also that {e1, f1} is a linearly independent set, since
otherwise by Theorem 1.4.3 we would have a scalar s such that f1 = se1 and so by
(S2), ω(e1, f1) = 0, contradicting the construction of f1.

Now suppose we have constructed k pairs of linearly independent vectors

Bk = {e1, f1, . . . , ek, fk}
satisfying (SO1)–(SO4). If Span(Bk) = V , then Bk is the desired basis and we are
done.

If Span(Bk) � V , then there is a nonzero vector vk+1 /∈ Span(Bk). Define
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ek+1 = vk+1 −
k∑
i=1

ω(vk+1, fi)ei +

k∑
i=1

ω(vk+1, ei)fi.

Note that ek+1 �= 0, since otherwise vk+1 would be a linear combination of Bk,
contradicting the choice of vk+1. Since ω is bilinear, we have for each i = 1, . . . , k:

ω(ek+1, ei) = ω(vk+1, ei)−
k∑
j=1

ω(vk+1, fj)ω(ej , ei) +

k∑
j=1

ω(vk+1, ej)ω(fj , ei)

= ω(vk+1, ei) + ω(vk+1, ei)ω(fi, ei) by the inductive hypothesis

= ω(vk+1, ei)− ω(vk+1, ei) by the inductive hypothesis and (S2)

= 0

and similarly,

ω(ek+1, fi) = ω(vk+1, fi)−
k∑
j=1

ω(vk+1, fj)ω(ej , fi) +

k∑
j=1

ω(vk+1, ej)ω(fj , fi)

= ω(vk+1, fi)− ω(vk+1, fi)

= 0.

Now, by property (S3), there is a vector wk+1 such that ω(ek+1,wk+1) =
ck+1 �= 0. Note that wk+1 cannot be in Span(Bk) since otherwise the previous
calculations would imply that ω(ek+1,wk+1) = 0. Define further

uk+1 = wk+1 −
k∑
j=1

ω(wk+1, fj)ej +

k∑
j=1

ω(wk+1, ej)fj .

Again we have uk+1 �= 0, since if uk+1 = 0, then wk+1 ∈ Span(Bk).
Let fk+1 = (1/ck+1)uk+1, which makes ω(ek+1, fk+1) = 1. Properties (SO3)

and (SO4) about fk+1 are proved in the same way as the analagous properties were
derived above for ek+1. Hence we have constructed a linearly independent set Bk+1

satisfying properties (SO1)–(SO4). But since V is finite-dimensional, there must
be an n such that V = Span(Bn), which completes the proof.

�

Note that the proof relies in an essential way on the nondegeneracy condition
(S3) of ω. We will see another proof of this result below in Theorem 1.10.24.

A basis of a symplectic vector space (V, ω) satisfying (SO1)–(SO4) is called a
symplectic basis for V .

For example, for the standard symplectic space (R2n, ω0), the set

(1.2) B0 = {e1, f1, . . . , en, fn}
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given by

e1 = (1, 0, 0, 0, . . . , 0, 0)

f1 = (0, 1, 0, 0, . . . , 0, 0)

...

en = (0, 0, . . . , 0, 0, 1, 0)

fn = (0, 0, . . . , 0, 0, 0, 1)

is a symplectic basis. We will call B0 the standard symplectic basis for (R2n, ω0).
Of course, there is no unique symplectic basis for a given vector space V .
The following is another indication of the importance of the nondegeneracy

condition (S3) of Definition 1.10.1. It gives further evidence of why (S3) is the
correct symplectic analog to the inner product positive definite condition (I3) in
Definition 1.9.1.

Theorem 1.10.5. A linear symplectic form ω on a finite-dimensional vector
space V induces a linear isomorphism Ψ : V → V ∗ defined by Ψ(v) = Tv ∈ V ∗,
where Tv(w) = ω(v,w).

The proof exactly parallels the proof of Theorem 1.9.22.
The geometric consequences of the existence of a symplectic structure are quite

different from those of an inner product structure. There is no sense, for example,
of the length of a vector or of the angle between two vectors; it is enough to recall
again that ω(v,v) = 0 for all v ∈ V . There is, however, a notion corresponding to
the inner product notion of orthogonality.

Definition 1.10.6. Let (V, ω) be a symplectic vector space. Two vectors v,w ∈
V are called ω-orthogonal (or skew-orthogonal) if ω(v,w) = 0.

In contrast to inner product orthogonality, every vector is ω-orthogonal to itself.
This consequence of the skew-symmetry of ω is in marked contrast to the symmetric
case; compare, for example, to Theorem 1.9.10.

Following the idea of Section 9, for any set S ⊂ (V, ω) we can define the set

Sω = {w ∈ V | For all v ∈ S, ω(v,w) = 0} .
Theorem 1.10.7. Let S be a set of vectors in a symplectic vector space (V, ω).

The set Sω is a subspace of V .

Proof. Exercise.
�

Sω is called the ω-orthogonal subspace to S.

Example 1.10.8. Let S = {v} ⊂ R2, where v = (a, b) �= 0. Let ω0 be the
standard linear symplectic form on R2. Then Sω0 = {(sa, sb) | s ∈ R}. Indeed,
if (x, y) ∈ Sω0 , then ω0

(
(a, b), (x, y)

)
= ay − bx = 0. Hence ay = bx, and since

either a or b is not 0, we can write (for example if a �= 0) y = (b/a)x and so
(x, y) =

(
x, (b/a)x

)
= (x/a)

(
a, b
)
. In fact, if W = Span(S), then W = Wω0 . See

Figure 1.5.
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v

W =Wω0

Figure 1.5. Symplectic orthogonality in (R2, ω0), see Example 1.10.8.

Example 1.10.9. Let S = {v} ⊂ (R4, ω0) where v = (1, 2, 3, 4). Then

Sω0 =
{
(x1, y1, x2, y2) | ω0

(
(1, 2, 3, 4), (x1, y1, x2, y2)

)
= 0

}
= {(x1, y1, x2, y2) | − 2x1 + y1 − 4x2 + 3y2 = 0} .

We can write a basis for Sω0 by assigning free variables to x1, x2, y2 and writing
y1 = 2s+ 4t− 3u, so that

Sω0 = {(s, 2s+ 4t− 3u, t, u)| s, t, u ∈ R}
and so elements of Sω0 can be written as linear combinations of the linear indepen-
dent set {(1, 2, 0, 0), (0, 4, 1, 0), (0,−3, 0, 1)}. This shows that dim(Sω0) = 3.

The following theorems parallel the corresponding results for inner product
spaces.

Theorem 1.10.10. Let S be a set of vectors in a symplectic vector space (V, ω)
and let W = Span(S). Then Wω = Sω.

Proof. Let v ∈ Wω. Then for all w ∈ W , ω(w,v) = 0. Since S ⊂ W =
Span(S), for all s ∈ S, we have s ∈ W and so ω(s,v) = 0 and w ∈ Sω. So
Wω ⊂ Sω.

Now suppose v ∈ Sω. Then for all s ∈ S, ω(s,v) = 0. But since W = Span(S),
for all w ∈ W , there are vectors s1, . . . , sk ∈ S and constants c1, . . . , cn such that

w = c1s1 + · · ·+ cksk.
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But then by the bilinearity of ω we have

ω(w,v) = ω(c1s1 + · · ·+ cksk,v)

= c1ω(s1,v) + · · ·+ ckω(sk,v)

= 0.

So v ∈Wω and Sω ⊂Wω.
Hence Sω =Wω.

�
Corollary 1.10.11. Let B be a basis for a subspace W ⊂ V . Then Wω = Bω.

Despite the significant differences between the notions of orthogonality and ω-
orthogonality, Theorem 1.9.16 concerning the dimension of the orthogonal subspace
has a direct parallel in the symplectic setting.

Theorem 1.10.12. Let W be a subspace of a finite dimensional symplectic
vector space (V, ω). Then

dim(W ) + dim(Wω) = dim(V ).

Proof. We rely on the isomorphism Ψ : V → V ∗ given by Ψ(v) = i(v)ω of
Theorem 1.10.5. Consider the map T : V → W ∗ given by T (v) = Ψ(v)|W . On
the one hand, T is onto. To see this, let B = {w1, . . . ,w2n} be a basis for V
such that {w1, . . . ,wk} is a basis for W . Given α ∈ W ∗, define α̃ ∈ V ∗ to be
α̃(v) = c1α(w1) + · · · + ckα(wk), where we are writing v = c1w1 + · · · + c2nw2n

according to the basis B. The reader can check that α̃ ∈ V ∗. Let vα ∈ V be such
that Ψ(vα) = α̃. Then T (vα) = α, and so T is onto.

In addition, practically by definition,

kerT = {v ∈ V | (Ψ(v))(w) = 0 for all w ∈W}
= {v ∈ V | ω(v,w) = 0 for all w ∈W}
=Wω.

We thus rely on Theorem 1.7.7:

dim(V ) = dimkerT + dimR(T ) = dimWω + dimW ∗ = dimWω + dimW,

the last equality due to Theorem 1.8.2.
�

The analog of Theorem 1.9.15 about the trivial intersection ofW withW⊥ does
not always hold in a symplectic vector space. In fact, we can identify a number
of possible relationships between a subspace W and its ω-orthogonal complement
Wω.

Definition 1.10.13. Let W be a subspace of a symplectic vector space (V, ω).
W is called

• isotropic if W ⊂Wω;

• coisotropic if Wω ⊂W ;

• lagrangian if W =Wω;

• symplectic if W ∩Wω = {0}.
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Proposition 1.10.14. LetW be a subspace of the symplectic vector space (V, ω)
with dimV = 2n. Then

• If W is isotropic, then dimW ≤ n;
• If W is coisotropic, then dimW ≥ n;
• If W is lagrangian, then dimW = n;
• If W is symplectic, then dimW = 2m for some m ≤ n.

Proof. The first three statements are corollaries of Theorem 1.10.12.
To prove the last statement, note that the symplectic condition amounts to

saying that ω is nondegenerate on W : If not, then there is a w0 ∈ W having the
property that w0 �= 0 and ω(w0,w) = 0 for all w ∈ W . But this means that
w0 ∈Wω, contradicting the assumption that W is symplectic.

Because ω is nondegenerate on W , we can apply the argument of the proof
of Theorem 1.10.4 to construct a symplectic basis for W which necessarily has an
even number of elements, as claimed.

�

Example 1.10.15 (Examples of ω-orthogonal subspaces). The subspace W =
Span(S), where S is the set in Example 1.10.8, is lagrangian; note that this means
it is both isotropic and coisotropic.

The subspace W = Span(S), where S is the set in Example 1.10.9, is isotropic.
If (V, ω) is a symplectic vector space and {e1, f1, . . . , en, fn} is a symplectic

basis for V , then any subspace W = Span({e1, f1, . . . , ek, fk}) where k ≤ n is a
symplectic subspace of V .

As with inner product spaces, a linear symplectic form on a vector space (V, ω)
distinguishes special linear transformations on V , namely those that preserve the
symplectic structure.

Definition 1.10.16. Let (V, ω) be a symplectic vector space. A linear transfor-
mation T : V → V is a linear symplectomorphism (or a linear symplectic trans-
formation) if for all v,w ∈ V we have ω(T (v), T (w)) = ω(v,w). In the language
of Section 8, T is a linear symplectomorphism if T ∗ω = ω.

We list here some basic properties of linear symplectomorphisms.

Proposition 1.10.17. Let (V, ω) be a finite-dimensional symplectic vector space.
Then:

• If T1, T2 are linear symplectomorphisms of V , then T2 ◦ T1 is a linear
symplectomorphism.
• If T : V → V is a linear symplectomorphism, then T has an inverse T−1.
• If T is a linear symplectomorphism of V , then T−1 is a linear symplecto-
morphism.

Proof. The reader should refer to Proposition 1.8.15 on the pullback of the
composition of linear maps.

The first statement follows immediately from the fact that

(T2 ◦ T1)∗ω = T ∗
1 (T

∗
2 ω).

To prove the second statement, we will show that ker(T ) = {0}; by Theo-
rem 1.7.6, this means that T is one-to-one, and so by Corollary 1.7.12, T is also
onto.
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To do this, suppose v �= 0 and v ∈ ker(T ). By the nondegeneracy of ω, there
exists a vectorw such that ω(v,w) �= 0. But since T is a linear symplectomorphism,

ω(v,w) = (T ∗ω)(v,w)

= ω(T (v), T (w))

= ω(0, T (w))

= 0,

a contradiction. Hence ker(T ) = {0}, which implies that T is a linear isomorphism.
In particular, T is invertible.

The third follows from the fact that

ω = (Id)∗ω = (T ◦ T−1)∗ω = (T−1)∗(T ∗ω) = (T−1)∗ω,

assuming that T is a linear symplectomorphism.
�

Linear symplectomorphisms can be characterized in terms of the concept of a
symplectic basis.

Theorem 1.10.18. Let (V, ω) be a symplectic vector space with dimension
dimV = 2n. If T : V → V is a linear symplectomorphism and

{e1, f1, . . . , en, fn}
is a symplectic basis for V , then

{T (e1), T (f1), . . . , T (en), T (fn)}
is also a symplectic basis for V .

Conversely, suppose that

B = {e1, f1, . . . , en, fn}
and

B′ = {u1,v1, . . . ,un,vn}
are two symplectic bases for V and T is the linear isomorphism defined (according
to Theorem 1.6.5) by T (ei) = ui and T (fi) = vi. Then T is a linear symplector-
morphism.

Proof. The first statement follows from the fact that

ω(T (v), T (w)) = (T ∗ω)(v,w) = ω(v,w),

assuming that T is a linear symplectomorphism.
To prove the converse, note that if vectors v and w are written according to

the symplectic basis B, i.e.
v =

∑
(siei + tifi), w =

∑
(aiei + bifi),

then a calculation shows that

ω(v,w) =
∑

(sibi − tiai).
This caclulation holds for any symplectic basis. In particular, for

T (v) =
∑

(siui + tivi), T (w) =
∑

(aiui + bivi),

we have

(T ∗ω)(v,w) = ω(T (v), T (w)) =
∑

(sibi − tiai) = ω(v,w).
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�

Proposition 1.10.19. If T is a linear symplectomorphism of (V, ω) and v,w
are ω-orthogonal, then so are T (v), T (w).

Proof. Exercise.
�

We turn now to the matrix representation of the standard symplectic form
ω0 on R2n. This case in fact covers the matrix representation for any symplectic
vector space (V, ω) as long as vectors are represented in components relative to a
symplectic basis.

Recall that the standard symplectic basis B0 for (R2n, ω0) is given by Equa-
tion (1.2) following Theorem 1.10.4. Writing vectors v,w in standard components
as column vectors, the reader can verify using Proposition 1.8.13 that

ω0(v,w) = wTJv,

where, using block matrix notation,

J =

⎡⎢⎢⎢⎣
J0 O · · · O
O J0 · · · O

O O
. . . O

O · · · O J0

⎤⎥⎥⎥⎦ , J0 =

[
0 −1
1 0

]
.

The matrix J , representing the standard symplectic form, also allows a matrix
characterization of a linear symplectomorphism.

Theorem 1.10.20. T is a linear symplectomorphism of (R2n, ω0) if and only if
its matrix representation A = [T ] relative to the standard symplectic basis satisfies

AT JA = J.

Proof. The condition that T ∗ω0 = ω0 means that for all v,w ∈ R2n,

ω0(T (v), T (w)) = ω0(v,w).

But, in matrix notation,

ω0(T (v), T (w)) = (Aw)T J(Av) = wT (AT JA)v

and

ω0(v,w) = wTJv.

Hence T ∗ω0 = ω0 is equivalent to the matrix equation AT JA = J .
�

A (2n)× (2n) matrix satisfying the condition that AT JA = J will be called a
symplectic matrix. We write Sp(2n) to denote the set of all (2n)× (2n) symplectic
matrices. A number of properties of symplectic matrices will be explored in the
exercises. The following theorem indicates only the most important properties.

Theorem 1.10.21. Let A ∈ Sp(2n). Then:

(a) A is invertible;
(b) AT ∈ Sp(2n), and
(c) A−1 ∈ Sp(2n).
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Proof. Suppose A ∈ Sp(2n), i.e. AT JA = J . Then since detJ = 1, we have

1 = detJ

= det(AT JA)

= (detA)2,

and so detA = ±1 �= 0. Hence A is invertible.
Since J−1 = −J and J2 = −I, and using the fact that ATJA = J , we have

JATJA = J2 = −I,
which shows that

−JAT = (JA)−1 = A−1J−1 = −A−1J,

and hence AJAT = (AT )T J(AT ) = J . So AT ∈ Sp(2n).
We leave the proof of (c) as an exercise.

�
We saw in the context of the preceding proof that the determinant of a sym-

plectic matrix is ±1. In fact, a stronger results holds.

Theorem 1.10.22. If A ∈ Sp(2n), then

det(A) = 1.

We will defer the proof, however, to Chapter 7. We will ultimately rely on the
tools of exterior algebra that we present in Chapter 3.

The following statement concerns the eigenvalues of a symplectic matrix.

Theorem 1.10.23. Suppose λ is an eigenvalue of the symplectic matrix A ∈
Sp(2n) with multiplicity k. Then 1/λ, λ, and 1/λ are also eigenvalues of multiplicity
k, where λ is the complex conjugate of λ.

Proof. Consider the characteristic polynomial p(λ) = det(A− λI); note that
0 cannot be a root since then A could not be invertible. It is always the case that
λ is a root of p if λ is, since p is a real polynomial, and that the multiplicities of λ
and λ are the same. We have

p(λ) = det(A− λI)
= det(J(A− λI)J−1)

= det(JAJ−1 − λI)
= det((A−1)T − λI) since ATJA = J

= det((A−1 − λI)T )
= det(A−1 − λI)
= det(A−1(I − λA))
= det(A−1) det(I − λA)
= det(I − λA) by Theorem 1.10.22

= λ2n det

(
1

λ
I −A

)
= λ2np

(
1

λ

)
.
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This shows that if λ is a root of p, then so is 1/λ (and hence 1/λ also).
Now assume that λ is a root of the characteristic polynomial p with multiplicity

k, so that

p(x) = (x− λ)kq(x)
for some polynomial q satisfying q(λ) �= 0. But then for x �= 0 we have

p(x) = x2np

(
1

x

)
by the above calculation

= x2n
(
1

x
− λ

)k
q

(
1

x

)
= λkx2n−k

(
1

λ
− x

)k
q

(
1

x

)
.

Hence, since q(λ) �= 0, we have 1/λ is a root of p with multiplicity k.
�

We will have occasion to consider the case of a vector space V that has both
a symplectic linear form and an inner product. Unfortunately, the Gram-Schmidt
methods of Theorems 1.9.8 and 1.10.4 are not compatible, in the sense that it cannot
produce a basis that is simultaneously symplectic and orthogonal. Nevertheless, it
is possible to construct such a basis by resorting to techniques of complex vector
spaces—vector spaces whose scalars are complex numbers.

For basic results about complex vector spaces, the reader may consult any
textbook in linear algebra, for example [3]. In the proof of the following theorem,
hermitian matrices will play a prominent role. A hermitian matrix A is a square
(n× n) matrix with complex entries having the property that

A = (A)T ,

where the bar represents complex conjugation. The most important property of her-
mitian matrices for our purposes is that they have n linearly independent orthonor-
mal eigenvectors (with respect to the standard hermitian product 〈x,y〉 = xTy)
whose corresponding eigenvalues are real and nonzero.

Theorem 1.10.24. Let (V, ω) be a symplectic vector space with dimV = 2n.
Suppose that G is an inner product on V . Then there is a basis

B = {ũ1, ṽ1, . . . , ũn, ṽn}
which is symplectic and G-orthogonal, i.e.

G(ũi, ṽj) = 0 for all i, j; G(ũi, ũj) = G(ṽi, ṽj) = 0 for i �= j.

Moreover, the basis can be chosen so that G(ũi, ũi) = G(ṽi, ṽi) for all i.

Proof. We begin with an orthonormal basis

B′ = {e1, . . . , e2n}
of V relative to G, which exists according to Theorem 1.9.8. Let A be the (2n)×(2n)
matrix defined by the symplectic form ω relative to B′ as follows:

ω(v,w) = G(v, Aw)

for all v,w ∈ V . We write A = [aij ], where aij = ω(ei, ej). Due to the skew-
symmetry of ω, the matrix A is skew-symmetric: AT = −A.
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Throughout this proof, we will consider vectors v,w to be column vectors
written using components relative to the basis B′. In particular,

G(v,w) = vTw,

and ω(v,w) = vTAw.
The skew-symmetry of A implies that the (2n) × (2n) matrix iA with purely

imaginary entries iaij is hermitian:(
iA
)T

= (−iA)T since the entries of iA are purely imaginary

= −iAT
= −i(−A) since A is skew-symmetric

= iA.

Now by the fundamental property of hermitian matrices mentioned above, there
are 2n linearly independent eigenvectors of iA which are orthonormal with respect
to the hermitian product and with real corresponding eigenvalues. In fact, the
reader can verify that the eigenvectors of iA occur in pairs

y1,y1, . . . ,yn,yn

(being vectors with complex components, the bar representing complex conjugation
as always). The corresponding eigenvalues will be denoted

±μ1, . . . ,±μn.
The orthonormality is expressed in matrix notation as

yTj yk = δjk =

{
1 j = k

0 j �= k.

Note that since (iA)yj = μjyj , we have Ayj = (−iμj)yj ; in other words,
the eigenvalues of A are ±iμj . For each j = 1, . . . , n, we choose pairs λj and
xj as follows: From each pair of eigenvectors yj ,yj with corresponding nonzero
eigenvalues μj ,−μj , choose λj = ±μj so that λj > 0, and then if λj = μj choose
xj = yj , while if λj = −μj , choose xj = yj . In this way, we have Axj = iλjxj .

Write

xj = uj + ivj

with vectors uj and vj having have real components. We claim that the set B′′ =
{u1,v1, . . . ,un,vn} is a G-orthogonal basis for V . The fact that B′′ is a basis for
V is a result of the fundamental property of the eigenvectors of a hermitian matrix.
To show that B′′ is G-orthogonal, we note that the condition xTj xk = δjk can be
expressed as

uTj uk + vTj vk = δjk, uTj vk − vTj uk = 0.

Also, the fact that Axj = iλjxj means that

Auj = −λjvj , Avj = λjuj .
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Hence, for j �= k, we have

uTj uk = uTj

(
1

λk
Avk

)
=

1

λk

(
uTj Avk

)T
since the quantity in parentheses is a scalar

=
1

λk

(
vTk A

Tuj
)

= − 1

λk

(
vTk Auj

)
since A is skew-symmetric

=
λj
λk

(
vTk vj

)
since Auj = −λjvj

= −λj
λk

uTk uj since uTj uk + vTj vk = 0 for j �= k

= −λj
λk

(uTk uj)
T since the quantity in parentheses is a scalar

= −λj
λk

uTj uk,

which implies that

uTj uk = 0.

In the same way,

vTj vk = 0 for j �= k.

We leave it to the reader to show that, in a similar way, for all j and k,

uTj vk = vTj uk = 0.

All this shows that B′′ is G-orthogonal, since G(v,w) = vTw.
Note that

ω(uj,vj) = uTj Avj

= λju
T
j uj

= λj |uj |2
> 0.

We leave it to the reader to find scalars cj and dj such that for ũj = cjuj and
ṽj = djvj ,

ω(ũj , ṽj) = 1 and G(ũj , ũj) = G(ṽj , ṽj)

for all j = 1, . . . , n. The set

B = {ũ1, ṽ1, . . . , ũn, ṽn}
is the desired basis.

�

We will see that for the standard symplectic vector space (R2n, ω0), ellipsoids
play an important role in measuring linear symplectomorphisms. By an ellipsoid,
we mean a set E ⊂ R2n defined by a positive definite symmetric matrix A in the
following way:

E =
{
x ∈ R2n | xTAx ≤ 1

}
.
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An important fact about ellipsoids is that they can be brought into a “normal
form” by means of linear symplectomorphisms.

Theorem 1.10.25. Let E ⊂ R2n be an ellipsoid defined by the positive definite
symmetric matrix A. Then there are positive constants r1, . . . , rn and a linear
symplectomorphism Φ : (R2n, ω0) → (R2n, ω0) such that Φ(E(r1, . . . , rn)) = E,
where

E(r1, . . . , rn) =

{
(x1, y1, . . . , xn, yn)

∣∣∣∣ ∑(
x2i + y2i
r2i

)
≤ 1

}
.

The constants are uniquely determined when ordered r1 ≤ · · · ≤ rn.
Proof. Let G be the inner product defined by the matrix A, i.e. G(x,y) =

xTAy. The ellipsoid E is then characterized as

E =
{
b ∈ R2n | G(b,b) ≤ 1

}
.

According to Theorem 1.10.24, there is a basis

{u1,v1, . . . ,un,vn}
which is both symplectic relative to ω0 andG-orthogonal, withG(ui,ui) = G(vi,vi)
for all i = 1, . . . , n. So define the positive constants ri by

1

r2i
= G(ui,ui).

Let Φ : R2n → R2n be the linear symplectomorphism defined by its action on
the standard symplectic basis {e1, f1, . . . , en, fn} for (R2n, ω0):

Φ(ei) = ui, Φ(fi) = vi.

More explicitly, since

(x1, y1, . . . , xn, yn) = x1e1 + y1f1 + · · ·+ xnen + ynfn,

we have

Φ(x1, y1, . . . , xn, yn) = x1un + y1v1 + · · ·+ xnun + ynvn.

We will show that Φ(E(r1, . . . , rn)) = E. On the one hand, suppose b ∈
Φ(E(r1, . . . , rn)). In other words, there is a ∈ E(r1, . . . , rn) such that Φ(a) = b.
Writing

a = (x1, y1, . . . , xn, yn) = x1e1 + y1f1 + · · ·+ xnen + ynfn,

we then have

b = Φ(a) = x1u1 + y1v1 + · · ·+ xnun + ynvn,

and so

G(b,b) =
∑(

x2iG(ui,ui) + y2iG(vi,vi)
)

=
∑(

x2i

(
1

r2i

)
+ y2i

(
1

r2i

))
≤ 1 since a ∈ E(r1, . . . , rn).

Hence b ∈ E and so Φ(E(r1, . . . , rn)) ⊂ E.
On the other hand, suppose that b ∈ E, so that G(b,b) ≤ 1. There is a ∈ R2n

such that Φ(a) = b, since Φ is a linear isomorphism. Writing b according to the
basis above,

b = x̃1u1 + ỹ1v1 + · · ·+ x̃nun + ỹnvn,
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so
a = (x̃1, ỹ1, . . . , x̃n, ỹn).

But ∑(
x̃2i + ỹ2i
r2i

)
= G(b,b) ≤ 1,

and so a ∈ E(r1, . . . , rn) and E ⊂ Φ(E(r1, . . . , rn)).
All this shows that Φ(E(r1, . . . , rn)) = E.
To show that the constants ri are uniquely determined up to ordering, sup-

pose that there are linear symplectomorphisms Φ1,Φ2 : R2n → R2n and n-tuples
(r1, . . . , rn), (r

′
1, . . . , r

′
n) with r1 ≤ · · · ≤ rn and r′1 ≤ · · · ≤ r′n such that

Φ1(E(r1, . . . , rn)) = E, Φ2(E(r′1, . . . , r
′
n)) = E.

Then, writing Φ = Φ−1
1 ◦ Φ2, we have

Φ(E(r′1, . . . , r
′
n)) = E(r1, . . . , rn).

In matrix notation, this says that xTD′x ≤ 1 if and only if (Φx)TD(Φx) =
xT (ΦTDΦ)x ≤ 1, where x is the column vector representation of (x1, y1, . . . , xn, yn),
D is the diagonal matrix D = diag

[
1/(r1)

2, 1/(r1)
2, . . . , 1/(rn)

2, 1/(rn)
2
]
and D′ is

the diagonal matrix D′ = diag
[
1/(r′1)

2, 1/(r′1)
2, . . . , 1/(r′n)

2, 1/(r′n)
2
]
. This implies

that
ΦTDΦ = D′.

The fact that as a symplectic matrix, Φ satisfies ΦTJΦ = J , along with the
fact that J−1 = −J , together imply ΦT = −JΦ−1J and so

Φ−1JDΦ = JD′.

This shows that JD is similar to JD′, and so the two matrices have the same
eigenvalues. The reader may verify that the eigenvalues of JD are ±irj and those
of JD′ are ±ir′j. Since the ri and r′i are ordered from least to greatest, we must

have rj = r′j for all j = 1, . . . , n.
�

Theorem 1.10.25 prompts the following definition.

Definition 1.10.26. Let E ⊂ R2n be an ellipsoid in the standard symplectic
space (R2n, ω0). The symplectic spectrum of E is the unique n-tuple σ(E) =
(r1, . . . , rn), r1 ≤ · · · ≤ rn such that there is a linear symplectomorphism Φ with
Φ(E(r1, . . . , rn)) = E.

We will continue to develop some topics in linear symplectic geometry in Sec-
tion 7.7 as motivation for a key concept in (nonlinear) symplectic geometry, the
symplectic capacity.

1.11. For further reading

With the exception of Sections 8 and 10, much of the material in this chapter
can be found in any textbook on linear algebra. The notation here generally follows
that in [3].

While many linear algebra textbooks have detailed presentations of inner prod-
uct spaces, symplectic vector spaces are usually presented only as introductory
matter in the context of specialized texts. We refer to A. Banyaga’s summary in
[5, Chapter 1] or to [32].
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Ψ−1

(x2, y2) (x2, y2)

(x1, y1) (x1, y1)

�r2

�−r2

�−r1
�
r1

E

σ(E) = (r1, r2)

E(r1, r2)

Figure 1.6. Linear symplectomorphisms and the symplectic spectrum.

1.12. Exercises

The exercises in this chapter emphasize topics not usually presented in a first
elementary linear algebra course.

(1) Prove Theorem 1.4.3.
(2) Prove Theorem 1.4.10.
(3) Prove Theorem 1.4.13
(4) Let T : V → W be a linear isomorphism between vector spaces V and

W , and let T−1 : W → V be the inverse of T , i.e. T (T−1(w)) = w and
T−1(T (v)) = v. Show that T−1 is a linear transformation.

(5) Complete the proof of Theorem 1.7.14.
(6) Consider the basis B = {b1,b2,b3} of R3, where

b1 = (1, 0, 1),b2 = (1, 1, 0),b3 = (0, 2, 1).

(a) Write the components of w = (2, 3, 5) relative to the basis B.
(b) Let {β1, β2, β3} be the basis of (R3)∗ dual to B. Compute βi(w)

for each i = 1, 2, 3, where w is the vector given in part (a).
(c) For each i = 1, 2, 3, compute βi(v), where v = (v1, v2, v3) is an

arbitrary vector in R3.
(7) For each of the linear transformations Ψ and linear one-forms T below,

compute Ψ∗T .
(a) Ψ : R3 → R3, Ψ(u, v, w) = (2u, 3u− v − w, u + 2w),

T (x, y, z) = 3x+ y − z.
(b) Ψ : R3 → R2, Ψ(u, v, w) = (v, 2u− w),

T (x, y) = x+ 3y.

(c) Ψ : R4 → R3, Ψ(x, y, z, w) = (x+y−z−2w,w−4x−z, y+3z),

T (x, y, z) = x− 2y + 3z.

(8) Let α ∈ (R3)∗ be given by α(x, y, z) = 4y + z.
(a) Describe and find a basis for kerα.
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(b) Find all linear transformations Ψ : R3 → R3 with the property
that Ψ∗α = α.

(9) Consider the linear transformation T : R2 → R2 given by T (x1, x2) =
(2x1 − x2, x1 + 3x2).

(a) Compute T ∗G0, where G0 is the standard inner product defined
in Example 1.8.10.

(b) Compute T ∗S, where S is the bilinear form in Example 1.8.12.
(10) For any linear transformation T : Rn → Rn, show that

T ∗GA = GA[T ],

where A is an n × n matrix, A[T ] is the matrix product of [T ] with A,
where [T ] is written as a matrix relative to the standard basis of Rn, and
GA and GA[T ] are defined according to Example 1.8.11.

(11) Prove the following converse to Proposition 1.8.13: Let B be an n × n
matrix and let B be a basis for the n-dimensional vector space V . Then
the function b : V × V → R defined by

b(v,w) = wTBv,

where v and w are written as column vectors relative to the basis B, is a
bilinear form.

(12) Use Exercise 11 to give five examples of bilinear forms on R3 and five
examples of bilinear forms on R4.

(13) Let b, B and B be as given in Exercise 11, and let T : V → V be a linear
transformation. Show that

T ∗b = b̃,

where b̃ is the bilinear form corresponding to the matrix ATBA, where
A = [T ]B is the matrix representation of T relative to the basis B.

(14) For each of the following 2 × 2 matrices, write the coordinate expres-
sion for the inner product GA relative to the standard basis as in Exam-
ple 1.9.4. For each, compute GA(e1, e1), GA(e1, e2), and GA(e2, e2) along
with ∠(e1, e2), where e1 = (1, 0) and e2 = (0, 1).

(a)

[
2 1
1 −1

]
;

(b)

[
2 −1
1 3

]
;

(c)

[
1 2
1 3

]
.

(15) Show that the function G(v,w) = v1w1 + 2v1w2 + 2v2w1 + 5v2w2 is an
inner product on R2, where v = (v1, v2) and w = (w1, w2). Find an
orthonormal basis {u1,u2} for R2 relative to G.

(16) Let {u1,u2} be the basis for R2 given by u1 = (3, 2) and u2 = (1, 1).
Let G be the inner product on R2 such that {u1,u2} is orthonormal (see
Theorem 1.9.9). Find G(v,w) where v = (v1, v2) and w = (w1, w2). Find
∠((1, 0), (0, 1)).

(17) Prove Theorem 1.9.10.
(18) For the following subspaces W of Rn, find a basis for W⊥, the orthogonal

subspace of W relative to the standard inner product on Rn

(a) W = Span {(1, 2)} ⊂ R2;
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(b) W = Span {(1, 2, 3)} ⊂ R3;
(c) W = Span {(1, 0, 1), (−1, 1, 0)} ⊂ R3;
(d) W = Span {(1,−2, 2, 1), (0, 1, 1,−3)} ⊂ R4.

(19) Provide the details for the proof of Theorem 1.9.16
(20) Let (V,G) be an inner product space and let W be a subset of V .

(a) Show that W ⊂ (W⊥)⊥.
(b) Show that if V is finite-dimensional, then there is an orthonor-

mal basis {u1, . . . ,un} of V such that {u1, . . . ,uk} is a basis for W and
that {uk+1, . . . ,un} is a basis for W⊥. (See Theorem 1.9.16.)

(c) Show that if V is finite-dimensional, then (W⊥)⊥ ⊂W , and so
by (a) that W = (W⊥)⊥.

(21) Prove Proposition 1.9.18.
(22) Prove Proposition 1.9.21.
(23) Let (V,G) be a finite-dimensional inner product space. Show that a linear

transformation T : V → V is a linear isometry if and only if for any
orthonormal basis {e1, . . . , en} of V , the set

{T (e1), . . . , T (en)}
is also an orthonormal basis for V .

(24) Give three examples of linear symplectic forms on R4.
(25) Suppose B = {a1,b1, . . . , an,bn} is a basis forR2n. Define the alternating

bilinear form ωB by its action on the basis vectors:

ωB(ai, aj) = ωB(bi,bj) = 0 for all i, j

ωB(ai,bj) = 0 for i �= j

ωB(ai,bi) = 1.

Show that ωB is a linear symplectic form.
(26) Define a bilinear form S on R4 by

S(v,w) = wTAv,

where

A =

⎡⎢⎢⎣
0 1 1 1
−1 0 2 0
−1 −2 0 3
−1 0 −3 0

⎤⎥⎥⎦ .
(a) Show that S is a linear symplectic form.
(b) Use the process outlined in Theorem 1.10.4 to find a symplectic

basis {e1, f1, e2, f2} for R4 relative to S.
(27) Use the procedure in Theorem 1.10.4 to construct three different symplec-

tic bases for R4 by making appropriate choices at different stages of the
process.

(28) Let R4 be equipped with the standard linear symplectic form ω0. De-
cide if the following subspaces are isotropic, coisotropic, Lagrangian, or
symplectic.

(a) W1 = Span {(1, 0,−1, 3)};
(b) W2 = Span {(3, 1, 0,−1), (2, 1, 2, 1)};
(c) W3 = Span {(1, 0, 2,−1), (0, 1, 1,−1)};
(d) W4 = Span {(1, 1, 1, 0), (2,−1, 0, 1), (0, 2, 0,−1)};
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(e) W5 = kerT , where T : R4 → R2 is given by

T (x1, y1, x2, y2) = (2x2 − y1, x1 + x2 + y1 + y2).

(29) Prove Theorem 1.10.7.
(30) Prove Theorem 1.10.12.
(31) Let W1 and W2 be subspaces of a symplectic vector space (V, ω). Show

that if W1 ⊂W2, then W
ω
2 ⊂Wω

1 .
(32) Show that if W is a subspace of a symplectic vector space (V, ω), then

(Wω)ω =W .
(33) Is it possible for a 2-dimensional subspace of a 4-dimensional symplectic

vector space to be neither symplectic nor lagrangian? If so, find necessary
conditions for this to occur. If not, state and prove the corresponding
result. To what extent can this question be generalized to higher dimen-
sions?

(34) Prove Proposition 1.10.19.
(35) Prove Theorem 1.10.5.
(36) For each of the examples in Exercise 24, write the isomorphism Ψ from

Theorem 1.10.5 explicitly in terms of the standard bases of R4 and (R4)∗.
(37) LetW be a subspace of a finite-dimensional symplectic vector space (V, ω).

Let Ψ : V → V ∗ be the isomorphism described in Theorem 1.10.5.
(a) Let

W 0 = {α ∈ V ∗ | α(w) = 0 for all w ∈ W} .
Show that W 0 is a subspace of V ∗.

(b) Show that Ψ(Wω) =W 0.
(c) Show that Ψ(W ) = (Wω)0.

(38) Provide the details for the proof of Theorem 1.10.24. In particular:
• Show that the set B′′ is a basis for V .
• Show that uTj vk = vTj uk = 0.
• Find scalars cj and dj such that for ũj = cjuj and ṽj = djvj ,

ω(ũj , ṽj) = 1 and G(ũj , ũj) = G(ṽj , ṽj)

for all j = 1, . . . , n.
(39) Verify directly that the matrix

A =

⎡⎢⎢⎣
1 −1 1 0
1 −1 0 1
1 −1 0 0
2 −1 1 −1

⎤⎥⎥⎦
is a symplectic matrix, i.e. that AT JA = J .

(40) Let B = {a1,b1, . . . , an,bn} be a symplectic basis for the standard sym-
plectic space (R2n, ω0). Show that the matrix

A =
[
a1 b1 · · · an bn

]
is a symplectic matrix.

(41) Show that if A ∈ Sp(2n), then A−1 ∈ Sp(2n).
(42) Show that if A ∈ Sp(2n), then A−1 = −JATJ .


