
TENSOR PRODUCTS

Let R be a ring with 1 and let M and N be R-modules (M a right R-module and N a left R-
module). We give some more details here for M ⊗R N , the tensor product of M and N over R, to
supplement the class discussion. We first describe its construction as an abelian group and then
give its module structure. We also see how this can be done in a single step.

The origins of tensors are reflected in their odd name. In 1884 Gibbs first defined and used ten-
sors over R to study the tension and strain on a body. In 1898 Voigt coined the term tensor in this
context (Gibbs had called them indeterminate products) based on the latin word tensus, meaning
taut. Tensus is also the common root of the words tense, tension and tensile. The name tensor
didn’t catch on widely until it was used by Einstein in his work on general relativity. From their
original applications to physics and differential geometry, tensor’s have found uses all over mathe-
matics, including in particular algebraic topology, homological algebra, representation theory and
algebraic geometry.

1. CONSTRUCTION OF THE ABELIAN GROUP

Let A be the free Z-module on M ×N . So we can think of the elements of A as finite commuting
sums ∑

fin

ki(mi, ni) (ki ∈ Z, mi ∈M, ni ∈ N)

added and subtracted in the obvious way. Of course

ki(mi, ni) =

ki︷ ︸︸ ︷
(mi, ni) + (mi, ni) + · · ·+ (mi, ni),

for ki positive and, similarly, a sum of −(mi, ni)s for ki negative. So we may write the elements of
A more simply as ∑

fin

±(mi, ni) ( mi ∈M, ni ∈ N) (1.1)

allowing repetition. For example

(3, 4) + (3, 4) + (2,−12)− (7, 2)

is an element of A for M = N = Z.
We now define the subset G of A to be the elements

(m+m′, n)− (m,n)− (m′, n), (1.2)

(m,n+ n′)− (m,n)− (m,n′), (1.3)

(mr, n)− (m, rn) (1.4)

for all m,m′ ∈M , n, n′ ∈ N and r ∈ R. Let B be the subgroup of A generated by G, i.e.

B = 〈G〉 6 A,
the set of all finite sums and differences of elements of G. We then define

M ⊗R N := A/B

and write
m⊗ n := (m,n) +B.

Then m ⊗ n is called a simple tensor. The elements of M ⊗R N are called tensors and the typical
tensor looks like ∑

fin

±(mi ⊗ ni) (1.5)

Date: Nov 30, 2012.
1



2 TENSOR PRODUCTS

which is just the image of (1.1) under the natural projection A → A/B. Since we have taken a
quotient, there may be many different representations of the form (1.5) for a given tensor.

Following from (1.2), (1.3), (1.4) we have the basic relations:

(m+m′)⊗ n = m⊗ n+m′ ⊗ n, (1.6)

m⊗ (n+ n′) = m⊗ n+m⊗ n′, (1.7)
mr ⊗ n = m⊗ rn. (1.8)

From these it is easy to then prove

m⊗ 0 = 0⊗ n = 0, (1.9)

−(m⊗ n) = (−m)⊗ n = m⊗ (−n). (1.10)

Thus we may write the typical tensor (1.5) more simply (replacing mi by −mi where necessary) as∑
fin

mi ⊗ ni. (1.11)

Example 1. The abelian group Z/2Z is naturally a left and right Z-module. So Z/2Z ⊗Z Z/2Z
makes sense. The simple tensors are

0⊗ 0, 0⊗ 1, 1⊗ 0, 1⊗ 1.

By (1.9) we have 0⊗ 0 = 0⊗ 1 = 1⊗ 0 = 0. It is not clear yet if 1⊗ 1 is also equal to 0. We do have

2(1⊗ 1) = 1⊗ 1 + 1⊗ 1 = (1 + 1)⊗ 1 = 0⊗ 1 = 0.

Therefore the abelian group Z/2Z⊗Z Z/2Z is isomorphic to either 0 or Z/2Z. If fact, as we showed
in class, it is isomorphic to Z/2Z.

2. THE MODULE STRUCTURE

IfM is just a rightR-module andN just a leftR-module then the tensor productM⊗RN is only
an abelian group. To make M ⊗R N into a module we need M or N to have more structure.

We work as generally as possible and let S be a ring with 1. To make M ⊗R N into a left S-
module we require an action of S on its tensors. A natural approach is to assume that M is a left
S-module and for all s ∈ S define

s

(∑
fin

mi ⊗ ni

)
=
∑
fin

(smi)⊗ ni. (2.1)

As we’ll see, for this to give a well defined action we need a compatibility condition for the left
and right module structures on M :

s(mr) = (sm)r for all s ∈ S, m ∈M, r ∈ R. (2.2)

An M that is a left S-module, a right R-module and satisfies (2.2) is termed an (S,R)-bimodule.

Proposition 2.1. For M an (S,R)-bimodule and N a left R-module the map

S ×M ⊗R N →M ⊗R N

defined by (2.1) is well defined.

Proof. Suppose the tensor
∑

fin mi ⊗ ni has another representation in M ⊗R N :∑
fin

mi ⊗ ni =
∑
fin

m′
j ⊗ n′

j . (2.3)

We need to prove that the action is independent of the representation:

s

(∑
fin

mi ⊗ ni

)
= s

(∑
fin

m′
j ⊗ n′

j

)
. (2.4)
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Equivalently to (2.3) we have∑
fin

mi ⊗ ni −
∑
fin

m′
j ⊗ n′

j = 0

⇐⇒
∑
fin

(mi ni)−
∑
fin

(m′
j , n

′
j) ∈ B. (2.5)

Equivalently to (2.4) we have∑
fin

(smi)⊗ ni −
∑
fin

(sm′
j)⊗ n′

j = 0

⇐⇒
∑
fin

(smi ni)−
∑
fin

(sm′
j , n

′
j) ∈ B. (2.6)

Hence we need to prove that (2.5) implies (2.6).
Recall A, G and B from section 1. Define an action of S on M × N by s(m,n) = (sm, n). It

extends to an action on A:

s

(∑
fin

±(mi, ni)

)
=
∑
fin

±(smi, ni).

We claim that sg ∈ G for all s ∈ S and g ∈ G, i.e. S sends generators of B to other generators of
B. Take an element of G of the form (m+m′, n)− (m,n)− (m′, n) in (1.2). Then

s
(
(m+m′, n)− (m,n)− (m′, n)

)
= (s(m+m′), n)− (sm, n)− (sm′, n)

= (sm+ sm′, n)− (sm, n)− (sm′, n)

which is in G since it’s also of the form (1.2), with m and m′ replaced by sm and sm′ respectively.
Similarly for elements in G of the form (1.3). For elements of the form (1.4)

s
(
(mr, n)− (m, rn)

)
= (s(mr), n)− (sm, rn)

= ((sm)r, n)− (sm, rn),

using the bimodule structure (2.2), and so again are of the form (1.4), with m replaced by sm. This
proves the claim.

It now follows that, with this action, S mapsB to itself. Therefore (2.5) implies (2.6), as required.
�

Theorem 2.2. SupposeM is an (S,R)-bimodule andN is a leftR-module. With S acting by (2.1),M⊗RN
becomes a left S-module.

Proof. It is straightforward now to check all the conditions. We know that M ⊗R N is already an
abelian group with elements that can be written in the form (1.11). Take two such elements

k =
∑
fin

mi ⊗ ni, k′ =
∑
fin

m′
j ⊗ n′

j .

With Proposition 2.1 we have a well defined left S action on M ⊗R N . For all s, s′ ∈ S we require

(s+ s′)k = sk + s′k

s(k + k′) = sk + sk′

s(s′k) = (ss′)k
1k = k.

These follow directly from (2.1) and (1.6), (1.7),(1.8). �

We obtain right S-modules in a similar way:
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Theorem 2.3. Suppose M is a right R-module and N an (R,S)-bimodule. We have a well defined action
of S on the right with ∑

fin

mi ⊗ ni

 s =
∑
fin

mi ⊗ (nis) (2.7)

making M ⊗R N into a right S-module.

With (2.1), (2.7) we have well defined actions on the left and right. Combining these last two
results we find

Corollary 2.4. Suppose M is an (R,S)-bimodule and N an (S, T )-bimodule. Then M ⊗RN is an (R, T )-
bimodule.

Proof. Theorems 2.2, 2.3 imply that M ⊗R N is a left R-module and a right T -module. It only
remains to check the bimodule condition (2.2). Let k =

∑
fin mi ⊗ ni be an element of M ⊗R N .

Then for all r ∈ R and t ∈ T

r(kt) = r

((∑
fin

mi ⊗ ni

)
t

)

= r

(∑
fin

mi ⊗ (nit)

)
=
∑
fin

(rmi)⊗ (nit)

=

(∑
fin

(rmi)⊗ ni

)
t

=

(
r

(∑
fin

mi ⊗ ni

))
t

= (rk)t

as we wanted. �

3. AN IMPORTANT SPECIAL CASE

In this section we suppose R is a commutative ring.

Lemma 3.1 (Standard R-module structure). Let M be a left R-module. Then, with the right action
defined by

mr := rm for all m ∈M, r ∈ R
M becomes an (R,R)-bimodule.

Proof. To check that M is a right R-module is straightforward. For example

(mr)r′ = (rm)r′

= r′(rm)

= (r′r)m

= m(r′r)

= m(rr′)

where we needed R commutative for the last line. For the bimodule condition:

r(mr′) = r(r′m) = (rr′)m = m(rr′) = (mr)r′ = (rm)r′

as required. �

In a similar way, right R-modules become (R,R)-bimodules.
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Corollary 3.2. Suppose M and N are left R-modules for R a commutative ring. Then, with the standard
R-module structures, M ⊗R N is a left R-module. In fact M ⊗R N is an (R,R)-bimodule.

Proof. By Lemma 3.1, we have that M and N are (R,R)-bimodules. It follows from Corollary 2.4
that M ⊗R N is an (R,R)-bimodule. �

In sections 1 and 2 we constructed M ⊗R N by first making an abelian group and then giving it
a module structure. For R commutative, there is a simpler one-step construction as follows.

Let A′ be the free R-module on the set M × N . So we can think of the elements of A′ as finite
commuting sums ∑

fin

ri(mi, ni) (ri ∈ R, mi ∈M, ni ∈ N)

added and subtracted in the obvious way. We now define the subset G′ of A′ to be the elements

(m+m′, n)− (m,n)− (m′, n),

(m,n+ n′)− (m,n)− (m,n′),

(rm, n)− r(m,n)

(m, rn)− r(m,n)

for all m,m′ ∈ M , n, n′ ∈ N and r ∈ R. Let B′ be the submodule of A′ generated by G′. We then
define

M ⊗R N := A′/B′.

As a quotient of R-modules, it is immediately an R-module. Verify that this agrees with our pre-
vious definition.

4. HOMOMORPHISMS OUT OF TENSOR PRODUCTS

Tensor products are important because they allow us to study commonly occurring maps, such
as bilinear or multilinear maps, by replacing them with homomorphisms.

Starting in the most general case, letM be a rightR-module,N a leftR-module and L an abelian
group. A map φ : M ×N → L is called R-balanced if

φ(m+m′, n) = φ(m,n) + φ(m′, n)

φ(m,n+ n′) = φ(m,n) + φ(m,n′)

φ(mr, n) = φ(m, rn)

for all m,m′ ∈ M , n, n′ ∈ N and r ∈ R. We proved the following key result for M , N and L as
above:

Theorem 4.1 (Universal property of tensor products). Let φ : M ×N → L be R-balanced. Then there
is a unique additive homomorphism

Φ : M ⊗R N → L

such that Φ(m⊗ n) = φ(m,n) for all m ∈M and n ∈ N .

(The second part of the Theorem says that the converse is true: given a homomorphism Φ :
M ⊗R N → L, then the map (m,n) 7→ Φ(m⊗ n) is R-balanced.)

Example 2. Let R be a subring of S. We want to show that

S ⊗R R ∼= S as S-modules.

Proof. Start with the map φ : S × R → S where φ(s, r) = sr. Check that φ is R-balanced. By
Theorem 4.1 we obtain an additive homomorphism Φ : S ⊗R R → S such that, on simple tensors,
Φ(s⊗ r) = sr. (The reason we can’t just set Φ(s⊗ r) = sr to begin with is that it might not be well
defined.)
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In the other direction we simply define the homomorphism Ψ : S → S ⊗R R with Ψ(s) = s⊗ 1.
We can check that Φ and Ψ are inverses:

Ψ(Φ(s⊗ r)) = Ψ(sr) = (sr)⊗ 1 = s⊗ r,
Φ(Ψ(s)) = Φ(s⊗ 1) = s1 = s.

This proves that Φ : S ⊗R R → S is an isomorphism of abelian groups. We now show it’s an
S-module isomorphism. It is enough to check that

Φ(s′(s⊗ r)) = s′Φ(s⊗ r)
for all s, s′ ∈ S, r ∈ R. We have

Φ(s′(s⊗ r)) = Φ((s′s)⊗ r)
= (s′s)r

= s′(sr)

= s′Φ(s⊗ r)
as required. �

Theorem 4.1 and its converse show that R-balanced maps M ×N → L are in one-to-one corre-
spondence with homomorphisms M ⊗R N → L. In a similar way, for R-commutative, R-bilinear
mapsM×N → L (where L is now anR-module) are in one-to-one correspondence withR-module
homomorphisms M ⊗R N → L. In general, R-multilinear maps

M1 ×M2 × · · · ×Mk → L

are in one-to-one correspondance with R-module homomorphisms (also called R-linear maps)

M1 ⊗R M2 ⊗R · · · ⊗R Mk → L.

A map φ : M1 ×M2 × · · · ×Mk → L is R-multilinear if it is R-linear in each component separately:

φ(m1, . . . ,mi +m′
i, . . . ,mk) = φ(m1, . . . ,mi, . . . ,mk) + φ(m1, . . . ,m

′
i, . . . ,mk),

φ(m1, . . . , rmi, . . . ,mk) = rφ(m1, . . . ,mi, . . . ,mk)

for all mi,m
′
i ∈Mi and r ∈ R.


