ALGEBRA I. PROBLEM SET 8.

DUE TUE, DEC 4.

Hand in any 4 of these to be graded.
\#1 [Q5, §9.1.] Prove that (x, y) and $(2, x, y)$ are prime ideals in $\mathbb{Z}[x, y]$ but only the latter ideal is a maximal ideal.
\#2 [Q4, §9.2.] Let F be a finite field. Prove that $F[x]$ contains infinitely many primes. (Over an infinite field the degree one polynomials give an infinite set of primes.)
\#3 [Q3, §9.3.] Let F be a field. Prove that the set R of polynomials in $F[x]$ whose coefficient of x is equal to 0 is a subring of $F[x]$ and that R is not a U.F.D. [See hint in text.]
\#4 [Q1, §9.4.] Determine whether the following polynomials are irreducible in the rings indicated. If reducible, find their factorization into irreducibles.
(a) $x^{2}+x+1$ in $\mathbb{F}_{2}[x]$.
(b) $x^{3}+x+1$ in $\mathbb{F}_{3}[x]$.
(c) $x^{4}+1$ in $\mathbb{F}_{5}[x]$.
(d) $x^{4}+10 x^{2}+1$ in $\mathbb{Z}[x]$.
\#5 [Q2, §9.4.] Prove that the following polynomials are irreducible in $\mathbb{Z}[x]$:
(a) $x^{4}-4 x^{3}+6$
(b) $x^{6}+30 x^{5}-15 x^{3}+6 x-120$
(c) $x^{4}+4 x^{3}+6 x^{2}+2 x+1$
(d) $\frac{(x+2)^{p}-2^{p}}{x}$ for p an odd prime.
\#6 [Q4, §9.4.] Show that the polynomial $(x-1)(x-2) \ldots(x-n)+1$ is irreducible over \mathbb{Z} for all $n \in \mathbb{Z}_{\geqslant 1}$ except 4 .
\#7 [Q7, §9.4.] Prove that $\mathbb{R}[x] /\left(x^{2}+1\right)$ is a field which is isomorphic to \mathbb{C}.
\#8 By using irreducible polynomials over a finite field \mathbb{F}_{p}, construct finite fields of the following sizes and provide a generator for the multiplicative parts of these fields:
(a) 49
(b) 8 .
\#9 [Q8, §10.1.] An element m of the R-module M is called a torsion element if $r m=0$ for some nonzero element $r \in R$. The set of torsion elements is denoted

$$
\operatorname{Tor}(M)=\{m \in M \mid r m=0 \text { for some nonzero } r \in R\}
$$

(a) Prove that if R is an integral domain then $\operatorname{Tor}(M)$ is a submodule of M (called the torsion submodule of M).
(b) Give an example of a ring R and an R-module M such that $\operatorname{Tor}(M)$ is not a submodule.
(c) If R has zero divisors show that every nonzero R-module has nonzero torsion elements.
\#10 [Q9, 10, §10.1.] Let M be an R-module with submodule N and with I a right ideal of R.
(a) The annihilator of N in R is defined as

$$
\{r \in R \mid r n=0 \text { for all } n \in N\} .
$$

Prove that it is a two-sided ideal of R.
(b) The annihilator of I in M is defined as

$$
\{m \in M \mid a m=0 \text { for all } a \in I\}
$$

Prove that it is a submodule of M.

