ALGEBRA I. PROBLEM SET 7.

DUE THUR, NOV 15.

Hand in any 4 of these to be graded.
\#1 [Q13(b), §7.4.] Let $\varphi: R \rightarrow S$ be a homomorphism of commutative rings. Prove that if M is a maximal ideal of S and φ is surjective then $\varphi^{-1}(M)$ is a maximal ideal of R. Give an example to show this need not be the case if φ is not surjective.
\#2 [Q5, §7.6.] See the text for this application of the Chinese Remainder Theorem.
\#3 [Q2(a)(b)(c), §8.1.] For each of the following pairs of integers a and n, show that a is relatively prime to n and determine the inverse of $a \bmod n$:
(a) $a=13, n=20$.
(b) $a=69, n=89$.
(c) $a=1891, n=3797$.
\#4 [Q7, §8.1.] Find a generator for the ideal $(85,1+13 i)$ in $\mathbb{Z}[i]$, i.e. a greatest common divisor for $85,1+13 i$, by the Euclidean algorithm. Do the same for the ideal $(47-13 i, 53+56 i)$.
\#5 Let ω be the cube root of unity $e^{2 \pi i / 3}$. Show that the ring $\mathbb{Z}[\omega]=\{a+b \omega \mid a, b \in \mathbb{Z}\}$ is a Euclidean Domain with norm $N(a+b \omega)=a^{2}-a b+b^{2}\left(=|a+b \omega|^{2}\right)$. Give examples, with proof, of some primes in $\mathbb{Z}[\omega]$. ($\mathbb{Z}[\omega]$ is called the ring of Eisenstein Integers.)
\#6 [Q10, §8.1.] Prove that the quotient ring $\mathbb{Z}[i] / I$ is finite for any nonzero ideal I of $\mathbb{Z}[i]$.
\#7 [Q1, §8.2.] Prove that in a P.I.D. two ideals (a) and (b) are comaximal if and only if 1 is a greatest common divisor of a and b (in which case a and b are said to be coprime or relatively prime).
\#8 [Q2, §8.2.] Prove that a quotient of a P.I.D. by a prime ideal is again a P.I.D.
\#9 [Q5, §8.2.] Let R be the quadratic integer ring $\mathbb{Z}[\sqrt{-5}]$. Define the ideals

$$
I_{2}=(2,1+\sqrt{-5}), \quad I_{3}=(3,2+\sqrt{-5}), \quad I_{3}^{\prime}=(3,2-\sqrt{-5}) .
$$

See the text for this question about $I_{2}, I_{3}, I_{3}^{\prime}$ and their products.
\#10 [Q8, §8.3.] This question continues \#9, looking at factorizations of ideals of $\mathbb{Z}[\sqrt{-5}]$ into prime ideals. See the text.

