ALGEBRA I. PROBLEM SET 5.

DUE THUR, OCT 18.

Hand in any 4 to be graded. Make sure you can do all 10 and let me know if you have questions about them (new office hour at the graduate center: Tue 3:30-4:30). Check through all the other exercises in the sections we looked at in Chapters 5,6 as well.
\#1 [Q8, §5.1.] In each of (a) to (e) give an example of a group with the specified properties:
(a) an infinite group in which every element has order 1 or 2
(b) an infinite group in which every element has finite order but for each positive integer n there is an element of order n
(c) a group with an element of infinite order and an element of order 2
(d) a group G such that every finite group is isomorphic to some subgroup of G
(e) a nontrivial group G such that $G \cong G \times G$.
\#2 How many non-isomorphic abelian groups are there of order one million?
\#3 [Q11, §5.5.] Classify groups of order 28 (there are 4 isomorphism types).
\#4 [Q1, 14, 17, §6.1.] A subgroup $H \leqslant G$ is characteristic in G if every automorphism of G maps H to itself (see page 135 of the text). Since conjugation is an automorphism, this implies that characteristic subgroups are normal. Prove one of the following (all are true):
(a) $Z_{i}(G)$ is a characteristic subgroup of G
(b) G^{i} is a characteristic subgroup of G
(c) $G^{(i)}$ is a characteristic subgroup of G.
\#5 Show that the Heisenberg group $H(F)$ (over a field F) is nilpotent and find its nilpotence class.
\#6 [Q5, §3.4.] Prove that subgroups and quotient groups of a solvable group are solvable.
\#7 [Q8, §3.4.] Show that a group is solvable if and only if all its composition factors are of prime order by using the steps outlined in this question - see the text.
\#8 [Q6, §6.1.] Show that if $G / Z(G)$ is nilpotent then G is nilpotent.
\#9 [Q1, §6.3.] Let F_{1} and F_{2} be free groups of finite rank. Prove that $F_{1} \cong F_{2}$ if and only if they have the same rank. What facts do you need to extend your proof to infinite ranks (where the result is also true)?
\#10 [Q11, §6.3.] This question is on the universal property of free abelian groups. See the text.

