
ALGEBRA I. PROBLEM SET 4.
THE CYCLIC GROUP Z/NZ AND THE SYMMETRIC GROUP SN .

DUE TUE, OCT 9.

In this handout we look at some number theory and counting related to the cyclic and symmetric
groups. Hand in 4 questions to be graded by Oct 9 with at most two questions from #1, #2, #3, #4.

1. Cyclic groups

Let Zn be the cyclic group of order n ∈ Z>1, defined as

Zn := 〈x | xn = 1〉.
Review §0.3 in Dummit and Foote where Z/nZ is defined, and §1.3 on cyclic groups. We have
Z/nZ ∼= Zn. Define the Euler φ function as

φ(n) := |{a ∈ Z | 1 6 a 6 n, (a, n) = 1}|,
the number of positive integers up to n that are prime to n. In Zn, the number of elements of order
d, for d | n, is φ(d). (This may be shown by first proving that Zn = 〈x〉 implies |xa| = n/(a, n).)
Summing over all possibilities gives ∑

d|n

φ(d) = n.

The following subset of Z/nZ forms a group under multiplication:

(Z/nZ)× = {a ∈ Z/nZ | (a, n) = 1}.
Clearly |(Z/nZ)×| = φ(n).

#1 [Q16, §3.2.] Use Lagrange’s Theorem in (Z/pZ)× to prove

Fermat’s Little Theorem: ap ≡ a mod p (a ∈ Z, p prime).

#2 [Q17, §3.2.] For p prime and n ∈ Z>1, find the order of p in (Z/(pn − 1)Z)×. Deduce that

n | φ(pn − 1).

#3 [Q22, §3.2.] Use Lagrange’s Theorem in (Z/nZ)× to prove

Euler’s Theorem: aφ(n) ≡ 1 mod n (a ∈ Z, (a, n) = 1).

#4 [Q23, §3.2.] Find the last two digits of 33100
.

#5 Show that Z/nZ forms a field under the operations of addition and multiplication mod n if
and only if n is prime.

For p prime the finite field Z/pZ is usually denoted Fp. For any field F , the non-zero elements
must form a group under multiplication. This group is denoted F×. We will see later that F× is
always cyclic. Hence

(Z/pZ)× ∼= Z/(p− 1)Z (p prime).
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It is shown in §4.4 that there is an isomorphism

ψ : (Z/nZ)× → Aut(Zn)

ψ(a) = (x 7→ xa).

2. Symmetric groups

Review §1.3 on the symmetric group Sn and §4.3 which includes a part on conjugacy in Sn. As
seen there, if σ, τ ∈ Sn with σ = (a1 a2 . . . am) then

τστ−1 = (τ(a1) τ(a2) . . . τ(am))

and similarly if σ is a disjoint product of cycles. It follows that two permutations in Sn are con-
jugate if and only if they have the same number of cycles of each length in their disjoint cycle
decomposition.

A non-increasing sequence of positive integers that sum to n is called a partition of n. The num-
ber of partitions of n is given by the partition function p(n). For example p(4) = 5 since 4 has the
five partitions

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.
It follows from the above reasoning that

p(n) = the number of conjugacy classes in Sn.

In §5.2 we saw that partitions also arise in connection with the invariant factors of Sylow p-
subgroups of abelian groups:

p(n) = the number of isomorphism classes of an abelian group of order pn.

Note that the number of partitions of a set of size n (i.e. ways to write the set as a disjoint union
of non-empty subsets) is larger than p(n). For example there are 15 possible partitions of {a, b, c, d}:

{{a, b, c, d}}, {{a, b, c}{d}}, {{a, b, d}{c}}, {{a, c, d}{b}}, {{b, c, d}{a}},
· · · , {{a, b}, {c, d}}, {{a, c}, {b, d}}, {{a, d}, {b, c}}, {{a}, {b}, {c}, {d}}.

We may think of p(n) as the number of partitions of a set containing n indistinguishable elements
(i.e. a multiset).

#6 Let σ be an m-cycle in Sn. Show that the size of the conjugacy class of σ in Sn is

(m− 1)!
(
n

m

)
.

#7 [Q35, §4.3.] Let p be a prime. Find a formula for the number of conjugacy classes of elements
of order p in Sn using the greatest integer function.

#8 Show that Sp has (p− 2)! Sylow p-subgroups for p prime. Use this to prove

Wilson’s Theorem: (p− 1)! ≡ −1 mod p (p prime).

#9 Show that the number of partitions of n, if we care about the order of the summands, is
2n−1 (so for example n = 4 has 8 of these:

4, 3 + 1, 1 + 3, 2 + 2, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 1 + 1 + 1 + 1).

Deduce that p(n) 6 2n−1.

Hardy and Ramanujan found close approximations to p(n) in 1918. Their results imply the
asymptotic relation

p(n) ∼ 1
4
√

3
e

2π√
6

√
n (n→∞).

Rademacher, building on their work, found a remarkable exact formula for p(n) in 1937.
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3. More counting: Stirling numbers

For n, k ∈ Z>0 define the Stirling subset number1 {n
k

}
as follows{

n

k

}
= the number of ways to partition a set of size n into k non-empty subsets.

The total number of ways to partition a set of size n is given by the Bell number:
n∑
k=0

{
n

k

}
= Bell(n)

and, as we already saw, Bell(4) = 15. The Stirling subset numbers satisfy a relation similar to
Pascal’s rule for binomial coefficients:{

n

k − 1

}
+ k

{
n

k

}
=
{
n+ 1
k

}
, (n, k ∈ Z) (3.1){

n

0

}
=
{

0
n

}
= 0,

{
0
0

}
= 1, (n ∈ Z6=0). (3.2)

The Stirling cycle number2 [n
k

]
is defined as[

n

k

]
= the number of permutations in Sn that have k disjoint cycles.

Clearly
n∑
k=0

[
n

k

]
= n!

and similarly to (3.1), (3.2) we have[
n

k − 1

]
+ n

[
n

k

]
=
[
n+ 1
k

]
, (n, k ∈ Z) (3.3)[

n

0

]
=
[
0
n

]
= 0,

[
0
0

]
= 1, (n ∈ Z6=0). (3.4)

Using (3.1)-(3.4) forwards and backwards determines
{
n
k

}
,
[
n
k

]
uniquely for all n, k ∈ Z.

#10 Use the recursions (3.1)-(3.4) to show that both types of Stirling numbers are really two
sides of the same coin: [

n

k

]
=
{
−k
−n

}
, (n, k ∈ Z).

The Stirling numbers satisfy many relations. For example, with n ∈ Z>0, we have the polyno-
mial identities

n∑
k=0

{
n

k

}
x(x− 1) · · · (x− k + 1) = xn,

x(x+ 1) · · · (x+ n− 1) =
n∑
k=0

[
n

k

]
xk.

1We are using Knuth’s names and notation. In the literature they are often called Stirling numbers of the second
kind, even though they were discovered first.

2Or Stirling number of the first kind


