ALGEBRA I. PROBLEM SET 4.
 THE CYCLIC GROUP $\mathbb{Z} / N \mathbb{Z}$ AND THE SYMMETRIC GROUP S_{N}.

DUE TUE, OCT 9.

In this handout we look at some number theory and counting related to the cyclic and symmetric groups. Hand in 4 questions to be graded by Oct 9 with at most two questions from \#1, \#2, \#3, \#4.

1. Cyclic groups

Let Z_{n} be the cyclic group of order $n \in \mathbb{Z} \geqslant 1$, defined as

$$
Z_{n}:=\left\langle x \mid x^{n}=1\right\rangle .
$$

Review $\S 0.3$ in Dummit and Foote where $\mathbb{Z} / n \mathbb{Z}$ is defined, and $\S 1.3$ on cyclic groups. We have $\mathbb{Z} / n \mathbb{Z} \cong Z_{n}$. Define the Euler ϕ function as

$$
\phi(n):=|\{a \in \mathbb{Z} \mid 1 \leqslant a \leqslant n,(a, n)=1\}|,
$$

the number of positive integers up to n that are prime to n. In Z_{n}, the number of elements of order d, for $d \mid n$, is $\phi(d)$. (This may be shown by first proving that $Z_{n}=\langle x\rangle$ implies $\left|x^{a}\right|=n /(a, n)$.) Summing over all possibilities gives

$$
\sum_{d \mid n} \phi(d)=n .
$$

The following subset of $\mathbb{Z} / n \mathbb{Z}$ forms a group under multiplication:

$$
(\mathbb{Z} / n \mathbb{Z})^{\times}=\{\bar{a} \in \mathbb{Z} / n \mathbb{Z} \mid(a, n)=1\} .
$$

Clearly $\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|=\phi(n)$.
\#1 [Q16, §3.2.] Use Lagrange's Theorem in $(\mathbb{Z} / p \mathbb{Z})^{\times}$to prove

$$
\text { Fermat's Little Theorem: } \quad a^{p} \equiv a \bmod p \quad(a \in \mathbb{Z}, p \text { prime }) .
$$

\#2 [Q17, §3.2.] For p prime and $n \in \mathbb{Z} \geqslant 1$, find the order of \bar{p} in $\left(\mathbb{Z} /\left(p^{n}-1\right) \mathbb{Z}\right)^{\times}$. Deduce that

$$
n \mid \phi\left(p^{n}-1\right) .
$$

\#3 [Q22, §3.2.] Use Lagrange's Theorem in $(\mathbb{Z} / n \mathbb{Z})^{\times}$to prove

$$
\text { Euler's Theorem: } \quad a^{\phi(n)} \equiv 1 \bmod n \quad(a \in \mathbb{Z},(a, n)=1) .
$$

\#4 [Q23, §3.2.] Find the last two digits of $3^{3^{100}}$.
\#5 Show that $\mathbb{Z} / n \mathbb{Z}$ forms a field under the operations of addition and multiplication $\bmod n$ if and only if n is prime.

For p prime the finite field $\mathbb{Z} / p \mathbb{Z}$ is usually denoted \mathbb{F}_{p}. For any field F, the non-zero elements must form a group under multiplication. This group is denoted F^{\times}. We will see later that F^{\times}is always cyclic. Hence

$$
(\mathbb{Z} / p \mathbb{Z})^{\times} \cong \mathbb{Z} /(p-1) \mathbb{Z} \quad(p \text { prime })
$$

It is shown in $\S 4.4$ that there is an isomorphism

$$
\begin{aligned}
\psi:(\mathbb{Z} / n \mathbb{Z})^{\times} & \rightarrow \operatorname{Aut}\left(Z_{n}\right) \\
\psi(\bar{a}) & =\left(x \mapsto x^{a}\right) .
\end{aligned}
$$

2. Symmetric groups

Review $\S 1.3$ on the symmetric group S_{n} and $\S 4.3$ which includes a part on conjugacy in S_{n}. As seen there, if $\sigma, \tau \in S_{n}$ with $\sigma=\left(a_{1} a_{2} \ldots a_{m}\right)$ then

$$
\tau \sigma \tau^{-1}=\left(\tau\left(a_{1}\right) \tau\left(a_{2}\right) \ldots \tau\left(a_{m}\right)\right)
$$

and similarly if σ is a disjoint product of cycles. It follows that two permutations in S_{n} are conjugate if and only if they have the same number of cycles of each length in their disjoint cycle decomposition.

A non-increasing sequence of positive integers that sum to n is called a partition of n. The number of partitions of n is given by the partition function $p(n)$. For example $p(4)=5$ since 4 has the five partitions

$$
4,3+1,2+2,2+1+1,1+1+1+1
$$

It follows from the above reasoning that

$$
p(n)=\text { the number of conjugacy classes in } S_{n} .
$$

In $\S 5.2$ we saw that partitions also arise in connection with the invariant factors of Sylow p subgroups of abelian groups:

$$
p(n)=\text { the number of isomorphism classes of an abelian group of order } p^{n} .
$$

Note that the number of partitions of a set of size n (i.e. ways to write the set as a disjoint union of non-empty subsets) is larger than $p(n)$. For example there are 15 possible partitions of $\{a, b, c, d\}$:

$$
\begin{aligned}
& \{\{a, b, c, d\}\},\{\{a, b, c\}\{d\}\},\{\{a, b, d\}\{c\}\},\{\{a, c, d\}\{b\}\},\{\{b, c, d\}\{a\}\}, \\
& \cdots,\{\{a, b\},\{c, d\}\},\{\{a, c\},\{b, d\}\},\{\{a, d\},\{b, c\}\},\{\{a\},\{b\},\{c\},\{d\}\} .
\end{aligned}
$$

We may think of $p(n)$ as the number of partitions of a set containing n indistinguishable elements (i.e. a multiset).
\#6 Let σ be an m-cycle in S_{n}. Show that the size of the conjugacy class of σ in S_{n} is

$$
(m-1)!\binom{n}{m}
$$

\#7 [Q35, §4.3.] Let p be a prime. Find a formula for the number of conjugacy classes of elements of order p in S_{n} using the greatest integer function.
\#8 Show that S_{p} has $(p-2)$! Sylow p-subgroups for p prime. Use this to prove

$$
\text { Wilson's Theorem: } \quad(p-1)!\equiv-1 \bmod p \quad(p \text { prime }) .
$$

\#9 Show that the number of partitions of n, if we care about the order of the summands, is 2^{n-1} (so for example $n=4$ has 8 of these:

$$
4,3+1,1+3,2+2,2+1+1,1+2+1,1+1+2,1+1+1+1)
$$

Deduce that $p(n) \leqslant 2^{n-1}$.
Hardy and Ramanujan found close approximations to $p(n)$ in 1918. Their results imply the asymptotic relation

$$
p(n) \sim \frac{1}{4 \sqrt{3}} e^{\frac{2 \pi}{\sqrt{6}} \sqrt{n}} \quad(n \rightarrow \infty)
$$

Rademacher, building on their work, found a remarkable exact formula for $p(n)$ in 1937.

3. More counting: Stirling numbers

For $n, k \in \mathbb{Z}_{\geqslant 0}$ define the Stirling subset number ${ }^{1}\left\{\begin{array}{l}n \\ k\end{array}\right\}$ as follows

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\text { the number of ways to partition a set of size } n \text { into } k \text { non-empty subsets. }
$$

The total number of ways to partition a set of size n is given by the Bell number:

$$
\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\operatorname{Bell}(n)
$$

and, as we already saw, $\operatorname{Bell}(4)=15$. The Stirling subset numbers satisfy a relation similar to Pascal's rule for binomial coefficients:

$$
\begin{align*}
& \left\{\begin{array}{c}
n \\
k-1
\end{array}\right\}+k\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\left\{\begin{array}{c}
n+1 \\
k
\end{array}\right\}, \quad(n, k \in \mathbb{Z}) \tag{3.1}\\
& \left\{\begin{array}{l}
n \\
0
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
n
\end{array}\right\}=0, \quad\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}=1, \quad\left(n \in \mathbb{Z}_{\neq 0}\right) . \tag{3.2}
\end{align*}
$$

The Stirling cycle number ${ }^{2}\left[\begin{array}{l}n \\ k\end{array}\right]$ is defined as

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\text { the number of permutations in } S_{n} \text { that have } k \text { disjoint cycles. }
$$

Clearly

$$
\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]=n!
$$

and similarly to (3.1), (3.2) we have

$$
\begin{align*}
& {\left[\begin{array}{c}
n \\
k-1
\end{array}\right]+n\left[\begin{array}{l}
n \\
k
\end{array}\right]=\left[\begin{array}{c}
n+1 \\
k
\end{array}\right], \quad(n, k \in \mathbb{Z})} \tag{3.3}\\
& {\left[\begin{array}{l}
n \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
n
\end{array}\right]=0, \quad\left[\begin{array}{l}
0 \\
0
\end{array}\right]=1, \quad\left(n \in \mathbb{Z}_{\neq 0}\right) .} \tag{3.4}
\end{align*}
$$

Using (3.1)-(3.4) forwards and backwards determines $\left\{\begin{array}{l}n \\ k\end{array}\right\},\left[\begin{array}{l}n \\ k\end{array}\right]$ uniquely for all $n, k \in \mathbb{Z}$.
\#10 Use the recursions (3.1)-(3.4) to show that both types of Stirling numbers are really two sides of the same coin:

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\left\{\begin{array}{l}
-k \\
-n
\end{array}\right\}, \quad(n, k \in \mathbb{Z}) .
$$

The Stirling numbers satisfy many relations. For example, with $n \in \mathbb{Z}_{\geqslant 0}$, we have the polynomial identities

$$
\begin{aligned}
\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} x(x-1) \cdots(x-k+1) & =x^{n}, \\
x(x+1) \cdots(x+n-1) & =\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} .
\end{aligned}
$$

[^0]
[^0]: ${ }^{1}$ We are using Knuth's names and notation. In the literature they are often called Stirling numbers of the second kind, even though they were discovered first.
 ${ }^{2}$ Or Stirling number of the first kind

