ALGEBRA I. PROBLEM SET 4. THE CYCLIC GROUP $\mathbb{Z}/N\mathbb{Z}$ AND THE SYMMETRIC GROUP S_N .

DUE TUE, OCT 9.

In this handout we look at some number theory and counting related to the cyclic and symmetric groups. Hand in 4 questions to be graded by Oct 9 with at most two questions from **#1**, **#2**, **#3**, **#4**.

1. Cyclic groups

Let Z_n be the cyclic group of order $n \in \mathbb{Z}_{\geq 1}$, defined as

$$Z_n := \langle x \mid x^n = 1 \rangle.$$

Review §0.3 in Dummit and Foote where $\mathbb{Z}/n\mathbb{Z}$ is defined, and §1.3 on cyclic groups. We have $\mathbb{Z}/n\mathbb{Z} \cong Z_n$. Define the Euler ϕ function as

$$\phi(n) := |\{a \in \mathbb{Z} \mid 1 \le a \le n, (a, n) = 1\}|,$$

the number of positive integers up to *n* that are prime to *n*. In Z_n , the number of elements of order *d*, for $d \mid n$, is $\phi(d)$. (This may be shown by first proving that $Z_n = \langle x \rangle$ implies $|x^a| = n/(a, n)$.) Summing over all possibilities gives

$$\sum_{d|n} \phi(d) = n$$

The following subset of $\mathbb{Z}/n\mathbb{Z}$ forms a group under multiplication:

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{ \overline{a} \in \mathbb{Z}/n\mathbb{Z} \mid (a,n) = 1 \}.$$

Clearly $|(\mathbb{Z}/n\mathbb{Z})^{\times}| = \phi(n).$

#1 [Q16, §3.2.] Use Lagrange's Theorem in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ to prove

Fermat's Little Theorem: $a^p \equiv a \mod p$ $(a \in \mathbb{Z}, p \text{ prime}).$

#2 [Q17, §3.2.] For *p* prime and $n \in \mathbb{Z}_{\geq 1}$, find the order of \overline{p} in $(\mathbb{Z}/(p^n - 1)\mathbb{Z})^{\times}$. Deduce that $n \mid \phi(p^n - 1)$.

#3 [Q22, §3.2.] Use Lagrange's Theorem in $(\mathbb{Z}/n\mathbb{Z})^{\times}$ to prove

Euler's Theorem:
$$a^{\phi(n)} \equiv 1 \mod n$$
 $(a \in \mathbb{Z}, (a, n) = 1).$

- #4 [Q23, §3.2.] Find the last two digits of $3^{3^{100}}$.
- **#5** Show that $\mathbb{Z}/n\mathbb{Z}$ forms a field under the operations of addition and multiplication mod *n* if and only if *n* is prime.

For *p* prime the finite field $\mathbb{Z}/p\mathbb{Z}$ is usually denoted \mathbb{F}_p . For any field *F*, the non-zero elements must form a group under multiplication. This group is denoted F^{\times} . We will see later that F^{\times} is always cyclic. Hence

$$(\mathbb{Z}/p\mathbb{Z})^{\times} \cong \mathbb{Z}/(p-1)\mathbb{Z}$$
 (p prime).

Date: Oct 2, 2012.

$$\psi : (\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Aut}(Z_n)$$

 $\psi(\overline{a}) = (x \mapsto x^a).$

2. Symmetric groups

Review §1.3 on the symmetric group S_n and §4.3 which includes a part on conjugacy in S_n . As seen there, if $\sigma, \tau \in S_n$ with $\sigma = (a_1 a_2 \dots a_m)$ then

$$\tau \sigma \tau^{-1} = (\tau(a_1) \tau(a_2) \dots \tau(a_m))$$

and similarly if σ is a disjoint product of cycles. It follows that two permutations in S_n are conjugate if and only if they have the same number of cycles of each length in their disjoint cycle decomposition.

A non-increasing sequence of positive integers that sum to *n* is called a *partition* of *n*. The number of partitions of *n* is given by the partition function p(n). For example p(4) = 5 since 4 has the five partitions

4, 3+1, 2+2, 2+1+1, 1+1+1+1.

It follows from the above reasoning that

p(n) = the number of conjugacy classes in S_n .

In $\S5.2$ we saw that partitions also arise in connection with the invariant factors of Sylow *p*-subgroups of abelian groups:

p(n) = the number of isomorphism classes of an abelian group of order p^n .

Note that the number of partitions of a set of size n (i.e. ways to write the set as a disjoint union of non-empty subsets) is larger than p(n). For example there are 15 possible partitions of $\{a, b, c, d\}$:

$$\{\{a, b, c, d\}\}, \{\{a, b, c\}\{d\}\}, \{\{a, b, d\}\{c\}\}, \{\{a, c, d\}\{b\}\}, \{\{b, c, d\}\{a\}\}, \\ \cdots, \{\{a, b\}, \{c, d\}\}, \{\{a, c\}, \{b, d\}\}, \{\{a, d\}, \{b, c\}\}, \{\{a\}, \{b\}, \{c\}, \{d\}\}.$$

We may think of p(n) as the number of partitions of a set containing n indistinguishable elements (i.e. a multiset).

#6 Let σ be an *m*-cycle in S_n . Show that the size of the conjugacy class of σ in S_n is

$$(m-1)!\binom{n}{m}.$$

- **#7** [Q35, §4.3.] Let p be a prime. Find a formula for the number of conjugacy classes of elements of order p in S_n using the greatest integer function.
- **#8** Show that S_p has (p-2)! Sylow *p*-subgroups for *p* prime. Use this to prove Wilson's Theorem: $(p-1)! \equiv -1 \mod p$ (*p* prime).
- **#9** Show that the number of partitions of *n*, if we care about the order of the summands, is 2^{n-1} (so for example n = 4 has 8 of these:

 $4,\ 3+1,\ 1+3,\ 2+2,\ 2+1+1,\ 1+2+1,\ 1+1+2,\ 1+1+1+1).$ Deduce that $p(n)\leqslant 2^{n-1}.$

Hardy and Ramanujan found close approximations to p(n) in 1918. Their results imply the asymptotic relation

$$p(n) \sim \frac{1}{4\sqrt{3}} e^{\frac{2\pi}{\sqrt{6}}\sqrt{n}} \qquad (n \to \infty).$$

Rademacher, building on their work, found a remarkable exact formula for p(n) in 1937.

3. More counting: Stirling numbers

For $n, k \in \mathbb{Z}_{\geq 0}$ define the *Stirling subset number*¹ $\binom{n}{k}$ as follows

 $\binom{n}{k}$ = the number of ways to partition a set of size *n* into *k* non-empty subsets.

The total number of ways to partition a set of size n is given by the Bell number:

$$\sum_{k=0}^{n} \left\{ \begin{matrix} n \\ k \end{matrix} \right\} = \operatorname{Bell}(n)$$

and, as we already saw, Bell(4) = 15. The Stirling subset numbers satisfy a relation similar to Pascal's rule for binomial coefficients:

$$\binom{n}{k-1} + k \binom{n}{k} = \binom{n+1}{k}, \qquad (n,k\in\mathbb{Z})$$

$$(3.1)$$

$$\binom{n}{0} = \binom{0}{n} = 0, \qquad \binom{0}{0} = 1, \qquad (n \in \mathbb{Z}_{\neq 0}).$$

$$(3.2)$$

The *Stirling cycle number*² $\begin{bmatrix} n \\ k \end{bmatrix}$ is defined as

 $\begin{bmatrix} n \\ k \end{bmatrix}$ = the number of permutations in S_n that have k disjoint cycles.

Clearly

$$\sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!$$

and similarly to (3.1), (3.2) we have

$$\begin{bmatrix} n \\ k-1 \end{bmatrix} + n \begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n+1 \\ k \end{bmatrix}, \qquad (n,k\in\mathbb{Z})$$
(3.3)

$$\begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ n \end{bmatrix} = 0, \qquad \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1, \qquad (n \in \mathbb{Z}_{\neq 0}). \tag{3.4}$$

Using (3.1)-(3.4) forwards and backwards determines ${n \atop k}$, ${n \atop k}$ uniquely for all $n, k \in \mathbb{Z}$.

#10 Use the recursions (3.1)-(3.4) to show that both types of Stirling numbers are really two sides of the same coin: $\begin{bmatrix} n \end{bmatrix} = \begin{pmatrix} -k \end{bmatrix}$

$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{cases} -k \\ -n \end{cases}, \qquad (n, k \in \mathbb{Z}).$$

The Stirling numbers satisfy many relations. For example, with $n \in \mathbb{Z}_{\geq 0}$, we have the polynomial identities

$$\sum_{k=0}^{n} {n \\ k} x(x-1) \cdots (x-k+1) = x^{n},$$
$$x(x+1) \cdots (x+n-1) = \sum_{k=0}^{n} {n \\ k} x^{k}$$

¹We are using Knuth's names and notation. In the literature they are often called Stirling numbers of the second kind, even though they were discovered first.

²Or Stirling number of the first kind