ALGEBRA I. PROBLEM SET 2.

DUE THUR, SEPT 20.

Hand in the solutions of any 4 of these problems to be graded. Make sure you can do all 10. Check through all the other exercises in Chapter 3 as well.

- **#1** [Q11, §1.4.] This question defines and develops properties of the *Heisenberg group* over a field *F*.
- **#2** [Q1, §3.1.] Let $\varphi : G \to H$ be a group homomorphism and let $E \leq H$. Prove that

 $\varphi^{-1}(E) \leqslant G.$

If $E \trianglelefteq H$ prove that $\varphi^{-1}(E) \trianglelefteq G$. Deduce that ker $\varphi \trianglelefteq G$.

- **#3** [Q34, §3.1.] Let $D_{2n} = \langle r, s | r^n = s^2 = 1, rs = sr^{-1} \rangle$ be the dihedral group and suppose $k \mid n$.
 - (a) Prove that $\langle r^k \rangle \trianglelefteq D_{2n}$.
 - (b) Prove that $D_{2n}/\langle r^k \rangle \cong D_{2k}$.
- #4 [Q35, §3.1.] Let *F* be a field and define $GL_n(F)$, $SL_n(F)$ as the groups of $n \times n$ matrices with entries in *F* under matrix multiplication with determinants nonzero and 1 respectively. Show that $SL_n(F) \leq GL_n(F)$ and find $GL_n(F)/SL_n(F)$.
- **#5** [Q4, §3.2.] Let *G* be a group. Show that if |G| = pq for possibly equal primes *p*, *q* then Z(G) = 1 or *G*.
- **#6** [Q9, §3.2.] Let *G* be a finite group with *p* any prime dividing |G|. *Cauchy's Theorem* says that *G* must have an element of order *p*. Work out the steps (a) (f) of the given proof.
- **#7** [Q2, §3.3.] Prove the *Lattice Isomorphism Theorem*.
- **#8** [Q2, §3.4.] Exhibit all 3 composition series for Q_8 and all 7 composition series for D_8 . List the composition factors in each case.
- **#9** [Q4, §3.5.] Show that $S_n = \langle (1 \ 2), (1 \ 2 \ 3 \ \dots \ n) \rangle$ for all $n \ge 2$.
- **#10** [Q7, §3.5.] Prove that the group of rigid motions (rotations in \mathbb{R}^3) of a tetrahedron is isomorphic to A_4 .

Date: Sept 11, 2012.