ALGEBRA I. PROBLEM SET 2.

DUE THUR, SEPT 20.

Hand in the solutions of any 4 of these problems to be graded. Make sure you can do all 10. Check through all the other exercises in Chapter 3 as well.
\#1 [Q11, §1.4.] This question defines and develops properties of the Heisenberg group over a field F.
\#2 [Q1, §3.1.] Let $\varphi: G \rightarrow H$ be a group homomorphism and let $E \leqslant H$. Prove that

$$
\varphi^{-1}(E) \leqslant G .
$$

If $E \unlhd H$ prove that $\varphi^{-1}(E) \unlhd G$. Deduce that $\operatorname{ker} \varphi \unlhd G$.
\#3 [Q34, §3.1.] Let $D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\rangle$ be the dihedral group and suppose $k \mid n$.
(a) Prove that $\left\langle r^{k}\right\rangle \unlhd D_{2 n}$.
(b) Prove that $D_{2 n} /\left\langle r^{k}\right\rangle \cong D_{2 k}$.
\#4 [Q35, §3.1.] Let F be a field and define $G L_{n}(F), S L_{n}(F)$ as the groups of $n \times n$ matrices with entries in F under matrix multiplication with determinants nonzero and 1 respectively. Show that $S L_{n}(F) \unlhd G L_{n}(F)$ and find $G L_{n}(F) / S L_{n}(F)$.
\#5 [Q4, §3.2.] Let G be a group. Show that if $|G|=p q$ for possibly equal primes p, q then $Z(G)=1$ or G.
\#6 [Q9, §3.2.] Let G be a finite group with p any prime dividing $|G|$. Cauchy's Theorem says that G must have an element of order p. Work out the steps (a) - (f) of the given proof.
\#7 [Q2, §3.3.] Prove the Lattice Isomorphism Theorem.
\#8 [Q2, §3.4.] Exhibit all 3 composition series for Q_{8} and all 7 composition series for D_{8}. List the composition factors in each case.
\#9 [Q4, §3.5.] Show that $S_{n}=\langle(12),(123 \ldots n)\rangle$ for all $n \geqslant 2$.
\#10 [Q7, §3.5.] Prove that the group of rigid motions (rotations in \mathbb{R}^{3}) of a tetrahedron is isomorphic to A_{4}.

