ALGEBRA I. PROBLEM SET 1.

DUE TUE, SEPT 11.

Hand in the solutions of any 4 of these problems to be graded. Make sure you can do all 10. Check through all the other exercises in Chapters 1 and 2 of Dummit and Foote and make sure you know how to do these as well.

- **#1** [Q31, §1.1.] Prove that any finite group *G* of even order contains an element of order 2.
- **#2** [Q14, §1.3.] Let p be a prime. Show that an element has order p in S_n iff its cycle decomposition is a product of commuting p-cycles. Show by an explicit example that this need not be the case if p is not prime.
- **#3** [Q7, §1.6.] Prove that D_8 and Q_8 are not isomorphic.
- #4 [Q21, §1.7.] Show that the rigid motions of the cube are isomorphic to S_4 .
- **#5** [Q6, §2.1.] Let *G* be an abelian group. Prove that $\{g \in G : |g| < \infty\}$ is a subgroup of *G* (called the *torsion supgroup* of *G*). Give an explicit example where this set is not a subgroup when *G* is nonabelian.
- **#6** [Q10, §2.2.] Let *H* be a subgroup of order 2 in *G*. Show that $N_G(H) = C_G(H)$. Deduce that if $N_G(H) = G$ then $H \leq Z(G)$.
- **#7** Use the Division Algorithm to prove that every subgroup of a cyclic group is cyclic.
- **#8** [Q14, §2.4.] A group *H* is *finitely generated* if there is a finite set *A* such that $H = \langle A \rangle$.
 - (a) Prove that every finite group is finitely generated.
 - (b) Prove that \mathbb{Z} is finitely generated.
 - (c) Prove that every finitely generated subgroup of \mathbb{Q} is cyclic.
 - (d) Prove that \mathbb{Q} is not finitely generated.
- **#9** [Q11, §2.5.] For the group QD_{16} , fill in the missing subgroups of its lattice on p. 72.
- **#10** Let $\phi_a(x) = a^x$.
 - (a) Prove that ϕ_a is an isomorphism from $(\mathbb{R}, +)$ to $(\mathbb{R}_{>0}, \times)$ for $a > 0, a \neq 1$.
 - (b) Compute the automorphism of $(\mathbb{R}, +)$ given by

 $\phi_a^{-1} \circ \phi_b$ for $a, b > 0, a, b \neq 1$.

(c) Compute the automorphism of $(\mathbb{R}_{>0}, \times)$ given by

 $\phi_a \circ \phi_b^{-1}$ for $a, b > 0, a, b \neq 1$.

(d) Find $Aut(\mathbb{Q})$.

Date: Sept 4, 2012.