ALGEBRA I. TAKE-HOME FINAL.

Instructions: Do any 8 of these 13 questions and no more. Return your solutions to me in my office between 2 - 3 pm on Thursday, Dec 20 or email them to me by that time. Late exams will not be accepted. You may not work with others. Use your class notes, the class texts (Dummit & Foote, Lang) and no other sources. Each question is worth 10 points. Detailed proofs must be given - points will be lost if arguments are not fully justified. State any major results you use. Please email me if you have any questions about the exam.

- **#1** Let Q_8 be the quaternion group of order 8.
 - (a) Show explicitly that Q_8 is isomorphic to a subgroup of S_8 .
 - (b) Draw the lattice of subgroups for Q_8 .
 - (c) Prove that Q_8 is not isomorphic to a subgroup of S_7 . [If Q_8 acts on a set A of order ≤ 7 show that the stabilizer of any $a \in A$ must contain the subgroup $\langle -1 \rangle$.]
- **#2** (a) Prove that a group of order 160 is not simple.
 - (b) Prove that a group of order pqr is not simple for primes p < q < r.

$$-7^{100}$$

- **#3** (a) Use Euler's Theorem to find the last 2 digits of 7^7
 - (b) Find the number of non-isomorphic abelian groups of order 337500.
- #4 Let *X* be a nonempty set with $\mathcal{P}(X)$ its power set. For $A, B \in \mathcal{P}(X)$, define A + B as the symmetric difference of *A* and *B* and define $A \cdot B$ as their intersection.
 - (a) Prove that these operations make $\mathcal{P}(X)$ into a commutative, Boolean ring with identity. (A ring is Boolean if $r^2 = r$ for all its elements r.)
 - (b) Give an example of a nontrivial ideal *I* in $\mathcal{P}(X)$ and describe the quotient $\mathcal{P}(X)/I$.
- **#5** Let ω be the cube root of unity $e^{2\pi i/3}$. Then

$$\mathbb{Z}[\omega] = \{a + b\omega \mid a, b \in \mathbb{Z}\}$$

is called the ring of Eisenstein Integers.

- (a) Prove that $\mathbb{Z}[\omega]$ is a Euclidean Domain with norm $N(a+b\omega) = a^2 ab + b^2 (= |a+b\omega|^2)$.
- (b) Determine, with proof, all the units in $\mathbb{Z}[\omega]$.
- **#6** Let *R* be a subring of the commutative ring *S* with $1 \in R$. Recall that an *S*-algebra *A* is a ring, with identity, that is an *S*-module and satisfies

$$s(ab) = (sa)b = a(sb)$$
 for all $s \in S, a, b \in A$.

And recall that an *S*-algebra homomorphism $\phi : A \to B$ is a ring homomorphism (mapping identity to identity) such that $\phi(sa) = s\phi(a)$ for all $s \in S$ and $a \in A$.

- (a) Prove that $S \otimes_R R[x] \cong S[x]$ as *S*-modules.
- (b) Prove that $S \otimes_R R[x] \cong S[x]$ as S-algebras.

#7 Let M and N be finitely generated R-modules for R a commutative ring.

- (a) Prove that $M \oplus N$ is a projective *R*-module if and only if *M* and *N* are projective.
- (b) Prove that if *M* and *N* are projective then $M \otimes_R N$ is a projective *R*-module.

Date: Dec 13, 2012.

- **#8** Prove all parts of the *Lattice Isomorphism Theorem* for groups. Then show how it extends to rings and modules.
- **#9** Let *A* be an abelian group, considered as a \mathbb{Z} -module.
 - (a) If A is finitely generated, prove that for some $m \in \mathbb{Z}_{\geq 0}$ there is an isomorphism of \mathbb{Q} -modules

$$\mathbb{Q} \otimes_{\mathbb{Z}} A \cong \mathbb{Q}^m.$$

(b) If *A* is finite and *p* prime, prove that

$$\mathbb{Z}/p^k\mathbb{Z}\otimes_{\mathbb{Z}} A$$

is isomorphic to the Sylow *p*-subgroup of *A* for all *k* large enough.

#10 By using irreducible polynomials over a finite field \mathbb{F}_p for p prime, construct finite fields of the following sizes:

(a) 49.

(b) 8.

(c) Provide generators for the multiplicative parts of each of the fields you constructed in parts (a) and (b).

#11 Let

$$0 \longrightarrow L \xrightarrow{\psi} M \xrightarrow{\phi} N \longrightarrow 0 \tag{1}$$

be a short exact sequence of *R*-modules.

(a) Let *D* be an *R*-module. Prove that the sequence

$$0 \longrightarrow \operatorname{Hom}_{R}(N, D) \xrightarrow{\phi'} \operatorname{Hom}_{R}(M, D) \xrightarrow{\psi'} \operatorname{Hom}_{R}(L, D) \longrightarrow 0,$$
(2)

associated to (1), is exact except possibly at $\text{Hom}_R(L, D)$.

- (b) Give an example with (1) exact and (2) not exact at $\text{Hom}_R(L, D)$.
- (c) Give an example with (1) exact and

$$0 \longrightarrow D \otimes_R L \xrightarrow{1 \otimes \psi} D \otimes_R M \xrightarrow{1 \otimes \phi} D \otimes_R N \longrightarrow 0$$

not exact at $D \otimes_R L$ for D a right R-module.

- **#12** Hilbert's Basis Theorem implies that all ideals in $\mathbb{Z}[x]$ are finitely generated. In this question we exhibit ideals in $\mathbb{Z}[x]$ requiring arbitrarily large numbers of generators. Fix a prime p. Let I be the ideal (p, x) and consider I^k for $k \in \mathbb{Z}_{\geq 1}$.
 - (a) Prove that

$$I^{k} = (p^{k}, p^{k-1}x, \dots, px^{k-1}, x^{k})$$

In other words, show I^k is generated by the subset $A_k = \{p^{k-i}x^i\}_{0 \le i \le k}$ of $\mathbb{Z}[x]$.

- (b) Show that I^k/I^{k+1} is an \mathbb{F}_p -module for \mathbb{F}_p the finite field $\mathbb{Z}/p\mathbb{Z}$. So we may think of I^k/I^{k+1} as a vector space over \mathbb{F}_p .
- (c) Let $\pi: I^k \to I^k/I^{k+1}$ be the projection map. Prove that $\pi(A_k)$ is a basis for I^k/I^{k+1} .
- (d) If B_k is any generating set for I^k , show that $\pi(B_k)$ must span I^k/I^{k+1} .
- (e) Deduce that I^k cannot be generated by fewer than k + 1 generators.

#13 Let *V* be a vector space over *F*, not necessarily finitely generated.

- (a) Prove that *V* has a basis. [Use Zorn's Lemma.]
- (b) Prove that any linearly independent set in *V* may be extended to a basis.