ALGEBRA I. TAKE-HOME FINAL.

Instructions: Do any 8 of these 13 questions and no more. Return your solutions to me in my office between 2-3 pm on Thursday, Dec 20 or email them to me by that time. Late exams will not be accepted. You may not work with others. Use your class notes, the class texts (Dummit \& Foote, Lang) and no other sources. Each question is worth 10 points. Detailed proofs must be given - points will be lost if arguments are not fully justified. State any major results you use. Please email me if you have any questions about the exam.
\#1 Let Q_{8} be the quaternion group of order 8 .
(a) Show explicitly that Q_{8} is isomorphic to a subgroup of S_{8}.
(b) Draw the lattice of subgroups for Q_{8}.
(c) Prove that Q_{8} is not isomorphic to a subgroup of S_{7}. [If Q_{8} acts on a set A of order $\leqslant 7$ show that the stabilizer of any $a \in A$ must contain the subgroup $\langle-1\rangle$.]
\#2 (a) Prove that a group of order 160 is not simple.
(b) Prove that a group of order $p q r$ is not simple for primes $p<q<r$.
\#3 (a) Use Euler's Theorem to find the last 2 digits of $7^{7} 7^{100}$.
(b) Find the number of non-isomorphic abelian groups of order 337500.
\#4 Let X be a nonempty set with $\mathcal{P}(X)$ its power set. For $A, B \in \mathcal{P}(X)$, define $A+B$ as the symmetric difference of A and B and define $A \cdot B$ as their intersection.
(a) Prove that these operations make $\mathcal{P}(X)$ into a commutative, Boolean ring with identity. (A ring is Boolean if $r^{2}=r$ for all its elements r.)
(b) Give an example of a nontrivial ideal I in $\mathcal{P}(X)$ and describe the quotient $\mathcal{P}(X) / I$.
\#5 Let ω be the cube root of unity $e^{2 \pi i / 3}$. Then

$$
\mathbb{Z}[\omega]=\{a+b \omega \mid a, b \in \mathbb{Z}\}
$$

is called the ring of Eisenstein Integers.
(a) Prove that $\mathbb{Z}[\omega]$ is a Euclidean Domain with norm $N(a+b \omega)=a^{2}-a b+b^{2}\left(=|a+b \omega|^{2}\right)$.
(b) Determine, with proof, all the units in $\mathbb{Z}[\omega]$.
\#6 Let R be a subring of the commutative ring S with $1 \in R$. Recall that an S-algebra A is a ring, with identity, that is an S-module and satisfies

$$
s(a b)=(s a) b=a(s b) \quad \text { for all } \quad s \in S, a, b \in A
$$

And recall that an S-algebra homomorphism $\phi: A \rightarrow B$ is a ring homomorphism (mapping identity to identity) such that $\phi(s a)=s \phi(a)$ for all $s \in S$ and $a \in A$.
(a) Prove that $S \otimes_{R} R[x] \cong S[x]$ as S-modules.
(b) Prove that $S \otimes_{R} R[x] \cong S[x]$ as S-algebras.
\#7 Let M and N be finitely generated R-modules for R a commutative ring.
(a) Prove that $M \oplus N$ is a projective R-module if and only if M and N are projective.
(b) Prove that if M and N are projective then $M \otimes_{R} N$ is a projective R-module.
\#8 Prove all parts of the Lattice Isomorphism Theorem for groups. Then show how it extends to rings and modules.
\#9 Let A be an abelian group, considered as a \mathbb{Z}-module.
(a) If A is finitely generated, prove that for some $m \in \mathbb{Z}_{\geqslant 0}$ there is an isomorphism of \mathbb{Q}-modules

$$
\mathbb{Q} \otimes_{\mathbb{Z}} A \cong \mathbb{Q}^{m} .
$$

(b) If A is finite and p prime, prove that

$$
\mathbb{Z} / p^{k} \mathbb{Z} \otimes_{\mathbb{Z}} A
$$

is isomorphic to the Sylow p-subgroup of A for all k large enough.
\#10 By using irreducible polynomials over a finite field \mathbb{F}_{p} for p prime, construct finite fields of the following sizes:
(a) 49 .
(b) 8 .
(c) Provide generators for the multiplicative parts of each of the fields you constructed in parts (a) and (b).
\#11 Let

$$
\begin{equation*}
0 \longrightarrow L \xrightarrow{\psi} M \xrightarrow{\phi} N \longrightarrow 0 \tag{1}
\end{equation*}
$$

be a short exact sequence of R-modules.
(a) Let D be an R-module. Prove that the sequence

$$
\begin{equation*}
0 \longrightarrow \operatorname{Hom}_{R}(N, D) \xrightarrow{\phi^{\prime}} \operatorname{Hom}_{R}(M, D) \xrightarrow{\psi^{\prime}} \operatorname{Hom}_{R}(L, D) \longrightarrow 0, \tag{2}
\end{equation*}
$$

associated to (1), is exact except possibly at $\operatorname{Hom}_{R}(L, D)$.
(b) Give an example with (1) exact and (2) not exact at $\operatorname{Hom}_{R}(L, D)$.
(c) Give an example with (1) exact and

$$
0 \longrightarrow D \otimes_{R} L \xrightarrow{1 \otimes \psi} D \otimes_{R} M \xrightarrow{1 \otimes \phi} D \otimes_{R} N \longrightarrow 0
$$

not exact at $D \otimes_{R} L$ for D a right R-module.
\#12 Hilbert's Basis Theorem implies that all ideals in $\mathbb{Z}[x]$ are finitely generated. In this question we exhibit ideals in $\mathbb{Z}[x]$ requiring arbitrarily large numbers of generators. Fix a prime p. Let I be the ideal (p, x) and consider I^{k} for $k \in \mathbb{Z}_{\geqslant 1}$.
(a) Prove that

$$
I^{k}=\left(p^{k}, p^{k-1} x, \ldots, p x^{k-1}, x^{k}\right)
$$

In other words, show I^{k} is generated by the subset $A_{k}=\left\{p^{k-i} x^{i}\right\}_{0 \leqslant i \leqslant k}$ of $\mathbb{Z}[x]$.
(b) Show that I^{k} / I^{k+1} is an \mathbb{F}_{p}-module for \mathbb{F}_{p} the finite field $\mathbb{Z} / p \mathbb{Z}$. So we may think of I^{k} / I^{k+1} as a vector space over \mathbb{F}_{p}.
(c) Let $\pi: I^{k} \rightarrow I^{k} / I^{k+1}$ be the projection map. Prove that $\pi\left(A_{k}\right)$ is a basis for I^{k} / I^{k+1}.
(d) If B_{k} is any generating set for I^{k}, show that $\pi\left(B_{k}\right)$ must span I^{k} / I^{k+1}.
(e) Deduce that I^{k} cannot be generated by fewer than $k+1$ generators.
\#13 Let V be a vector space over F, not necessarily finitely generated.
(a) Prove that V has a basis. [Use Zorn's Lemma.]
(b) Prove that any linearly independent set in V may be extended to a basis.

