
FINITE MULTIPLICATIVE SUBGROUPS OF FIELDS

Let F be a field. Then all nonzero elements of F are invertible:

F× = F − {0}.
An important part of the description of fields is that finite multiplicative subgroups of F× are
cyclic. In this note we give a detailed proof, see Serre [1, p. 4], of a slightly more general result and
provide examples. We first prove a couple of straightforward lemmas.

Let Zn be the cyclic group of order n ∈ Z>1, defined as

Zn := 〈x | xn = 1〉.
Recall the Euler φ function: φ(n) counts the number of positive integers up to n that are prime to
n.

Lemma 1.1. The number of elements of Zn with order m > 1 is φ(m) if m|n and 0 otherwise.

Proof. For x a generator of Zn, we claim that the order of xa in Zn is n/(a, n) for all a ∈ Z>0. The
claim is true for a = 0. Fix a > 0 and denote the order of xa by k. Check that

(xa)n/(a,n) = 1

since n | an/(a, n) so that
k | n/(a, n). (1.1)

We must also have n|ak if the order of xa is k. Hence

n/(a, n) | a/(a, n) · k.
But n/(a, n) and a/(a, n) are relatively prime implies

n/(a, n) | k. (1.2)

Then (1.1) and (1.2) prove the claim that k = n/(a, n).
Now we just need to count the solutions tom = n/(a, n) for 0 6 a 6 n−1. Since n/(a, n) divides

n there are no solutions for m not dividing n. For m dividing n we require

(a, n) = n/m.

Hence a must be of the form n/m · b with (b,m) = 1 and 1 6 b < m. There are φ(m) such bs. �

Lemma 1.2. We have ∑
d|n

φ(d) = n. (1.3)

Proof. This follows from Lemma 1.1: since each element in Zn has order d dividing n, both sides of
(1.3) count the number of elements in Zn.

�

Theorem 1.3. Let G be a finite group of order n. For every divisor d of n suppose that the number of g ∈ G
satisfying gd = 1 is at most d. Then G is cyclic.

Proof. Denote by ψ(m) the number of elements inG of orderm. Since every element ofG has order
dividing n, we see ∑

d|n

ψ(d) = n. (1.4)

Let d be a divisor of n and suppose ψ(d) 6= 0, with x ∈ G of order d. Then

〈x〉 = {1, x, x2, . . . , xd−1}.

Date: Dec 1, 2012.
1



2 FINITE MULTIPLICATIVE SUBGROUPS OF FIELDS

For y ∈ 〈x〉 we have yd = (xi)d = (xd)i = 1, so by our hypothesis 〈x〉 contains all the solutions
g ∈ G to gd = 1. In particular 〈x〉 contains all the elements in G of order d. By Lemma 1.1, 〈x〉
contains exactly φ(d) such elements. Hence we have proved that ψ(d) is 0 or φ(d). Therefore, with
(1.3) and (1.4),

n =
∑
d|n

ψ(d) 6
∑
d|n

φ(d) = n (1.5)

and we must have equality in (1.5) with ψ(d) = φ(d) for all d|n. In particular, ψ(n) = φ(n) > 1 so
that there is an element of G of order n, proving that G is cyclic. �

Corollary 1.4. For F a field, every finite multiplicative subgroup of F× is cyclic.

Proof. As we showed in class, xd − 1 ∈ F [x] has at most d roots in F . Therefore Theorem 1.3
applies. �

Corollary 1.5. For F a field and G a finite multiplicative subgroup, the number of elements of G of order d
is φ(d) if d divides |G| and 0 otherwise.

Corollary 1.6. Let Fq be a finite field. Then F×q must be a cyclic group of order q − 1.

Example 1.7. Corollary 1.6 implies that (Z/pZ)× is cyclic. No formula is known for any of the
φ(p − 1) generators of (Z/pZ)×. The smallest generators, for p running over the first 100 primes,
are:

1, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 6, 3, 3, 2, 3,
2, 2, 6, 5, 2, 5, 2, 2, 2, 19, 5, 2, 3, 2, 3, 2, 6, 3, 7, 7, 6, 3, 5, 2, 6, 5, 3, 3, 2, 5, 17, 10, 2,

3, 10, 2, 2, 3, 7, 6, 2, 2, 5, 2, 5, 3, 21, 2, 2, 7, 5, 15, 2, 3, 13, 2, 3, 2, 13, 3, 2, 7, 5, 2, 3, 2, 2.

Tables like these were studied by Gauss. Artin’s conjecture for primitive roots (1927) states that each
squarefree integer a 6= −1 is a generator for infinitely many primes p. Despite much progress, the
conjecture is still open

We also note that, even though Z/pnZ is not a field for n > 1, we do have that (Z/pnZ)× is cyclic
for p an odd prime. In the following two examples we confirm Corollary 1.4 for the fields C and
Qp.

Example 1.8. The elements of any finite subgroup of C× must be of finite order. Therefore they
must be roots of unity: complex numbers of the form

exp(2πih/k) for h/k ∈ Q ∩ [0, 1).

Hence any finite subgroup G of C× is isomorphic to a finite subgroup of Q/Z and necessarily
cyclic, generated by exp(2πih/k) ∈ G with minimal h/k > 0.

Example 1.9. Let Qp be the field of p-adic numbers for p an odd prime. The only roots of unity in
Qp are the Teichmüller representatives

ω(1), ω(2), . . . , ω(p− 1).

These are distinct solutions of xp−1 = 1 with ω(i) ≡ i mod p . It may be shown that they form a
cyclic group of order p−1. Thus any finite subgroup of Q×p is a subgroup of this cyclic group. (The
roots of unity in Q2 are just ±1.)

See [1, Chapter 2] for properties of the p-adic numbers. Available as a pdf here:
www.math.purdue.edu/∼lipman/MA598/Serre-Course%20in%20Arithmetic.pdf
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