FINITE MULTIPLICATIVE SUBGROUPS OF FIELDS

Let *F* be a field. Then all nonzero elements of *F* are invertible:

$$F^{\times} = F - \{0\}.$$

An important part of the description of fields is that finite multiplicative subgroups of F^{\times} are cyclic. In this note we give a detailed proof, see Serre [1, p. 4], of a slightly more general result and provide examples. We first prove a couple of straightforward lemmas.

Let Z_n be the cyclic group of order $n \in \mathbb{Z}_{\geq 1}$, defined as

$$Z_n := \langle x \mid x^n = 1 \rangle.$$

Recall the Euler ϕ function: $\phi(n)$ counts the number of positive integers up to n that are prime to n.

Lemma 1.1. The number of elements of Z_n with order $m \ge 1$ is $\phi(m)$ if m|n and 0 otherwise.

Proof. For x a generator of Z_n , we claim that the order of x^a in Z_n is n/(a, n) for all $a \in \mathbb{Z}_{\geq 0}$. The claim is true for a = 0. Fix a > 0 and denote the order of x^a by k. Check that

$$(x^a)^{n/(a,n)} = 1$$

since $n \mid an/(a, n)$ so that

We must also have n|ak if the order of x^a is k. Hence

 $n/(a,n) \mid a/(a,n) \cdot k.$

 $k \mid n/(a, n).$

But n/(a, n) and a/(a, n) are relatively prime implies

$$n/(a,n) \mid k. \tag{1.2}$$

Then (1.1) and (1.2) prove the claim that k = n/(a, n).

Now we just need to count the solutions to m = n/(a, n) for $0 \le a \le n-1$. Since n/(a, n) divides n there are no solutions for m not dividing n. For m dividing n we require

$$(a,n) = n/m$$

Hence *a* must be of the form $n/m \cdot b$ with (b, m) = 1 and $1 \leq b < m$. There are $\phi(m)$ such *b*s. \Box

Lemma 1.2. We have

$$\sum_{d|n} \phi(d) = n. \tag{1.3}$$

Proof. This follows from Lemma 1.1: since each element in Z_n has order d dividing n, both sides of (1.3) count the number of elements in Z_n .

(1.1)

Theorem 1.3. Let G be a finite group of order n. For every divisor d of n suppose that the number of $g \in G$ satisfying $g^d = 1$ is at most d. Then G is cyclic.

Proof. Denote by $\psi(m)$ the number of elements in *G* of order *m*. Since every element of *G* has order dividing *n*, we see

$$\sum_{d|n} \psi(d) = n. \tag{1.4}$$

Let *d* be a divisor of *n* and suppose $\psi(d) \neq 0$, with $x \in G$ of order *d*. Then

$$\langle x \rangle = \{1, x, x^2, \dots, x^{d-1}\}.$$

Date: Dec 1, 2012.

For $y \in \langle x \rangle$ we have $y^d = (x^i)^d = (x^d)^i = 1$, so by our hypothesis $\langle x \rangle$ contains all the solutions $g \in G$ to $g^d = 1$. In particular $\langle x \rangle$ contains all the elements in *G* of order *d*. By Lemma 1.1, $\langle x \rangle$ contains exactly $\phi(d)$ such elements. Hence we have proved that $\psi(d)$ is 0 or $\phi(d)$. Therefore, with (1.3) and (1.4),

$$n = \sum_{d|n} \psi(d) \leqslant \sum_{d|n} \phi(d) = n \tag{1.5}$$

and we must have equality in (1.5) with $\psi(d) = \phi(d)$ for all d|n. In particular, $\psi(n) = \phi(n) \ge 1$ so that there is an element of *G* of order *n*, proving that *G* is cyclic.

Corollary 1.4. For *F* a field, every finite multiplicative subgroup of F^{\times} is cyclic.

Proof. As we showed in class, $x^d - 1 \in F[x]$ has at most d roots in F. Therefore Theorem 1.3 applies.

Corollary 1.5. For *F* a field and *G* a finite multiplicative subgroup, the number of elements of G of order d is $\phi(d)$ if d divides |G| and 0 otherwise.

Corollary 1.6. Let \mathbb{F}_q be a finite field. Then \mathbb{F}_q^{\times} must be a cyclic group of order q - 1.

Example 1.7. Corollary 1.6 implies that $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic. No formula is known for any of the $\phi(p-1)$ generators of $(\mathbb{Z}/p\mathbb{Z})^{\times}$. The smallest generators, for *p* running over the first 100 primes, are:

 $\begin{matrix} 1,2,2,3,2,2,3,2,5,2,3,2,6,3,5,2,2,2,2,7,5,3,2,3,5,2,5,2,6,3,3,2,3,\\ 2,2,6,5,2,5,2,2,2,19,5,2,3,2,3,2,6,3,7,7,6,3,5,2,6,5,3,3,2,5,17,10,2,\\ 3,10,2,2,3,7,6,2,2,5,2,5,3,21,2,2,7,5,15,2,3,13,2,3,2,13,3,2,7,5,2,3,2,2. \end{matrix}$

Tables like these were studied by Gauss. Artin's conjecture for primitive roots (1927) states that each squarefree integer $a \neq -1$ is a generator for infinitely many primes *p*. Despite much progress, the conjecture is still open

We also note that, even though $\mathbb{Z}/p^n\mathbb{Z}$ is not a field for n > 1, we do have that $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ is cyclic for p an odd prime. In the following two examples we confirm Corollary 1.4 for the fields \mathbb{C} and \mathbb{Q}_p .

Example 1.8. The elements of any finite subgroup of \mathbb{C}^{\times} must be of finite order. Therefore they must be roots of unity: complex numbers of the form

$$\exp(2\pi i h/k)$$
 for $h/k \in \mathbb{Q} \cap [0, 1)$.

Hence any finite subgroup *G* of \mathbb{C}^{\times} is isomorphic to a finite subgroup of \mathbb{Q}/\mathbb{Z} and necessarily cyclic, generated by $\exp(2\pi i h/k) \in G$ with minimal h/k > 0.

Example 1.9. Let \mathbb{Q}_p be the field of *p*-adic numbers for *p* an odd prime. The only roots of unity in \mathbb{Q}_p are the Teichmüller representatives

$$\omega(1), \omega(2), \ldots, \omega(p-1).$$

These are distinct solutions of $x^{p-1} = 1$ with $\omega(i) \equiv i \mod p$. It may be shown that they form a cyclic group of order p-1. Thus any finite subgroup of \mathbb{Q}_p^{\times} is a subgroup of this cyclic group. (The roots of unity in \mathbb{Q}_2 are just ± 1 .)

See [1, Chapter 2] for properties of the *p*-adic numbers. Available as a pdf here: www.math.purdue.edu/~lipman/MA598/Serre-Course%20in%20Arithmetic.pdf

References

[1] J. P. Serre. A Course in Arithmetic. Springer-Verlag, 1973.