FINITE MULTIPLICATIVE SUBGROUPS OF FIELDS

Let F be a field. Then all nonzero elements of F are invertible:

$$
F^{\times}=F-\{0\} .
$$

An important part of the description of fields is that finite multiplicative subgroups of F^{\times}are cyclic. In this note we give a detailed proof, see Serre [1, p. 4], of a slightly more general result and provide examples. We first prove a couple of straightforward lemmas.

Let Z_{n} be the cyclic group of order $n \in \mathbb{Z}_{\geqslant 1}$, defined as

$$
Z_{n}:=\left\langle x \mid x^{n}=1\right\rangle .
$$

Recall the Euler ϕ function: $\phi(n)$ counts the number of positive integers up to n that are prime to n.

Lemma 1.1. The number of elements of Z_{n} with order $m \geqslant 1$ is $\phi(m)$ if $m \mid n$ and 0 otherwise.
Proof. For x a generator of Z_{n}, we claim that the order of x^{a} in Z_{n} is $n /(a, n)$ for all $a \in \mathbb{Z}_{\geqslant 0}$. The claim is true for $a=0$. Fix $a>0$ and denote the order of x^{a} by k. Check that

$$
\left(x^{a}\right)^{n /(a, n)}=1
$$

since $n \mid a n /(a, n)$ so that

$$
\begin{equation*}
k \mid n /(a, n) . \tag{1.1}
\end{equation*}
$$

We must also have $n \mid a k$ if the order of x^{a} is k. Hence

$$
n /(a, n) \mid a /(a, n) \cdot k
$$

But $n /(a, n)$ and $a /(a, n)$ are relatively prime implies

$$
\begin{equation*}
n /(a, n) \mid k \tag{1.2}
\end{equation*}
$$

Then (1.1) and (1.2) prove the claim that $k=n /(a, n)$.
Now we just need to count the solutions to $m=n /(a, n)$ for $0 \leqslant a \leqslant n-1$. Since $n /(a, n)$ divides n there are no solutions for m not dividing n. For m dividing n we require

$$
(a, n)=n / m .
$$

Hence a must be of the form $n / m \cdot b$ with $(b, m)=1$ and $1 \leqslant b<m$. There are $\phi(m)$ such b s.
Lemma 1.2. We have

$$
\begin{equation*}
\sum_{d \mid n} \phi(d)=n . \tag{1.3}
\end{equation*}
$$

Proof. This follows from Lemma 1.1: since each element in Z_{n} has order d dividing n, both sides of (1.3) count the number of elements in Z_{n}.

Theorem 1.3. Let G be a finite group of order n. For every divisor d of n suppose that the number of $g \in G$ satisfying $g^{d}=1$ is at most d. Then G is cyclic.

Proof. Denote by $\psi(m)$ the number of elements in G of order m. Since every element of G has order dividing n, we see

$$
\begin{equation*}
\sum_{d \mid n} \psi(d)=n . \tag{1.4}
\end{equation*}
$$

Let d be a divisor of n and suppose $\psi(d) \neq 0$, with $x \in G$ of order d. Then

$$
\langle x\rangle=\left\{1, x, x^{2}, \ldots, x^{d-1}\right\} .
$$

For $y \in\langle x\rangle$ we have $y^{d}=\left(x^{i}\right)^{d}=\left(x^{d}\right)^{i}=1$, so by our hypothesis $\langle x\rangle$ contains all the solutions $g \in G$ to $g^{d}=1$. In particular $\langle x\rangle$ contains all the elements in G of order d. By Lemma 1.1, $\langle x\rangle$ contains exactly $\phi(d)$ such elements. Hence we have proved that $\psi(d)$ is 0 or $\phi(d)$. Therefore, with (1.3) and (1.4),

$$
\begin{equation*}
n=\sum_{d \mid n} \psi(d) \leqslant \sum_{d \mid n} \phi(d)=n \tag{1.5}
\end{equation*}
$$

and we must have equality in (1.5) with $\psi(d)=\phi(d)$ for all $d \mid n$. In particular, $\psi(n)=\phi(n) \geqslant 1$ so that there is an element of G of order n, proving that G is cyclic.
Corollary 1.4. For F a field, every finite multiplicative subgroup of F^{\times}is cyclic.
Proof. As we showed in class, $x^{d}-1 \in F[x]$ has at most d roots in F. Therefore Theorem 1.3 applies.
Corollary 1.5. For F a field and G a finite multiplicative subgroup, the number of elements of G of order d is $\phi(d)$ if d divides $|G|$ and 0 otherwise.

Corollary 1.6. Let \mathbb{F}_{q} be a finite field. Then \mathbb{F}_{q}^{\times}must be a cyclic group of order $q-1$.
Example 1.7. Corollary 1.6 implies that $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic. No formula is known for any of the $\phi(p-1)$ generators of $(\mathbb{Z} / p \mathbb{Z})^{\times}$. The smallest generators, for p running over the first 100 primes, are:

$$
\begin{aligned}
& 1,2,2,3,2,2,3,2,5,2,3,2,6,3,5,2,2,2,2,7,5,3,2,3,5,2,5,2,6,3,3,2,3 \\
& 2,2,6,5,2,5,2,2,2,19,5,2,3,2,3,2,6,3,7,7,6,3,5,2,6,5,3,3,2,5,17,10,2 \\
& \quad 3,10,2,2,3,7,6,2,2,5,2,5,3,21,2,2,7,5,15,2,3,13,2,3,2,13,3,2,7,5,2,3,2,2 .
\end{aligned}
$$

Tables like these were studied by Gauss. Artin's conjecture for primitive roots (1927) states that each squarefree integer $a \neq-1$ is a generator for infinitely many primes p. Despite much progress, the conjecture is still open

We also note that, even though $\mathbb{Z} / p^{n} \mathbb{Z}$ is not a field for $n>1$, we do have that $\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}$is cyclic for p an odd prime. In the following two examples we confirm Corollary 1.4 for the fields \mathbb{C} and \mathbb{Q}_{p}.
Example 1.8. The elements of any finite subgroup of \mathbb{C}^{\times}must be of finite order. Therefore they must be roots of unity: complex numbers of the form

$$
\exp (2 \pi i h / k) \quad \text { for } \quad h / k \in \mathbb{Q} \cap[0,1) .
$$

Hence any finite subgroup G of \mathbb{C}^{\times}is isomorphic to a finite subgroup of \mathbb{Q} / \mathbb{Z} and necessarily cyclic, generated by $\exp (2 \pi i h / k) \in G$ with minimal $h / k>0$.
Example 1.9. Let \mathbb{Q}_{p} be the field of p-adic numbers for p an odd prime. The only roots of unity in \mathbb{Q}_{p} are the Teichmüller representatives

$$
\omega(1), \omega(2), \ldots, \omega(p-1) .
$$

These are distinct solutions of $x^{p-1}=1$ with $\omega(i) \equiv i \bmod p$. It may be shown that they form a cyclic group of order $p-1$. Thus any finite subgroup of \mathbb{Q}_{p}^{\times}is a subgroup of this cyclic group. (The roots of unity in \mathbb{Q}_{2} are just ± 1.)

See [1, Chapter 2] for properties of the p-adic numbers. Available as a pdf here:
www.math.purdue.edu/~lipman/MA598/Serre-Course\ in\ Arithmetic.pdf

References

[1] J. P. Serre. A Course in Arithmetic. Springer-Verlag, 1973.

