Please note: You should fully justify your answers.

1 Finding equations of lines

1. Find an equation of the line that:
 (a) has slope -2 and y–intercept 11. $y = -2x + 11$
 (b) has slope $-\frac{5}{2}$ and y–intercept 0. $y = -\frac{5}{2}x$
 (c) has slope $\frac{3}{4}$ and passes through the point $(0, -4)$. $y = \frac{3}{4}x - 4$
 (d) has the same slope as $2y - 4x = 10$ and the same y–intercept as $y = 5x - 3$. $y = 2x - 3$
 (e) has slope -5 and passes through the point $(-2, 3)$. $y = -5x + 7$
 (f) has slope 0 and passes through the point $(3, 5)$. $y = 5$
 (g) is vertical and passes through the point $(-3, 0)$. $x = -3$
 (h) passes through the points $(-5, 13)$ and $(1, -5)$. $y = -3x - 2$
 (i) passes through the points $(-2, 4)$ and $(1, 7)$. $y = x + 6$
 (j) passes through the points $(3, 0)$ and $(6, 2)$. $y = \frac{2}{3}x - 2$
 (k) passes through the points $(-1, 5)$ and $(-1, -3)$. $x = -1$
 (l) passes through $(0, 0)$ and $(3, -5)$. $y = -\frac{5}{3}x$
 (m) passes through the points $(2, 4)$ and $(-3, 4)$. $y = 4$
 (n) passes through the points $(0, 4)$ and $(-5, 0)$. $y = \frac{4}{5}x + 4$
 (o) passes through the points $\left(\frac{2}{3}, -\frac{1}{9}\right)$, and $\left(-\frac{15}{2}, -\frac{6}{5}\right)$. $y = \frac{2}{15}x - \frac{1}{5}$
 (p) has the same slope as $3x - 5y = -2$ and the same x–intercept as $-2x - 3y = 6$. $y = \frac{3}{5}x - 3$
 (q) has the same x–intercept as $-2x + 3y = -2$ and the same y–intercept as $x - y = 3$. $y = -3x - 3$

2. Find the equations for each of the lines in Figure 1.

2 Parallel lines, Perpendicular lines

1. For each of the following pairs of lines, decide whether they are parallel, perpendicular or neither.
 (a) $y = 3x - 4, y = -3x + 2$ Neither
 (b) $y = \frac{2}{3}x, y = -\frac{3}{2}x + 9$ Perpendicular
 (c) $2x - 3y = 7, 2x - 3y = 5$ Parallel
 (d) $3x + y = -2, -2x + 3y = 0$ Neither
 (e) $-5x + 2y = 8, 2x + 5y = -3$ Perpendicular
 (f) $y = 3x + 8, 3x + y = -3$ Neither
Figure 1: The lines of Question 2

(a) \(y = -2x + 3 \)

(b) \(y = x - 2 \)

(c) \(y = x \)

(d) \(y = -x \)

(e) \(y = 3x - 4 \)

(f) \(y = \frac{2}{3}x - 2 \)
(g) \(y = 2x - 7, \ y = 2x + 9 \quad \text{Parallel} \\
(h) \ y = 5x - 7, \ y = -\frac{x}{5} + 9 \quad \text{Perpendicular} \\
(i) \ 2x + 3y - 9 = 0, \ y = -\frac{2x}{3} - 2 \quad \text{Parallel} \\

2. Find an equation for the line that:
 (a) passes through \((-1, 3)\) and is parallel to the line \(y = 3x - 5\). \[y = 3x + 6 \]
 (b) is parallel to \(2x - 5y = 6\) and passes through \((1, -2)\). \[2x - 5y = 12 \]
 (c) is parallel to \(x = -3\) and passes through \((5, 9)\). \[x = 5 \]
 (d) is perpendicular to \(x = 2\) and passes through \((3, 4)\). \[y = 4 \]
 (e) is perpendicular to \(y = -\frac{x + 2}{3}\) and passes through \((0, -2)\). \[3x + 2y = 13 \]
 (f) passes through the point \((3, 2)\) and is perpendicular to \(2x - 3y = 5\). \[2x - 3y = 5 \]
 (g) has the same \(y\)-intercept as \(3x - 4y = 8\) and is parallel to \(y = -5x + 11\). \[y = -5x - 2 \]

3. Verify that the following four points are the corners of a parallelogram.
 \[P(-4, -9), \ Q(-2, -3), \ R(-4, -7), \ S(-6, -13) \]

 \textit{Answer.} \(RQ\) and \(PS\) each have slope 2, so they are parallel. Also \(PQ\) and \(RS\) are parallel because each have slope 3. So, \(PQRS\) is a parallelogram. \(\square\)

4. Verify that the following three points are the corners of a right triangle.
 \[A(2, 4), \ B(0, 0), \ C(4, 3) \]

 \textit{Answer.} The slope of \(AB\) is \(m_1 = 2\) and the slope of \(AC\) is \(m_2 = -\frac{1}{2}\). Since \(m_1m_2 = -1\) it follows that \(AB\) and \(AC\) are perpendicular, so the angle \(A\) of \(ABC\) is a right angle. Therefore \(ABC\) is a right triangle. \(\square\)

5. Verify that the following four points are the corners of a rectangle.
 \[A(1, 1), \ B(4, 4), \ C(-1, 3), \ D(2, 6) \]

 \textit{Answer.} By computing the slopes we see that \(AC\) and \(BD\) are parallel and so are \(AB\) and \(CD\). Additionally, \(AC\) is perpendicular to \(AB\). So \(ABCD\) is a parallelogram with a right angle. So it has to be a rectangle. \(\square\)

6. Consider again a line \(l\) with equation in standard form
 \[Ax + By + C = 0 \]

 where \(A, B, C\) are real numbers and at least one of \(A, B\) is non-zero.

 (a) Prove that a line with equation
 \[Ax + By + D = 0 \]

 where \(D\) is any number, is parallel to \(l\).

 (b) Prove that a line with equation
 \[Bx - Ay + D = 0 \]

 where \(D\) is any number, is perpendicular to \(l\).