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different backgrounds...

Prisoner’s dilemma

A|B B stays silent
(cooperates)

B confesses
(defects)

A stays silent
(cooperates)

Each serves 1
month

A: 1 year
B: goes free

A confesses
(defects)

A: goes free
B: 1 year

Each serves 3
months
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different backgrounds...

Prisoner’s dilemma

Payoff Matrix Utility function
T>R>P>S

A|B COOPERATE DEFECT

COOPERATE R, R S,T
DEFECT T,S P,P

Temptation, Reward, Punishment, Suck
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different backgrounds...

Nash’s equilibrium

Strategies either Defect or Cooperate
Best response

given s, s∗ is the best response to s (s∗ := BR(s)) if

U(s∗, s) ≥ U(s′, s) for any s′

(s, s) is an equilibrium if BR(s) = s

In prisoner’s dilemma, the equilibrium is

(D,D) = (Defect ,Defect)
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different backgrounds...

How can cooperation emerge?

repeation could be an incentive for cooperation
to overcome opportunistic behavior

participants have no reason to think the current interaction is their last.

Infinitely Repeated Prisoner’s dilemma
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different backgrounds...

Infinitely Repeated Prisoner’s dilemma

Player play infinitely many times with fixed probability, δ of playing
again.

Histories; h = (a,b) ∈ H = {C,D}N × {C,D}N

strategies; s : ∪k∈N∪{0}Hk → {C,D}

Payoff

U(s1, s2) = (1− δ)
∑

k=0 δ
ku(ak ,bk )

s1(hk−1) = ak , s2(ĥk−1) = bk .

hk = ((a0,b0), . . . , (aj ,bj) . . . , (ak ,bk )),

ĥk = ((b0,a0), . . . , (bj ,aj) . . . , (bk ,ak ))
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different backgrounds...

Infinitely Repeated Prisoner’s dilemma

There are infinitely many possible payoffs

U(s1, s2) = (1− δ)
∑

δku(ak ,bk )

u(ak ,bk ) = T ,R,P,S

for δ large, set of possible payoffs is a continum.
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different backgrounds...

Cooperation (with itself) can be equilibria

Grim (cooperate until somebody defects), is an equilibrium

U(g,g) ≥ U(s,g) for any strategy s

g = C,C,C . . .C . . .
g = C,C,C . . .C . . .

U(g,g) = (1− δ)[R + δR + ..+ δkR + . . . ] = R

s = C,C,C . . .C,D, . . . .
g = C,C,C . . .C,C,D . . .D

U(s,g) = (1− δ)[R + δR + ..+ δk−1R + δkT + δk+1M . . . ], M = S or P

U(g,g)− U(s,g) ≥ δk [(1− δ)[R − T ] + δ(R − P)] > 0, δ large
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different backgrounds...

Infinitely many equilibria

Others “cooperative” equilibria

Variations of Grim

Tit for Tat

Variations of Tit for Tat

Win-Stay-Lose-Shift/Simpleton/Pavlov

For any payoff above (P,P) there is an equilibria

Continuum of equilibriums
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Which one to choose?
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Do there exist a selection mechanisms?

which is the “optimal“ strategy?
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different backgrounds...

Dynamic enters in town

Introduce dynamics on the space of strategies

Which is the appropriate dynamics?

Replicator dynamic

inspired in biology mimicking evolution

strategies that perform worst than the average, die

strategies that perform better than the average, thrive
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different backgrounds...

Replicator dynamic

S = {s1 . . . sn}

∆ = {(x1 . . . xn) ∈ Rn : x1 + · · ·+ xn = 1, xj ≥ 0,∀j}.

xi = percentage of the population that use the strategy si

Payoff matrix (S = {s1....sn})

A =

 a11 . . . a1n
. . . aii . . .
an1 . . . ann

 , aij = U(si , sj)

ẋj = xj [(AX )j − x tAx ]

ẋj = xj(payoff of (sj)− Average payoff)
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different backgrounds...

General version of replicator dynamics

Large class of dynamics

ẋj = xjF [(AX )j − x tAx ]

F : R→ R, strictly increasing function F (0) = 0.
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different backgrounds...

Replicator dynamic
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different backgrounds...

Attractors?

Strict Nash equilibria are attractors

If U(s, s) > U(s∗, s) for any s∗ then in any finite population

s is an attractor.
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different backgrounds...

Ties

It does not exist s such that U(s, s) > U(s∗, s) for any s∗

Fooling/upseting strategies (Grim and always cooperate)
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different backgrounds...

Infinitely Repeated Prisoner’s dilemma with trembles
TREMBLES:Probability of small mistakes 1− p,p
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different backgrounds...

How to compute utilities?
U(s1, s2) = (1− p2δ)

∑
hk

Ps1,s2(hk )δku(ak ,bk ).
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different backgrounds...

There exist strict Nash equilibria=Attractors

with trembles there exist Strict Nash equilibrium

there exist s: U(s, s) > U(s∗, s) for any s.

there exist strategies that are attractors in any population.

TREMBLES BREAK TIES.

Still, there are infinitely many of Strict Nash equilibria
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different backgrounds...

Which are the attractors frequently choosen

Which attractors are frequently choosen in any finite population?

Does there exist a strategy, such that in any population

if a fixed fraction use that strategy

then that strategy is going to become dominant?

To have a large basin of attraction in a uniform way
regardless of the population
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different backgrounds...

Dynamic re-enters: Uniform Large Basin of Attraction

s has ULBA,
if there exists K0 := K0(s) such that

for any δ large and p large,

then in any finite population

S = {s, s2, . . . sn} holds that

BK0(s) ⊂ Bs
loc(s).

Does it exist such strategy?

Which properties should satisfy?
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Uniform Large Basin of Attraction
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different backgrounds...

Super-game

Start with a population S = {s, s2, . . . sn}

Run the replicator dynamics for at least time t0

Change the population (number of strategies could increase or decrease)

strategies that has a Uniform large basin of attraction

they keep a large basin

provided that they are kept in the changes of populations.
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different backgrounds...

Conditions to have ULBA

Given {s, s∗, s′}

U(s∗, s′)− U(s, s′) + U(s′, s∗)− U(s, s∗)
U(s, s)− U(s∗, s)

< M0

the ball of size 1
M0

is in the basin of s (against s′, s∗)

sup
U(s,s)−U(s∗,s)>U(s,s)−U(s′,s)

{U(s∗, s′)− U(s, s′) + U(s′, s∗)− U(s, s∗)
U(s, s)− U(s∗, s)

, 0}

If the supreme over al strategies is smaller than M0 <∞

B 1
M0

(s) is in the basin of attraction of s in any finite population
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different backgrounds...

Conditions to have ULBA

If s has a uniform large basin in any set of THREE strategies

s has a uniform large basin in any finite population

Robustness against invasion by pairs→

Robustness against any set of invaders.

It is not enough to do well againts attack by individual strategies
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different backgrounds...

Proof: Back to replicator equation

A =

 a11 . . . a1n
. . . aii . . .
an1 . . . ann



ẋj = xj(payoff of (sj)− Average payoff)

ẋj = xj [(AX )j − x tAx ]
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different backgrounds...

Back to replicator equation

ẋj = xj [(AX )j − x tAx ]

(x1, . . . , xn) :
∑

xi = 1, xi ≥ 0

vertex ej are fixed points

ej is an attractor iff aij − ajj < 0 for all i 6= j .

eigenvalues of Dej X are {aij − ajj}i 6=j

In games, they could be arbitrary close to zero

size of the basin on the edges 1
1+

aii−aji
ajj−aij

.
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different backgrounds...

Back to replicator equation

Given a positive K0 < 1,

“Properties” on any matrix A ∈ Rn×n (arbitrary n) s.t. for the equation

ẋj = xj [(Ax)j − x tAx ]

the vertex e1 has a basin of attraction containing the ball of radius K0.

BK0(e1) ⊂ Bs
loc(e1).
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ẋj = xj [(Ax)j − x tAx ]

the vertex e1 has a basin of attraction containing the ball of radius K0.

BK0(e1) ⊂ Bs
loc(e1).

Enrique R. Pujals (IMPA-CUNY) Prisoner’s dilemma CUNY2015 30 / 52



different backgrounds...

Back to replicator equation

Given a positive K0 < 1,

“Properties” on any matrix A ∈ Rn×n (arbitrary n) s.t. for the equation
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different backgrounds...

Back to replicator equation

Nj1 = aj1 − a11

Mij = aji − a1i + a11 − aj1

Mji = aij − a1j + a11 − ai1.

M0 = maxi,j≥i{
Mij+Mji
−Ni

, 0}.
Then,

B 1
M0

(e1) = {x̄ :
∑
i≥2

xi ≤
1

M0
} ⊂ Bs

loc(e1).
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different backgrounds...

Replicator equation/adaptation to games

Given S = {s1 . . . sn}, let M be the payoff matrix

Mij = M(s, si , sj) = U(si , sj)− U(s, sj) + U(si , sj)− U(s, si)

N(s, si) = U(s, s)− U(si , s),

M0(s) = sup
sj ,si :N(s,si )>N(s,sj )

{
M(s, sj , si)

N(s, sj)
, 0}

M0(s) = sup
s∗,s:N(s,s∗)>N(s,s′)

{M(s, s∗, s′)
N(s, s∗)

, 0}
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Replicator equation
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different backgrounds...

How to compute?

sup
U(s,s)−U(s∗,s)>U(s,s)−U(s′,s)

{U(s∗, s′)− U(s, s′) + U(s′, s∗)− U(s, s∗)
U(s, s)− U(s∗, s)

, 0}

Get in the realm of games

T + P < 2R

The maximal payoff of s against s is R.

U(s∗, s′) + U(s′, s∗) ≤ 2R
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different backgrounds...

Cross ratio.

Given a strategy s and another one s∗

C(s, s∗) = sup
s∗

U(s, s)− U(s, s∗)
U(s, s)− U(s∗, s)

s satisfies the cross ratio condition if

C(s, s∗) is uniformly bounded for any s∗

Cross ratio condition and T + P < 2R → ULBA

Meaning?
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different backgrounds...

Existence?

Tic for Tac is not an attractor
After (C,D),TfT with itself goes in a path of alternate C and D

Always Defect has no ULBA
it has a small basin of attraction against Grim

Grim has no ULBA
unforgiving strategies lose in payoffs relative to strategies that forgive
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different backgrounds...

Star-type strategies

given s∗, s and a seed history hk , we look to the equilibrium path
hs∗,s/hk

(a1,b1), (a2,b2), . . . (at ,bt ) . . .

frequencies of s∗ getting R,S,T ,P whenever plays with s with seed hk

b1 =
1− p2δ

p2

∑
j:uj (s∗,s/hk )=R

p2j+2δj , b2 =
1− p2δ

p2

∑
j:uj (s∗,s/hk )=S

p2j+2δj ,

b3 =
1− p2δ

p2

∑
j:uj (s∗,s/hk )=T

p2j+2δj , b4 =
1− p2δ

p2

∑
j:uj (s∗,s/hk )=P

p2j+2δj ,
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different backgrounds...

Star-type strategies

given s∗, s and a seed history hk it is generated history

b1 frequency after hk of playing (C,C) (s∗ gets R)

b2 frequency after hk of playing (C,D) (s∗ gets S)

b3 frequency after hk of playing (D,C) (s∗ gets T )

b4 frequency after hk of playing (D,D) (s∗ gets P)
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different backgrounds...

Star-type strategies

Condition 1: s is a Cooperative strategy (efficient)

After any path, (s, s) eventually goes back to a path of cooperation

Trying to move away from low score

Condition 2: whenever playing againts a strategy s∗

if b3 > 0 (i.e.: (D,C) holds, s∗ defect when s cooperate) then

b3 < γ2b2 + γ4b4,

where γ2 = R−S
T , γ4 = R−P

T and b2,b3,b4.
If b3 > 0 then either b2 > 0 or b4 > 0.

If s∗ defected when s cooperated then s has to retaliate.
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different backgrounds...

Examples of Star strategies

COOPERATION

RETALIATION s retaliate to a defection of s∗ while s cooperated

What about PAYBACK?

Offer cooperation after taking advantage
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different backgrounds...

Win-Stay-Lose-Shift

if C,C −→ C,
COOPERATE

if D,D −→ C,
TRY TO MOVE AWAY FROM MUTUAL DEFECTION, FORGIVE

if C,D −→ D,
PUNISH

if D,C −→ D,
TAKE ADVANTAGES

Generalized forms/ CLASS OF WSLS

WSLS is a START-TYPE strategy
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different backgrounds...

Trigger strategies

Trigger is a START-TYPE strategy

Carefull WSLS
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different backgrounds...

Trigger strategies

Trigger-n is a START-TYPE strategy
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different backgrounds...

Contrite strategies

Contrite is a START-TYPE strategy

Contrite PAYS BACK
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different backgrounds...

Similarities and Differences

SIMILARITIES

COOPERATE

Try to move away from low score

Intend to go back to cooperation

RETALIATE

DIFFERENCES

WSLS take advantages

CONTRITE pays back
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different backgrounds...

Relations to experiment

Those type of strategies does not appear in the experiments

Previous results show that the become dominat if

they are present.

Can we test that?

How to design an experiment to test the theoretical’s predictions
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different backgrounds...

Characterizing strategies that has ULBA

We show sufficient conditions for a strategy to be sucessful.

Are they necessary

Axelrod’s conjecture:

Nice/ Cooperative/Efficient;

Retaliating;

Forgiving;

Non-envious.
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different backgrounds...

ULBA implies retaliation

If s is Nash equilibrium, it has to punish a defection

Always Cooperate is not an equilibrium
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different backgrounds...

ULBA implies “Forgiveness”

For strategies that keep defecting it is possible to find
a finite population where they have a small basin of attraction.

Unforgiving strategies do not have a uniformly large basin of attraction.

Grim does not forgive

Tit for Tat does not forgive

it can enter an infinite sequel that alternate cooperation and defection
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different backgrounds...

ULBA implies Cooperate (with itself after any path)

If s is ULBA, then for any history ht follows that

lim
δ→1,p→0

U(s, s/ht ) = R.
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different backgrounds...

Questions?

Experiments?

Dealing with the whole set of strategies:

topological and differentiable structure on set of strategies;
getting the right PDE.

Mutations? Dynamics accepting mutations

Caviat: Mutations of equilibria is not necessary an equilibria
.
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