Fourth Homework

Due: Tuesday, February 28

1. Find a basis for the kernel and the range of each of the following linear transformations:
(a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $T(\mathbf{x})=(x+y+2 z,-x+y-z,-x+3 y)$, where $\mathbf{x}=(x, y, z)$.
(b) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with matrix

$$
[T]=\left(\begin{array}{lll}
1 & -1 & 1 \\
2 & -2 & 2 \\
3 & -3 & 3
\end{array}\right)
$$

(c) $T: \mathbb{R}^{4} \rightarrow R^{3}$ given by

$$
T(\mathbf{x})=(2 x+9 w+4 z+6 w, 5 x+22 y+9 z+14 w, x+4 y+z+2 w)
$$

where $\mathbf{x}=(x, y, z, w)$.
(d) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by $T(\mathbf{x})=(x-y, x+y, 2 x-y)$, where $\mathbf{x}=(x, y)$.
(e) The linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by

$$
T\left(\mathbf{e}_{1}\right)=(2,-1), \quad T\left(\mathbf{e}_{2}\right)=(4,-2), \quad T\left(\mathbf{e}_{3}\right)=(1,1)
$$

2. The linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ with matrix

$$
[T]=\left(\begin{array}{cccc}
2 & 1 & 3 & -4 \\
1 & 3 & 4 & 3 \\
-1 & 2 & 1 & 7
\end{array}\right)
$$

is not surjective. Find a vector $\mathbf{b} \in \mathbb{R}^{3}$ that is not in the range of T.
3. For each of the following linear transformations T, determine whether T is an isomorphism. If it is, find T^{-1}. If it is not, find a basis of $\operatorname{ker} T$.
4. Find the inverse of the following matrices:
(a) $\left(\begin{array}{ll}3 & 1 \\ 1 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}1 & -1 & 2 \\ 1 & 0 & 4 \\ 0 & 1 & 1\end{array}\right)$
5. For each of the following systems, write it in the form $A \mathbf{x}=\mathbf{b}$ and solve it using A^{-1}.
(a) $\left\{\begin{aligned} 3 x+y & =5 \\ x+y & =7\end{aligned}\right.$
(b) $\left\{\begin{aligned} x-y+2 z & =-6 \\ x+4 z & =6 \\ y+z & =-8\end{aligned}\right.$
6. Find the coordinates of the vector $\mathbf{v}=-2 \mathbf{i}+7 \mathbf{j}-3 \mathbf{k}$ with respect to the basis $B=\{\mathbf{i}+\mathbf{k}, 2 \mathbf{i}-\mathbf{j}, \mathbf{j}-3 \mathbf{k}\}$.

