Third Homework

Due: Tuesday, February 28

1. Find a basis for the linear subspace of \mathbb{R}^{3} spanned by the vectors $(0,2,-1),(1,1,1)$, and $(1,3,0)$.
2. In \mathbb{R}^{4} let $B=\{(1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)$
(a) Show that B is a basis of \mathbb{R}^{4}
(b) Express every standard basic vector $\mathbf{e}_{i}, i=1,2,3,4$ as a linear combination of elements of B.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by:

$$
T(x \mathbf{i}+y \mathbf{j})=(3 x+5 y) \mathbf{i}+(8 x-3 y) \mathbf{j}-4 x \mathbf{k}
$$

(a) Prove that T is a linear transformation.
(b) Find $[T]$, the matrix of T.
4. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$, and $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformations defined by:

$$
\operatorname{Tlr}\left(\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)=\left(-x_{1}+3 x_{2}+x_{3}+9 x_{4}, 2 x_{1}+x_{3}+7 x_{4}, 4 x_{1}+2 x_{2}+x_{3}+2 x_{4}\right)
$$

and

$$
S\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{1}-2 x_{3}+3 x_{3}, 5 x_{1}+4 x_{2}+2 x_{3}\right)
$$

(a) Find the matrices $[T]$ and $[S]$.
(b) Compute the product $[S][T]$.
(c) Write a formula for $S \circ T$ using the answer in part (b).

